Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 555(7694): 83-88, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29466334

RESUMO

Skin-like electronics that can adhere seamlessly to human skin or within the body are highly desirable for applications such as health monitoring, medical treatment, medical implants and biological studies, and for technologies that include human-machine interfaces, soft robotics and augmented reality. Rendering such electronics soft and stretchable-like human skin-would make them more comfortable to wear, and, through increased contact area, would greatly enhance the fidelity of signals acquired from the skin. Structural engineering of rigid inorganic and organic devices has enabled circuit-level stretchability, but this requires sophisticated fabrication techniques and usually suffers from reduced densities of devices within an array. We reasoned that the desired parameters, such as higher mechanical deformability and robustness, improved skin compatibility and higher device density, could be provided by using intrinsically stretchable polymer materials instead. However, the production of intrinsically stretchable materials and devices is still largely in its infancy: such materials have been reported, but functional, intrinsically stretchable electronics have yet to be demonstrated owing to the lack of a scalable fabrication technology. Here we describe a fabrication process that enables high yield and uniformity from a variety of intrinsically stretchable electronic polymers. We demonstrate an intrinsically stretchable polymer transistor array with an unprecedented device density of 347 transistors per square centimetre. The transistors have an average charge-carrier mobility comparable to that of amorphous silicon, varying only slightly (within one order of magnitude) when subjected to 100 per cent strain for 1,000 cycles, without current-voltage hysteresis. Our transistor arrays thus constitute intrinsically stretchable skin electronics, and include an active matrix for sensory arrays, as well as analogue and digital circuit elements. Our process offers a general platform for incorporating other intrinsically stretchable polymer materials, enabling the fabrication of next-generation stretchable skin electronic devices.


Assuntos
Eletrônica/instrumentação , Maleabilidade , Pele , Transistores Eletrônicos , Dispositivos Eletrônicos Vestíveis , Humanos , Polímeros/química , Silício/química
2.
J Am Chem Soc ; 143(30): 11679-11689, 2021 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-34284578

RESUMO

Strategies to improve stretchability of polymer semiconductors, such as introducing flexible conjugation-breakers or adding flexible blocks, usually result in degraded electrical properties. In this work, we propose a concept to address this limitation, by introducing conjugated rigid fused-rings with optimized bulky side groups and maintaining a conjugated polymer backbone. Specifically, we investigated two classes of rigid fused-ring systems, namely, benzene-substituted dibenzothiopheno[6,5-b:6',5'-f]thieno[3,2-b]thiophene (Ph-DBTTT) and indacenodithiophene (IDT) systems, and identified molecules displaying optimized electrical and mechanical properties. In the IDT system, the polymer PIDT-3T-OC12-10% showed promising electrical and mechanical properties. In fully stretchable transistors, the polymer PIDT-3T-OC12-10% showed a mobility of 0.27 cm2 V-1 s-1 at 75% strain and maintained its mobility after being subjected to hundreds of stretching-releasing cycles at 25% strain. Our results underscore the intimate correlation between chemical structures, mechanical properties, and charge carrier mobility for polymer semiconductors. Our described molecular design approach will help to expedite the next generation of intrinsically stretchable high-performance polymer semiconductors.

4.
Nanomaterials (Basel) ; 13(15)2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37570484

RESUMO

Understanding the density of state (DOS) distribution in solution-processed indium-zinc-oxide (IZO) thin-film transistors (TFTs) is crucial for addressing electrical instability. This paper presents quantitative calculations of the acceptor-like state distribution of solution-processed IZO TFTs using thermal energy analysis. To extract the acceptor-like state distribution, the electrical characteristics of IZO TFTs with various In molarity ratios were analyzed with respect to temperature. An Arrhenius plot was used to determine electrical parameters such as the activation energy, flat band energy, and flat band voltage. Two calculation methods, the simplified charge approximation and the Meyer-Neldel (MN) rule-based carrier-surface potential field-effect analysis, were proposed to estimate the acceptor-like state distribution. The simplified charge approximation established the modeling of acceptor-like states using the charge-voltage relationship. The MN rule-based field-effect analysis validated the DOS distribution through the carrier-surface potential relationship. In addition, this study introduces practical and effective approaches for determining the DOS distribution of solution-processed IZO semiconductors based on the In molarity ratio. The profiles of the acceptor-like state distribution provide insights into the electrical behavior depending on the doping concentration of the solution-processed IZO semiconductors.

5.
Nanomaterials (Basel) ; 13(23)2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38063682

RESUMO

The density of donor-like state distributions in solution-processed indium-zinc-oxide (IZO) thin-film transistors (TFTs) is thoroughly analyzed using photon energy irradiation. This study focuses on quantitatively calculating the distribution of density of states (DOS) in IZO semiconductors, with a specific emphasis on their variation with indium concentration. Two calculation methods, namely photoexcited charge collection spectroscopy (PECCS) and photocurrent-induced DOS spectroscopy (PIDS), are employed to estimate the density of the donor-like states. This dual approach not only ensures the accuracy of the findings but also provides a comprehensive perspective on the properties of semiconductors. The results reveal a consistent characteristic: the Recombination-Generation (R-G) center energy ET, a key aspect of the donor-like state, is acquired at approximately 3.26 eV, irrespective of the In concentration. This finding suggests that weak bonds and oxygen vacancies within the Zn-O bonding structure of IZO semiconductors act as the primary source of R-G centers, contributing to the donor-like state distribution. By highlighting this fundamental aspect of IZO semiconductors, this study enhances our understanding of their charge-transport mechanisms. Moreover, it offers valuable insight for addressing stability issues such as negative bias illumination stress, potentially leading to the improved performance and reliability of solution-processed IZO TFTs. The study contributes to the advancement of displays and technologies by presenting further innovations and applications for evaluating the fundamentals of semiconductors.

6.
Sci Adv ; 9(6): eade0423, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36763652

RESUMO

Biological compounds often provide clues to advance material designs. Replicating their molecular structure and functional motifs in artificial materials offers a blueprint for unprecedented functionalities. Here, we report a flexible biomimetic thermal sensing (BTS) polymer that is designed to emulate the ion transport dynamics of a plant cell wall component, pectin. Using a simple yet versatile synthetic procedure, we engineer the physicochemical properties of the polymer by inserting elastic fragments in a block copolymer architecture, making it flexible and stretchable. The thermal response of our flexible polymer outperforms current state-of-the-art temperature sensing materials, including vanadium oxide, by up to two orders of magnitude. Thermal sensors fabricated from these composites exhibit a sensitivity that exceeds 10 mK and operate stably between 15° and 55°C, even under repeated mechanical deformations. We demonstrate the use of our flexible BTS polymer in two-dimensional arrays for spatiotemporal temperature mapping and broadband infrared photodetection.

7.
ACS Appl Mater Interfaces ; 14(48): 54157-54169, 2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36413961

RESUMO

Silent communication based on biosignals from facial muscle requires accurate detection of its directional movement and thus optimally positioning minimum numbers of sensors for higher accuracy of speech recognition with a minimal person-to-person variation. So far, previous approaches based on electromyogram or pressure sensors are ineffective in detecting the directional movement of facial muscles. Therefore, in this study, high-performance strain sensors are used for separately detecting x- and y-axis strain. Directional strain distribution data of facial muscle is obtained by applying three-dimensional digital image correlation. Deep learning analysis is utilized for identifying optimal positions of directional strain sensors. The recognition system with four directional strain sensors conformably attached to the face shows silent vowel recognition with 85.24% accuracy and even 76.95% for completely nonobserved subjects. These results show that detection of the directional strain distribution at the optimal facial points will be the key enabling technology for highly accurate silent speech recognition.


Assuntos
Aprendizado Profundo , Percepção da Fala , Humanos , Músculos Faciais
8.
Sci Adv ; 8(15): eabm3622, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35417230

RESUMO

Skin-attachable sensors, which represent the ultimate form of wearable electronic devices that ensure conformal contact with skin, suffer from motion artifact limitations owing to relative changes in position between the sensor and skin during physical activities. In this study, a polarization-selective structure of a skin-conformable photoplethysmographic (PPG) sensor was developed to decrease the amount of scattered light from the epidermis, which is the main cause of motion artifacts. The motion artifacts were suppressed more than 10-fold in comparison with those of rigid sensors. The developed sensor-with two orthogonal polarizers-facilitated successful PPG signal monitoring during wrist angle movements corresponding to high levels of physical activity, enabling continuous monitoring of daily activities, even while exercising for personal health care.

9.
Nat Commun ; 12(1): 3572, 2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-34117254

RESUMO

As a key component in stretchable electronics, semiconducting polymers have been widely studied. However, it remains challenging to achieve stretchable semiconducting polymers with high mobility and mechanical reversibility against repeated mechanical stress. Here, we report a simple and universal strategy to realize intrinsically stretchable semiconducting polymers with controlled multi-scale ordering to address this challenge. Specifically, incorporating two types of randomly distributed co-monomer units reduces overall crystallinity and longer-range orders while maintaining short-range ordered aggregates. The resulting polymers maintain high mobility while having much improved stretchability and mechanical reversibility compared with the regular polymer structure with only one type of co-monomer units. Interestingly, the crystalline microstructures are mostly retained even under strain, which may contribute to the improved robustness of our stretchable semiconductors. The proposed molecular design concept is observed to improve the mechanical properties of various p- and n-type conjugated polymers, thus showing the general applicability of our approach. Finally, fully stretchable transistors fabricated with our newly designed stretchable semiconductors exhibit the highest and most stable mobility retention capability under repeated strains of 1,000 cycles. Our general molecular engineering strategy offers a rapid way to develop high mobility stretchable semiconducting polymers.

10.
Sci Adv ; 7(23)2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34088675

RESUMO

Skin-like health care patches (SHPs) are next-generation health care gadgets that will enable seamless monitoring of biological signals in daily life. Skin-conformable sensors and a stretchable display are critical for the development of standalone SHPs that provide real-time information while alleviating privacy concerns related to wireless data transmission. However, the production of stretchable wearable displays with sufficient pixels to display this information remains challenging. Here, we report a standalone organic SHP that provides real-time heart rate information. The 15-µm-thick SHP comprises a stretchable organic light-emitting diode display and stretchable organic photoplethysmography (PPG) heart rate sensor on all-elastomer substrate and operates stably under 30% strain using a combination of stress relief layers and deformable micro-cracked interconnects that reduce the mechanical stress on the active optoelectronic components. This approach provides a rational strategy for high-resolution stretchable displays, enabling the production of ideal platforms for next-generation wearable health care electronics.

11.
J Nanosci Nanotechnol ; 20(10): 6505-6511, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32385006

RESUMO

The cathode material, high Nickel content Ni0.7Co0.2Mn0.1 (NCM), was synthesized by coprecipitation with NH4OH used as a complexing agent. The prepared materials are made in the formation of spherical particles of Li(Ni0.7Co0.2Mn0.1)O2 of several micrometers in diameter. Al2O3 was coated by an impregnation method and its content was gradually increased to 1, 2 and 5 wt%. As a result, 1 wt% coated Al2O3 compared to pristine NCM exhibited 82% and 80% retention rates at 5 C and 1 wt% Al2O3 coated NCM recovery at 0.2 C after 5 C showed 100%. In addition, capacity retention of 1 wt% NCM+Al gently decreased in 100 cycle life characteristics, and capacity retention of 95% or more was confirmed.

12.
ACS Appl Mater Interfaces ; 12(45): 50628-50637, 2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-32986402

RESUMO

Organic semiconductors (OSCs) are of interest for replacing traditional Si-based semiconductors as their flexibility and transparency enable new applications. The properties of OSC materials greatly depend on their orientation and molecular arrangement, which are strongly dependent on the underlying substrate material. Hence, in this study, in situ ultraviolet photoelectron spectroscopy (UPS) is used to elucidate the effect of the substrate on OSC orientation. Two types of OSCs, namely those with shape anisotropy (pentacene, dinaphtho[2,3-b:2',3'-f]thieno[3,2-b]thiophene, and dibenzothiopheno[6,5-b:6',5'-f]thieno[3,2-b]thiophene) and those with shape isotropy (N,N'-di(1-naphthyl)-N,N'-diphenyl-(1,1'-biphenyl)-4,4'-diamine, tris(4-carbazoyl-9-ylphenyl)amine, and [6,6]-phenyl C71 butyric acid methyl ester), are deposited on different electrode materials. The differences in the UPS spectra of these materials are observed directly. In general, the orientation of anisotropic OSC molecules significantly depends on the substrate properties, while that of the isotropic ones do not. All the anisotropic OSC molecules grown on poly(3,4-ethylenedioxythiophene)-polystyrenesulfonate (PEDOT:PSS) electrodes show a greater degree of molecular ordering than those grown on Au and multiwalled carbon nanotube/PEDOT:PSS electrodes. The molecular arrangements within the OSC/electrode structures are reflected in the energy-level shifts in the corresponding UPS spectra and hence in the electronic configurations. The results of this study should aid the design and synthesis of OSC materials with configurations suitable for organic electronic devices.

13.
Nat Commun ; 11(1): 3362, 2020 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-32620794

RESUMO

Intrinsically and fully stretchable active-matrix-driven displays are an important element to skin electronics that can be applied to many emerging fields, such as wearable electronics, consumer electronics and biomedical devices. Here, we show for the first time a fully stretchable active-matrix-driven organic light-emitting electrochemical cell array. Briefly, it is comprised of a stretchable light-emitting electrochemical cell array driven by a solution-processed, vertically integrated stretchable organic thin-film transistor active-matrix, which is enabled by the development of chemically-orthogonal and intrinsically stretchable dielectric materials. Our resulting active-matrix-driven organic light-emitting electrochemical cell array can be readily bent, twisted and stretched without affecting its device performance. When mounted on skin, the array can tolerate to repeated cycles at 30% strain. This work demonstrates the feasibility of skin-applicable displays and lays the foundation for further materials development.


Assuntos
Materiais Biomiméticos/química , Elastômeros/química , Transistores Eletrônicos , Dispositivos Eletrônicos Vestíveis , Eletroquímica , Éteres/química , Estudos de Viabilidade , Fluorocarbonos/química , Luminescência , Teste de Materiais , Ácidos Polimetacrílicos/química , Pele
14.
Adv Mater ; 31(42): e1903912, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31489716

RESUMO

Molecular additives are often used to enhance dynamic motion of polymeric chains, which subsequently alter the functional and physical properties of polymers. However, controlling the chain dynamics of semiconducting polymer thin films and understanding the fundamental mechanisms of such changes is a new area of research. Here, cycloparaphenylenes (CPPs) are used as conjugated molecular additives to tune the dynamic behaviors of diketopyrrolopyrrole-based (DPP-based) semiconducting polymers. It is observed that the addition of CPPs results in significant improvement in the stretchability of the DPP-based polymers without adversely affecting their mobility, which arises from the enhanced polymer dynamic motion and reduced long-range crystalline order. The polymer films retain their fiber-like morphology and short-range ordered aggregates, which leads to high mobility. Fully stretchable transistors are subsequently fabricated using CPP/semiconductor composites as active layers. These composites are observed to maintain high mobilities when strained and after repeated applied strains. Interestingly, CPPs are also observed to improve the contact resistance and charge transport of the fully stretchable transistors. ln summary, these results collectively indicate that controlling the dynamic motion of polymer semiconductors is proved to be an effective way to improve their stretchability.

15.
Sci Adv ; 5(11): eaav3097, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31723597

RESUMO

Skin-like sensory devices should be stretchable and self-healable to meet the demands for future electronic skin applications. Despite recent notable advances in skin-inspired electronic materials, it remains challenging to confer these desired functionalities to an active semiconductor. Here, we report a strain-sensitive, stretchable, and autonomously self-healable semiconducting film achieved through blending of a polymer semiconductor and a self-healable elastomer, both of which are dynamically cross-linked by metal coordination. We observed that by controlling the percolation threshold of the polymer semiconductor, the blend film became strain sensitive, with a gauge factor of 5.75 × 105 at 100% strain in a stretchable transistor. The blend film is also highly stretchable (fracture strain, >1300%) and autonomously self-healable at room temperature. We proceed to demonstrate a fully integrated 5 × 5 stretchable active-matrix transistor sensor array capable of detecting strain distribution through surface deformation.

16.
Nat Nanotechnol ; 13(11): 1057-1065, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30127474

RESUMO

Electronic skin devices capable of monitoring physiological signals and displaying feedback information through closed-loop communication between the user and electronics are being considered for next-generation wearables and the 'Internet of Things'. Such devices need to be ultrathin to achieve seamless and conformal contact with the human body, to accommodate strains from repeated movement and to be comfortable to wear. Recently, self-healing chemistry has driven important advances in deformable and reconfigurable electronics, particularly with self-healable electrodes as the key enabler. Unlike polymer substrates with self-healable dynamic nature, the disrupted conducting network is unable to recover its stretchability after damage. Here, we report the observation of self-reconstruction of conducting nanostructures when in contact with a dynamically crosslinked polymer network. This, combined with the self-bonding property of self-healing polymer, allowed subsequent heterogeneous multi-component device integration of interconnects, sensors and light-emitting devices into a single multi-functional system. This first autonomous self-healable and stretchable multi-component electronic skin paves the way for future robust electronics.


Assuntos
Condutividade Elétrica , Eletrônica , Nanoestruturas , Pele , Eletrodos , Eletrônica/instrumentação , Eletrônica/métodos
17.
ACS Appl Mater Interfaces ; 9(44): 38728-38736, 2017 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-29047273

RESUMO

We report a newly synthesized donor (D)-acceptor (A)type semiconducting copolymer, consisting of thiophene as an electron-donating unit and thiazole as an electron-accepting unit (PQTBTz-TT-C8) for the active layer of the organic field-effect transistors (OFETs). Specifically, this study investigates the structure and electrical property relationships of PQTBTz-TT-C8 with comprehensive analyses on the charge-transporting properties corresponding to the spin rate of the spin coater during the formation of the PQTBTz-TT-C8 film. The crystallinity of PQTBTz-TT-C8 films is examined with grazing incidence X-ray diffraction. Temperature-dependent transfer measurements of the OFETs are conducted to extract the density of states (DOS) and characterize the charge-transport properties. Comparative analyses on charge transports within the framework of the physical model, based on polaron hopping and Gaussian DOS, reveal that the prefactors of both physical charge-transport models are independent of the spin-coating condition for the films. For staggered structural transistors, however, the thickness of the PQTBTz-TT-C8 films, which strongly affect the series resistance along the charge-transfer path in a vertical direction, is changed in accordance with the spin-coating rate. In other words, the spin-coating rate of the PQTBTz-TT-C8 films influences the thickness of the polymer films, yet any significant changes in the crystallinity of the film or electronic coupling between the neighboring molecules upon the spin-coating condition were barely noticeable. Because the PQTBTz-TT-C8 backbone chains inside the thin film are stacked up with the edge-on, the series resistances are changed according to the thickness of the film and thus the performance of the device varies depending on the thickness.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA