Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2426: 361-374, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36308697

RESUMO

MetaMSD is a proteomic software that integrates multiple quantitative mass spectrometry data analysis results using statistical summary combination approaches. By utilizing this software, scientists can combine results from their pilot and main studies to maximize their biomarker discovery while effectively controlling false discovery rates. It also works for combining proteomic datasets generated by different labeling techniques and/or different types of mass spectrometry instruments. With these advantages, MetaMSD enables biological researchers to explore various proteomic datasets in public repositories to discover new biomarkers and generate interesting hypotheses for future studies. In this protocol, we provide a step-by-step procedure on how to install and perform a meta-analysis for quantitative proteomics using MetaMSD.


Assuntos
Proteômica , Software , Proteômica/métodos , Espectrometria de Massas/métodos , Biomarcadores
2.
Plants (Basel) ; 10(2)2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33671904

RESUMO

In natural ecosystems, plants are constantly exposed to changes in their surroundings as they grow, caused by a lifestyle that requires them to live where their seeds fall. Thus, plants strive to adapt and respond to changes in their exposed environment that change every moment. Heat stress that naturally occurs when plants grow in the summer or a tropical area adversely affects plants' growth and poses a risk to plant development. When plants are subjected to heat stress, they recognize heat stress and respond using highly complex intracellular signaling systems such as reactive oxygen species (ROS). ROS was previously considered a byproduct that impairs plant growth. However, in recent studies, ROS gained attention for its function as a signaling molecule when plants respond to environmental stresses such as heat stress. In particular, ROS, produced in response to heat stress in various plant cell compartments such as mitochondria and chloroplasts, plays a crucial role as a signaling molecule that promotes plant growth and triggers subsequent downstream reactions. Therefore, this review aims to address the latest research trends and understandings, focusing on the function and role of ROS in responding and adapting plants to heat stress.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA