Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Genes (Basel) ; 14(11)2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-38003020

RESUMO

The ß-amylase (BAM) gene family encodes important enzymes that catalyze the conversion of starch to maltose in various biological processes of plants and play essential roles in regulating the growth and development of multiple plants. So far, BAMs have been extensively studied in Arabidopsis thaliana (A. thaliana). However, the characteristics of the BAM gene family in the crucial economic crop, cotton, have not been reported. In this study, 27 GhBAM genes in the genome of Gossypium hirsutum L (G. hirsutum) were identified by genome-wide identification, and they were divided into three groups according to sequence similarity and phylogenetic relationship. The gene structure, chromosome distribution, and collinearity of all GhBAM genes identified in the genome of G. hirsutum were analyzed. Further sequence alignment of the core domain of glucosyl hydrolase showed that all GhBAM family genes had the glycosyl hydrolase family 14 domain. We identified the BAM gene GhBAM7 and preliminarily investigated its function by transcriptional sequencing analysis, qRT-PCR, and subcellular localization. These results suggested that the GhBAM7 gene may influence fiber strength during fiber development. This systematic analysis provides new insight into the transcriptional characteristics of BAM genes in G. hirsutum. It may lay the foundation for further study of the function of these genes.


Assuntos
Gossypium , beta-Amilase , beta-Amilase/genética , Filogenia , Família Multigênica , Perfilação da Expressão Gênica , Proteínas de Plantas/genética , Proteínas de Plantas/química
2.
Genome Biol ; 24(1): 49, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36918913

RESUMO

BACKGROUND: The epidermis of cotton ovule produces fibers, the most important natural cellulose source for the global textile industry. However, the molecular mechanism of fiber cell growth is still poorly understood. RESULTS: Here, we develop an optimized protoplasting method, and integrate single-cell RNA sequencing (scRNA-seq) and single-cell ATAC sequencing (scATAC-seq) to systematically characterize the cells of the outer integument of ovules from wild type and fuzzless/lintless (fl) cotton (Gossypium hirsutum). By jointly analyzing the scRNA-seq data from wildtype and fl, we identify five cell populations including the fiber cell type and construct the development trajectory for fiber lineage cells. Interestingly, by time-course diurnal transcriptomic analysis, we demonstrate that the primary growth of fiber cells is a highly regulated circadian rhythmic process. Moreover, we identify a small peptide GhRALF1 that circadian rhythmically controls fiber growth possibly through oscillating auxin signaling and proton pump activity in the plasma membrane. Combining with scATAC-seq, we further identify two cardinal cis-regulatory elements (CREs, TCP motif, and TCP-like motif) which are bound by the trans factors GhTCP14s to modulate the circadian rhythmic metabolism of mitochondria and protein translation through regulating approximately one third of genes that are highly expressed in fiber cells. CONCLUSIONS: We uncover a fiber-specific circadian clock-controlled gene expression program in regulating fiber growth. This study unprecedentedly reveals a new route to improve fiber traits by engineering the circadian clock of fiber cells.


Assuntos
Fibra de Algodão , Gossypium , Perfilação da Expressão Gênica , Fenótipo , Expressão Gênica , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA