Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 20(12): 8789-8795, 2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33253587

RESUMO

We demonstrate the synthesis of self-assembled three-dimensional nanocomposite thin films consisting of NiO nanocolumns in an layered Aurivillius phase matrix. The structures were grown on single-crystal SrTiO3 substrates via pulsed laser deposition (PLD) with single ceramic (PbTiO3)x(BiNi2/3Nb1/3O3)1-x targets. The nanocolumns, which are about 10 nm in diameter each, extend over the entire film thickness of up to 225 nm. We reveal the difference in electrical conduction properties of the nanocolumns and the surrounding matrix on the nanoscale via conductive atomic force microscopy. The nanocomposite thin films exhibit improved photovoltaic performance compared to both pure PbTiO3 and homogeneous Aurivillius phase thin films.

2.
J Food Prot ; 85(8): 1172-1176, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35512126

RESUMO

ABSTRACT: Inshell walnuts can be contaminated with pathogens through direct contact or cross-contamination during harvesting and postharvest hulling, drying, or storage. This study aimed to assess the efficacy of UV-C radiation in inactivating foodborne pathogens on inshell walnut surfaces. Intact inshell walnut surfaces were inoculated separately with Salmonella,Escherichia coli O157:H7, Listeria monocytogenes, and Staphylococcus aureus and then were subjected to UV-C radiation at doses of 29.4, 147.0, 294.0, 588.0, and 882.0 mJ/cm2. UV-C radiation inactivated the inoculated pathogens in a dose-dependent manner, and a tailing effect was observed for the inactivation of pathogens. UV-C radiation at 29.4 and 882.0 mJ/cm2 reduced the populations of Salmonella Enteritidis PT 30, Salmonella Typhimurium, E. coli O157:H7, L. monocytogenes, and S. aureus on inshell walnut surfaces by 0.82 to 1.25 and 1.76 to 2.41 log CFU per walnut, respectively. Scanning electron photomicrographs showed pathogenic bacterial cells in the cracks and crevices of the inshell walnut surface, and the shielding of microorganisms by the cracks and crevices may have contributed to the tailing effect observed during UV-C inactivation. No significant changes (P > 0.05) were found in walnut lipid oxidation following UV-C radiation at doses up to 882.0 mJ/cm2. Together, the results indicate that UV-C radiation could be a potential technology for reducing the populations of various foodborne pathogens on inshell walnut surfaces while maintaining the quality of walnuts.


Assuntos
Escherichia coli O157 , Juglans , Listeria monocytogenes , Contagem de Colônia Microbiana , Escherichia coli O157/efeitos da radiação , Microbiologia de Alimentos , Juglans/microbiologia , Listeria monocytogenes/fisiologia , Salmonella typhimurium/efeitos da radiação , Staphylococcus aureus
3.
Sci Adv ; 7(23)2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34078597

RESUMO

Ever since the first observation of a photovoltaic effect in ferroelectric BaTiO3, studies have been devoted to analyze this effect, but only a few attempted to engineer an enhancement. In conjunction, the steep progress in thin-film fabrication has opened up a plethora of previously unexplored avenues to tune and enhance material properties via growth in the form of superlattices. In this work, we present a strategy wherein sandwiching a ferroelectric BaTiO3 in between paraelectric SrTiO3 and CaTiO3 in a superlattice form results in a strong and tunable enhancement in photocurrent. Comparison with BaTiO3 of similar thickness shows the photocurrent in the superlattice is 103 times higher, despite a nearly two-thirds reduction in the volume of BaTiO3 The enhancement can be tuned by the periodicity of the superlattice, and persists under 1.5 AM irradiation. Systematic investigations highlight the critical role of large dielectric permittivity and lowered bandgap.

4.
Nat Commun ; 12(1): 282, 2021 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-33436580

RESUMO

Multiferroic bismuth ferrite, BiFeO3, offers a vast landscape to study the interplay between different ferrroic orders. Another aspect which is equally exciting, and yet underutilized, is the possibility of large-scale ordering of domains. Along with symmetry-driven bulk photovoltaic effect, BiFeO3 presents opportunities to conceptualize novel light-based devices. In this work, we investigate the evolution of the bulk photovoltaic effect in BiFeO3 thin films with stripe-domain pattern as the polarization of light is modulated from linear to elliptical to circular. The open-circuit voltages under circularly polarized light exceed ± 25 V. The anomalous character of the effect arises from the contradiction with the analytical assessment involving tensorial analysis. The assessment highlights the need for a domain-specific interaction of light which is further analyzed with spatially-resolved Raman measurements. Appropriate positioning of electrodes allows observation of a switch-like photovoltaic effect, i.e., ON and OFF state, by changing the helicity of circularly polarized light.

5.
Sci Rep ; 9(1): 13979, 2019 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-31562342

RESUMO

Absence of inversion symmetry is the underlying origin of ferroelectricity, piezoelectricity, and the bulk photovoltaic (BPV) effect, as a result of which they are inextricably linked. However, till now, only the piezoelectric effects (inverse) have been commonly utilized for probing ferroelectric characteristics such as domain arrangements and resultant polarization orientation. The bulk photovoltaic effect, despite sharing same relation with the symmetry as piezoelectricity, has been mostly perceived as an outcome of ferroelectricity and not as a possible analytical method. In this work, we investigate the development of BPV characteristics, i.e. amplitude and angular dependency of short-circuit current, as the ferroelastic domain arrangement is varied by applying electric fields in planar devices of BiFeO3 films. A rather sensitive co-dependency was observed from measurements on sample with ordered and disordered domain arrangements. Analysis of the photovoltaic response manifested in a mathematical model to estimate the proportion of switched and un-switched regions. The results unravel the potential utility of BPV effect to trace the orientation of the polarization vectors (direction and amplitude) in areas much larger than that can be accommodated in probe-based techniques.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA