Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
1.
Magn Reson Med ; 91(4): 1567-1575, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38044757

RESUMO

PURPOSE: To investigate spiral-based imaging including trajectories with undersampling as a fast and robust alternative for phase-based magnetic resonance electrical properties tomography (MREPT) techniques. METHODS: Spiral trajectories with various undersampling ratios were prescribed to acquire images from an experimental phantom and a healthy volunteer at 3T. The non-Cartesian acquisitions were reconstructed using SPIRiT, and conductivity maps were derived using phase-based cr-MREPT. The resulting maps were compared between different sampling trajectories. Additionally, a conductivity map was obtained using a Cartesian balanced SSFP acquisition from the volunteer to comparatively demonstrate the robustness of the proposed method. RESULTS: The phantom and volunteer results illustrate the benefits of the spiral acquisitions. Specifically, undersampled spiral acquisitions display improved robustness against field inhomogeneity artifacts and lowered SD values with shortened readout times. Furthermore, average of conductivity values measured for the cerebrospinal fluid with the spiral acquisitions were 1.703 S/m, indicating a close agreement with the theoretical values of 1.794 S/m. CONCLUSION: A spiral-based acquisition framework for conductivity imaging with and without undersampling is presented. Overall, spiral-based acquisitions improved robustness against field inhomogeneity artifacts, while achieving whole head coverage with multiple averages in less than a minute.


Assuntos
Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Humanos , Estudos de Viabilidade , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Tomografia/métodos , Imagens de Fantasmas , Espectroscopia de Ressonância Magnética
2.
Magn Reson Med ; 92(3): 900-915, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38650306

RESUMO

PURPOSE: Sodium triple quantum (TQ) signal has been shown to be a valuable biomarker for cell viability. Despite its clinical potential, application of Sodium TQ signal is hindered by complex pulse sequences with long scan times. This study proposes a method to approximate the TQ signal using a single excitation pulse without phase cycling. METHODS: The proposed method is based on a single excitation pulse and a comparison of the free induction decay (FID) with the integral of the FID combined with a shifting reconstruction window. The TQ signal is calculated from this FID only. As a proof of concept, the method was also combined with a multi-echo UTE imaging sequence on a 9.4 T preclinical MRI scanner for the possibility of fast TQ MRI. RESULTS: The extracted Sodium TQ signals of single-pulse and spin echo FIDs were in close agreement with theory and TQ measurement by traditional three-pulse sequence (TQ time proportional phase increment [TQTPPI)]. For 2%, 4%, and 6% agar samples, the absolute deviations of the maximum TQ signals between SE and theoretical (time proportional phase increment TQTPPI) TQ signals were less than 1.2% (2.4%), and relative deviations were less than 4.6% (6.8%). The impact of multi-compartment systems and noise on the accuracy of the TQ signal was small for simulated data. The systematic error was <3.4% for a single quantum (SQ) SNR of 5 and at maximum <2.5% for a multi-compartment system. The method also showed the potential of fast in vivo SQ and TQ imaging. CONCLUSION: Simultaneous SQ and TQ MRI using only a single-pulse sequence and SQ time efficiency has been demonstrated. This may leverage the full potential of the Sodium TQ signal in clinical applications.


Assuntos
Algoritmos , Imageamento por Ressonância Magnética , Imagens de Fantasmas , Sódio , Imageamento por Ressonância Magnética/métodos , Sódio/química , Processamento de Sinais Assistido por Computador , Processamento de Imagem Assistida por Computador/métodos , Humanos , Razão Sinal-Ruído , Animais
3.
Magn Reson Med ; 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38725430

RESUMO

PURPOSE: To develop a new sequence to simultaneously acquire Cartesian sodium (23Na) MRI and accelerated Cartesian single (SQ) and triple quantum (TQ) sodium MRI of in vivo human brain at 7 T by leveraging two dedicated low-rank reconstruction frameworks. THEORY AND METHODS: The Double Half-Echo technique enables short echo time Cartesian 23Na MRI and acquires two k-space halves, reconstructed by a low-rank coupling constraint. Additionally, three-dimensional (3D) 23Na Multi-Quantum Coherences (MQC) MRI requires multi-echo sampling paired with phase-cycling, exhibiting a redundant multidimensional space. Simultaneous Autocalibrating and k-Space Estimation (SAKE) were used to reconstruct highly undersampled 23Na MQC MRI. Reconstruction performance was assessed against five-dimensional (5D) CS, evaluating structural similarity index (SSIM), root mean squared error (RMSE), signal-to-noise ratio (SNR), and quantification of tissue sodium concentration and TQ/SQ ratio in silico, in vitro, and in vivo. RESULTS: The proposed sequence enabled the simultaneous acquisition of fully sampled 23Na MRI while leveraging prospective undersampling for 23Na MQC MRI. SAKE improved TQ image reconstruction regarding SSIM by 6% and reduced RMSE by 35% compared to 5D CS in vivo. Thanks to prospective undersampling, the spatial resolution of 23Na MQC MRI was enhanced from 8 × 8 × 15 $$ 8\times 8\times 15 $$ mm3 to 8 × 8 × 8 $$ 8\times 8\times 8 $$ mm3 while reducing acquisition time from 2 × 31 $$ 2\times 31 $$ min to 2 × 23 $$ 2\times 23 $$ min. CONCLUSION: The proposed sequence, coupled with low-rank reconstructions, provides an efficient framework for comprehensive whole-brain sodium MRI, combining TSC, T2*, and TQ/SQ ratio estimations. Additionally, low-rank matrix completion enables the reconstruction of highly undersampled 23Na MQC MRI, allowing for accelerated acquisition or enhanced spatial resolution.

4.
NMR Biomed ; 37(5): e5106, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38263738

RESUMO

PURPOSE: Both sodium T1 triple quantum (TQ) signal and T1 relaxation pathways have a unique sensitivity to the sodium molecular environment. In this study an inversion recovery time proportional phase increment (IRTQTPPI) pulse sequence was investigated for simultaneous and reliable quantification of sodium TQ signal and bi-exponential T1 relaxation times. METHODS: The IRTQTPPI sequence combines inversion recovery TQ filtering and time proportional phase increment. The reliable and reproducible results were achieved by the pulse sequence optimized in three ways: (1) optimization of the nonlinear fit for the determination of both T1-TQ signal and T1 relaxation times; (2) suppression of unwanted signals by assessment of four different phase cycles; (3) nonlinear sampling during evolution time for optimal scan time without any compromises in fit accuracy. The relaxation times T1 and T2 and the TQ signals from IRTQTPPI and TQTPPI were compared between 9.4 and 21.1 T. The motional environment of the sodium nuclei was evaluated by calculation of correlation times and nuclear quadrupole interaction strengths. RESULTS: Reliable measurements of the T1-TQ signals and T1 bi-exponential relaxation times were demonstrated. The fit parameters for all four phase cycles were in good agreement with one another, with a negligible influence of unwanted signals. The agar samples yielded normalized T1-TQ signals from 3% to 16% relative to single quantum (SQ) signals at magnetic fields of both 9.4 and 21.1 T. In comparison, the normalized T2-TQ signal was in the range 15%-35%. The TQ/SQ signal ratio was decreased at 21.1 T as compared with 9.4 T for both T1 and T2 relaxation pathways. The bi-exponential T1 relaxation time separation ranged from 15 to 18 ms at 9.4 T and 15 to 21 ms at 21.1 T. The T2 relaxation time separation was larger, ranging from 28 to 35 ms at 9.4 T and 37 to 40 ms at 21.1 T. CONCLUSION: The IRTQTPPI sequence, while providing a less intensive TQ signal than TQTPPI, allows a simultaneous and reliable quantification of both the T1-TQ signal and T1 relaxation times. The unique sensitivities of the T1 and T2 relaxation pathways to different types of molecular motion provide a deeper understanding of the sodium MR environment.


Assuntos
Imageamento por Ressonância Magnética , Sódio , Imageamento por Ressonância Magnética/métodos
5.
Magn Reson Med ; 90(2): 761-769, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36989180

RESUMO

PURPOSE: To introduce dynamic mode decomposition (DMD) as a robust alternative for the assessment of pulmonary functional information from dynamic non-contrast-enhanced acquisitions. METHODS: Pulmonary fractional ventilation and normalized perfusion maps were obtained using DMD from simulated phantoms as well as in vivo dynamic acquisitions of healthy volunteers at 1.5T. The performance of DMD was compared with conventional Fourier decomposition (FD) and matrix pencil (MP) methods in estimating functional map values. The proposed method was evaluated based on estimated signal amplitude in functional maps across varying number of measurements. RESULTS: Quantitative assessments performed on phantoms and in vivo measurements indicate that DMD is capable of successfully obtaining pulmonary functional maps. Specifically, compared to FD and MP methods, DMD is able to reduce variations in estimated amplitudes across different number of measurements. This improvement is evident in the fractional ventilation and normalized perfusion maps obtain from phantom simulations with frequency variations and noise, as well as in the maps obtained from in vivo measurements. CONCLUSIONS: A robust method for accurately estimating pulmonary ventilation and perfusion related signal changes in dynamic acquisitions is presented. The proposed method uses DMD to obtain functional maps reliably, while reducing amplitude variations caused by differences in number of measurements.


Assuntos
Pulmão , Imageamento por Ressonância Magnética , Humanos , Análise de Fourier , Imageamento por Ressonância Magnética/métodos , Pulmão/diagnóstico por imagem , Ventilação Pulmonar , Perfusão
6.
Eur Radiol ; 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37940710

RESUMO

OBJECTIVES: To investigate the feasibility of non-contrast-enhanced functional lung imaging in 2-year-old children after congenital diaphragmatic hernia (CDH) repair. METHODS: Fifteen patients after CDH repair were examined using non-contrast-enhanced dynamic magnetic resonance imaging (MRI). For imaging two protocols were used during free-breathing: Protocol A with high temporal resolution and Protocol B with high spatial resolution. The dynamic images were then analysed through a recently developed post-processing method called dynamic mode decomposition (DMD) to obtain ventilation and perfusion maps. The ventilation ratios (VRatio) and perfusion ratios (QRatio) of ipsilateral to contralateral lung were compared to evaluate functional differences. Lastly, DMD MRI-based perfusion results were compared with perfusion parameters obtained using dynamic contrast-enhanced (DCE) MRI to assess agreement between methods. RESULTS: Both imaging protocols successfully generated pulmonary ventilation (V) and perfusion (Q) maps in all patients. Overall, the VRatio and QRatio values were 0.84 ± 0.19 and 0.70 ± 0.24 for Protocol A, and 0.88 ± 0.18 and 0.72 ± 0.23 for Protocol B, indicating reduced ventilation ([Formula: see text]) and perfusion ([Formula: see text]) on the ipsilateral side. Moreover, there is a very strong positive correlation ([Formula: see text]) and close agreement between DMD MRI-based perfusion values and DCE MRI-based perfusion parameters. CONCLUSIONS: DMD MRI can obtain pulmonary functional information in 2-year-old CDH patients. The results obtained with DMD MRI correlate with DCE MRI, without the need for ionising radiation or exposure to contrast agents. While further studies with larger cohorts are warranted, DMD MRI is a promising option for functional lung imaging in CDH patients. CLINICAL RELEVANCE STATEMENT: We demonstrate that pulmonary ventilation and perfusion information can be obtained in 2-year-old patients after CDH repair, without the need for ionising radiation or contrast agents by utilising non-contrast-enhanced MRI acquisitions together with dynamic mode decomposition analysis. KEY POINTS: • Non-contrast-enhanced functional MR imaging is a promising option for functional lung imaging in 2-year-old children after congenital diaphragmatic hernia. • DMD MRI can generate pulmonary ventilation and perfusion maps from free-breathing dynamic acquisitions without the need for ionising radiation or contrast agents. • Lung perfusion parameters obtained with DMD MRI correlate with perfusion parameters obtained using dynamic contrast-enhanced MRI.

7.
J Med Syst ; 47(1): 110, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37878060

RESUMO

Magnetic resonance image formation is not trivial and remains a difficult subject for teaching. Therefore, we saw an urgent need to facilitate teaching by developing a practical and easily accessible MR image generator. Due to the increasing interest in X-nuclei MRI, sodium image generation is also offered. The tool is implemented as a web application that is compatible with all standard desktop browsers and is open source. The user interface focuses on the parameters needed for the creation and display of the resulting images. Available MR sequences range from the standard Spin Echo and Inversion Recovery over steady-state to conventional sodium and more advanced single and triple quantum sequences. Additionally, the user interface has parameters to alter the resolution, the noise, and the k-space sampling. Our software is free to use and specifically suited for teaching purposes.


Assuntos
Núcleo Celular , Imageamento por Ressonância Magnética , Humanos , Software , Sódio
8.
Magn Reson Med ; 88(4): 1764-1774, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35608220

RESUMO

PURPOSE: To introduce phase-cycled balanced SSFP (bSSFP) acquisition as an alternative in Fourier decomposition MRI for improved robustness against field inhomogeneities. METHODS: Series 2D dynamic lung images were acquired in 5 healthy volunteers at 1.5 T and 3 T using bSSFP sequence with multiple RF phase increments and compared with conventional single RF phase increment acquisitions. The approach was evaluated based on functional map homogeneity analysis, while ensuring image and functional map quality by means of SNR and contrast-to-noise ratio analyses. RESULTS: At both field strengths, functional maps obtained with phase-cycled acquisitions displayed improved robustness against local signal losses compared with single-phase acquisitions. The coefficient of variation (mean ± SD, across volunteers) measured in the ventilation maps resulted in 29.7 ± 2.6 at 1.5 T and 37.5 ± 3.1 at 3 T for phase-cycled acquisitions, compared with 39.9 ± 5.2 at 1.5 T and 49.5 ± 3.7 at 3 T for single-phase acquisitions, indicating a significant improvement ( p<0.05$$ p<0.05 $$ ) in ventilation map homogeneity. CONCLUSIONS: Phase-cycled bSSFP acquisitions improve robustness against field inhomogeneity artifacts and significantly improve ventilation map homogeneity at both field strengths. As such, phase-cycled bSSFP may serve as a robust alternative in lung function assessments.


Assuntos
Algoritmos , Artefatos , Humanos , Pulmão/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Tórax
9.
Magn Reson Med ; 87(2): 896-903, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34554602

RESUMO

PURPOSE: The number of glomeruli is different in men and women, as they also present different prevalence and progression of chronic kidney disease. A recent study has demonstrated a potential difference in renal metabolism between sexes, and a potential explanation could be the differences in glomeruli number. This study investigates the potential correlation between glomerular number and pyruvate metabolism in healthy kidneys. METHODS: This study is an experimental study with rats (N = 12). We used cationized-ferritin MRI to visualize and count glomeruli and hyperpolarized [1-13 C]pyruvate to map the metabolism. Dynamic contrast-enhanced MRI was used to analyze kidney hemodynamics using gadolinium tracer. RESULTS: Data showed no or subtle correlation between the number of glomeruli and the pyruvate metabolism. Minor differences were observed in the number of glomeruli (female = 24,509 vs. male = 26 350; p = .16), renal plasma flow (female = 606.6 vs. male= 455.7 ml/min/100 g; p = .18), and volume of distribution (female = 87.44 vs. male = 76.61 ml/100 ml; p = .54) between sexes. Mean transit time was significantly prolonged in males compared with females (female = 8.868 s vs. male = 10.63 s; p = .04). CONCLUSION: No strong statistically significant correlation between the number of glomeruli and the pyruvate metabolism was found in healthy rat kidneys.


Assuntos
Nefropatias , Glomérulos Renais , Animais , Feminino , Rim/diagnóstico por imagem , Imageamento por Ressonância Magnética , Masculino , Ácido Pirúvico , Ratos
10.
Magn Reson Med ; 87(3): 1605-1612, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34652819

RESUMO

PURPOSE: To design and manufacture a pelvis phantom for magnetic resonance (MR)-guided prostate interventions, such as MRGB (MR-guided biopsy) or brachytherapy seed placement. METHODS: The phantom was designed to mimic the human pelvis incorporating bones, bladder, prostate with four lesions, urethra, arteries, veins, and six lymph nodes embedded in ballistic gelatin. A hollow rectum enables transrectal access to the prostate. To demonstrate the feasibility of the phantom for minimal invasive MRI-guided interventions, a targeted inbore MRGB was performed. The needle probe was rectally inserted and guided using an MRI-compatible remote controlled manipulator (RCM). RESULTS: The presented pelvis phantom has realistic imaging properties for MR imaging (MRI), computed tomography (CT) and ultrasound (US). In the targeted inbore MRGB, a prostate lesion was successfully hit with an accuracy of 3.5 mm. The experiment demonstrates that the limited size of the rectum represents a realistic impairment for needle placements. CONCLUSION: The phantom provides a valuable platform for evaluating the performance of MRGB systems. Interventionalists can use the phantom to learn how to deal with challenging situations, without risking harm to patients.


Assuntos
Próstata , Neoplasias da Próstata , Humanos , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Masculino , Pelve/diagnóstico por imagem , Imagens de Fantasmas , Próstata/diagnóstico por imagem , Neoplasias da Próstata/diagnóstico por imagem
11.
J Magn Reson Imaging ; 55(2): 323-335, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-33140551

RESUMO

BACKGROUND: Phase-contrast (PC) MRI is a feasible and valid noninvasive technique to measure renal artery blood flow, showing potential to support diagnosis and monitoring of renal diseases. However, the variability in measured renal blood flow values across studies is large, most likely due to differences in PC-MRI acquisition and processing. Standardized acquisition and processing protocols are therefore needed to minimize this variability and maximize the potential of renal PC-MRI as a clinically useful tool. PURPOSE: To build technical recommendations for the acquisition, processing, and analysis of renal 2D PC-MRI data in human subjects to promote standardization of renal blood flow measurements and facilitate the comparability of results across scanners and in multicenter clinical studies. STUDY TYPE: Systematic consensus process using a modified Delphi method. POPULATION: Not applicable. SEQUENCE FIELD/STRENGTH: Renal fast gradient echo-based 2D PC-MRI. ASSESSMENT: An international panel of 27 experts from Europe, the USA, Australia, and Japan with 6 (interquartile range 4-10) years of experience in 2D PC-MRI formulated consensus statements on renal 2D PC-MRI in two rounds of surveys. Starting from a recently published systematic review article, literature-based and data-driven statements regarding patient preparation, hardware, acquisition protocol, analysis steps, and data reporting were formulated. STATISTICAL TESTS: Consensus was defined as ≥75% unanimity in response, and a clear preference was defined as 60-74% agreement among the experts. RESULTS: Among 60 statements, 57 (95%) achieved consensus after the second-round survey, while the remaining three showed a clear preference. Consensus statements resulted in specific recommendations for subject preparation, 2D renal PC-MRI data acquisition, processing, and reporting. DATA CONCLUSION: These recommendations might promote a widespread adoption of renal PC-MRI, and may help foster the set-up of multicenter studies aimed at defining reference values and building larger and more definitive evidence, and will facilitate clinical translation of PC-MRI. LEVEL OF EVIDENCE: 1 TECHNICAL EFFICACY STAGE: 1.


Assuntos
Rim , Imageamento por Ressonância Magnética , Consenso , Técnica Delphi , Humanos , Estudos Multicêntricos como Assunto , Circulação Renal
12.
BMC Med Imaging ; 22(1): 214, 2022 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-36471287

RESUMO

BACKGROUND: Uterine fibroid embolisation (UFE) is an established treatment method for symptomatic uterine myomas. This study evaluates the efficacy of UFE using objective magnetic resonance imaging (MRI) data for size and perfusion analysis as well as patient questionnaires assessing fibroid-related symptoms. METHOD: Patients underwent MR-Angiography before UFE and 4 days, 6 and 12 months after the procedure. The images were evaluated using dedicated software. Patient questionnaires were completed before UFE and at 12 months follow-up, focussing on the embolization procedure and symptoms associated with uterine fibroids. Statistical analysis of the questionnaires was performed using paired sample t-test and Wilcoxon signed rank test, while Kruskal-Wallis test and Friedman test were applied for MRI-analysis. RESULTS: Eleven women were included. There was a significant reduction in fibroid-related symptoms. The volume reduction after 12 months was significant in both, uterus and myomas, after an initial increase in uterine volume at the first post-interventional MRI. The perfusion analysis showed that blood flow to the fibroids could be significantly reduced up to 12 months after UFE while uterine tissue was not affected. CONCLUSION: This study shows that uterine fibroid embolisation induces a significant long-term decrease in myoma size and perfusion while healthy uterine tissue remains unaffected. Fibroid-related symptoms are reduced for the sake of improved quality of life.


Assuntos
Leiomioma , Mioma , Neoplasias Uterinas , Humanos , Feminino , Neoplasias Uterinas/diagnóstico por imagem , Neoplasias Uterinas/terapia , Qualidade de Vida , Resultado do Tratamento , Leiomioma/diagnóstico por imagem , Leiomioma/terapia , Inquéritos e Questionários , Imageamento por Ressonância Magnética/métodos , Perfusão
13.
Magn Reson Med ; 86(1): 471-486, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33547656

RESUMO

PURPOSE: To develop an accelerated postprocessing pipeline for reproducible and efficient assessment of white matter lesions using quantitative magnetic resonance fingerprinting (MRF) and deep learning. METHODS: MRF using echo-planar imaging (EPI) scans with varying repetition and echo times were acquired for whole brain quantification of T1 and T2∗ in 50 subjects with multiple sclerosis (MS) and 10 healthy volunteers along 2 centers. MRF T1 and T2∗ parametric maps were distortion corrected and denoised. A CNN was trained to reconstruct the T1 and T2∗ parametric maps, and the WM and GM probability maps. RESULTS: Deep learning-based postprocessing reduced reconstruction and image processing times from hours to a few seconds while maintaining high accuracy, reliability, and precision. Mean absolute error performed the best for T1 (deviations 5.6%) and the logarithmic hyperbolic cosinus loss the best for T2∗ (deviations 6.0%). CONCLUSIONS: MRF is a fast and robust tool for quantitative T1 and T2∗ mapping. Its long reconstruction and several postprocessing steps can be facilitated and accelerated using deep learning.


Assuntos
Aprendizado Profundo , Substância Branca , Encéfalo/diagnóstico por imagem , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Imagens de Fantasmas , Reprodutibilidade dos Testes , Substância Branca/diagnóstico por imagem
14.
NMR Biomed ; 34(4): e4474, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33480128

RESUMO

Quantitative 23 Na magnetic resonance imaging (MRI) provides tissue sodium concentration (TSC), which is connected to cell viability and vitality. Long acquisition times are one of the most challenging aspects for its clinical establishment. K-space undersampling is an approach for acquisition time reduction, but generates noise and artifacts. The use of convolutional neural networks (CNNs) is increasing in medical imaging and they are a useful tool for MRI postprocessing. The aim of this study is 23 Na MRI acquisition time reduction by k-space undersampling. CNNs were applied to reduce the resulting noise and artifacts. A retrospective analysis from a prospective study was conducted including image datasets from 46 patients (aged 72 ± 13 years; 25 women, 21 men) with ischemic stroke; the 23 Na MRI acquisition time was 10 min. The reconstructions were performed with full dataset (FI) and with a simulated dataset an image that was acquired in 2.5 min (RI). Eight different CNNs with either U-Net-based or ResNet-based architectures were implemented with RI as input and FI as label, using batch normalization and the number of filters as varying parameters. Training was performed with 9500 samples and testing included 400 samples. CNN outputs were evaluated based on signal-to-noise ratio (SNR) and structural similarity (SSIM). After quantification, TSC error was calculated. The image quality was subjectively rated by three neuroradiologists. Statistical significance was evaluated by Student's t-test. The average SNR was 21.72 ± 2.75 (FI) and 10.16 ± 0.96 (RI). U-Nets increased the SNR of RI to 43.99 and therefore performed better than ResNet. SSIM of RI to FI was improved by three CNNs to 0.91 ± 0.03. CNNs reduced TSC error by up to 15%. The subjective rating of CNN-generated images showed significantly better results than the subjective image rating of RI. The acquisition time of 23 Na MRI can be reduced by 75% due to postprocessing with a CNN on highly undersampled data.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , AVC Isquêmico/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Redes Neurais de Computação , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Razão Sinal-Ruído , Sódio
15.
BMC Med Imaging ; 21(1): 107, 2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-34238246

RESUMO

BACKGROUND: To develop a regression neural network for the reconstruction of lesion probability maps on Magnetic Resonance Fingerprinting using echo-planar imaging (MRF-EPI) in addition to [Formula: see text], [Formula: see text], NAWM, and GM- probability maps. METHODS: We performed MRF-EPI measurements in 42 patients with multiple sclerosis and 6 healthy volunteers along two sites. A U-net was trained to reconstruct the denoised and distortion corrected [Formula: see text] and [Formula: see text] maps, and to additionally generate NAWM-, GM-, and WM lesion probability maps. RESULTS: WM lesions were predicted with a dice coefficient of [Formula: see text] and a lesion detection rate of [Formula: see text] for a threshold of 33%. The network jointly enabled accurate [Formula: see text] and [Formula: see text] times with relative deviations of 5.2% and 5.1% and average dice coefficients of [Formula: see text] and [Formula: see text] for NAWM and GM after binarizing with a threshold of 80%. CONCLUSION: DL is a promising tool for the prediction of lesion probability maps in a fraction of time. These might be of clinical interest for the WM lesion analysis in MS patients.


Assuntos
Aprendizado Profundo , Imagem Ecoplanar , Esclerose Múltipla/diagnóstico por imagem , Substância Branca/diagnóstico por imagem , Mapeamento Encefálico , Humanos , Leucoencefalopatias/diagnóstico por imagem , Redes Neurais de Computação , Probabilidade
16.
Acta Radiol ; 62(5): 695-704, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-32600068

RESUMO

BACKGROUND: The combination of motion-insensitive, high-temporal, and spatial resolution imaging with evaluation of quantitative perfusion has the potential to increase the diagnostic capabilities of magnetic resonance imaging (MRI) in the female pelvis. PURPOSE: To compare a free-breathing compressed-sensing VIBE (fbVIBE) with flexible temporal resolution (range = 4.6-13.8 s) with breath-hold VIBE (bhVIBE) and to evaluate the potential value of quantifying uterine perfusion. MATERIAL AND METHODS: A total of 70 datasets from 60 patients (bhVIBE: n = 30; fbVIBE: n = 40) were evaluated by two radiologists. Only temporally resolved reconstruction (fbVIBE) was performed on 30 of the fbVIBE datasets. For a subset (n = 10) of the fbVIBE acquisitions, a time- and motion-resolved reconstruction (mrVIBE) was evaluated. Image quality (IQ), artifacts, diagnostic confidence (DC), and delineation of uterine structures (DoS) were graded on Likert scales (IQ/DC/DoS: 1 (non-diagnostic) to 5 (perfect); artifacts: 1 (no artifacts) to 5 (severe artifacts)). A Tofts model was applied for perfusion analysis. Ktrans was obtained in the myometrium (Mm), junctional zone (Jz), and cervix (Cx). RESULTS: The median IQ/DoS/DC scores of fbVIBE (4/5/5 κ >0.7-0.9) and bhVIBE (4/4/4; κ = 0.5-0.7; P > 0.05) were high, but Artifacts were graded low (fbVIBE/bhVIBE: 2/2; κ = 0.6/0.5; P > 0.05). Artifacts were only slightly improved by the additional motion-resolved reconstruction (fbVIBE/mrVIBE: 2/1.5; P = 0.08); fbVIBE was preferred in most cases (7/10). Significant differences of Ktrans values were found between Cx, Jz, and Mm (0.12/0.21/0.19; P < 0.05). CONCLUSION: The fbVIBE sequence allows functional and morphological assessment of the uterus at comparable IQ to bhVIBE.


Assuntos
Imageamento por Ressonância Magnética/métodos , Doenças Uterinas/diagnóstico por imagem , Doenças Uterinas/fisiopatologia , Útero/diagnóstico por imagem , Útero/fisiologia , Adulto , Artefatos , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Pessoa de Meia-Idade , Respiração
17.
Radiologe ; 61(9): 829-838, 2021 Sep.
Artigo em Alemão | MEDLINE | ID: mdl-34251481

RESUMO

CLINICAL/METHODOLOGICAL ISSUE: Multiparametric magnetic resonance imaging (mpMRI) of the prostate plays a crucial role in the diagnosis and local staging of primary prostate cancer. STANDARD RADIOLOGICAL METHODS: Image-guided biopsy techniques such as MRI-ultrasound fusion not only allow guidance for targeted tissue sampling of index lesions for diagnostic confirmation, but also improve the detection of clinically significant prostate cancer. METHODOLOGICAL INNOVATIONS: Minimally invasive, focal therapies of localized prostate cancer complement the treatment spectrum, especially for low- and intermediate-risk patients. PERFORMANCE: In patients of low and intermediate risk, MR-guided, minimally invasive therapies could enable local tumor control, improved functional outcomes and possible subsequent therapy escalation. Further study results related to multimodal approaches and the application of artificial intelligence (AI) by machine and deep learning algorithms will help to leverage the full potential of focal therapies for prostate cancer in the upcoming era of precision medicine. ACHIEVEMENTS: Completion of ongoing randomized trials comparing each minimally invasive therapy approach with established whole-gland procedures is needed before minimally invasive therapies can be implemented into existing treatment guidelines. PRACTICAL RECOMMENDATIONS: This review article highlights minimally invasive therapies of prostate cancer and the key role of mpMRI for planning and conducting these therapies.


Assuntos
Inteligência Artificial , Neoplasias da Próstata , Humanos , Biópsia Guiada por Imagem , Imageamento por Ressonância Magnética , Masculino , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/cirurgia
18.
Vasa ; 50(6): 468-474, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34269078

RESUMO

Background: In peripheral arterial disease (PAD) the femoropopliteal (FP) artery is the most frequently recanalized lower limb artery. Stent-based interventions change the biomechanical properties of FP arteries. However, no clinical tool for functional imaging is established for quantitative measurements in vivo. Four-dimensional-flow magnetic resonance imaging enables a detailed evaluation of the hemodynamics of the central and - more challenging - the peripheral arteries. The present study aimed to determine the feasibility of assessing pulse wave velocities (PWV) as a marker of vessel stiffness in PAD patients with multiple spot stents and to compare the values with age-matched subjects and young-adult healthy subjects. Patients and methods: Contrast-free 4D-flow MRI was performed in seven PAD patients with focally stented FP arteries, five age-matched subjects after exclusion of PAD, and five young, healthy adults. PWV values were calculated from flow curves by using the foot-to-foot method. Results: Four-D-flow MRI sequences offering high spatial and temporal resolution enables quantification of flow velocity measurements and estimation of PWVs. Assessment of segmental PWV as a surrogate of vascular stiffness in focally stented femoral arteries is feasible. PWV values across all groups were 15.6±5.2 m/s, 13.3±4.1 m/s, and 9.9±2.2 m/s in PAD patients, senior-aged volunteers, and young-adult volunteers respectively. PWV values in PAD patients were similar with those in the senior-aged volunteers group (15.6±5.2 vs. 13.3 ±4.1 years, p=0.43). However, when compared to the young-adult volunteers, PAD patients had a statistically significantly higher mean local PWV (15.6±5.2 m/s vs. 9.9±2.2 m/s, p<0.05). Conclusions: Calculating segmental PWV in the femoral arteries is feasible in PAD patients with focally stented FP arteries. PWV values in PAD patients were similar to those in senior-aged volunteers, both of which were higher than in young-adult volunteers.


Assuntos
Análise de Onda de Pulso , Rigidez Vascular , Adulto , Idoso , Velocidade do Fluxo Sanguíneo , Artéria Femoral/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Stents
19.
Magn Reson Med ; 83(6): 1940-1948, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31900983

RESUMO

PURPOSE: To evaluate the use of magnetic resonance fingerprinting (MRF) for simultaneous quantification of T1 and T2∗ in a single breath-hold in the kidneys. METHODS: The proposed kidney MRF sequence was based on MRF echo-planar imaging. Thirty-five measurements per slice and overall 4 slices were measured in 15.4 seconds. Group matching was performed for in-line quantification of T1 and T2∗ . Images were acquired in a phantom and 8 healthy volunteers in coronal orientation. To evaluate our approach, region of interests were drawn in the kidneys to calculate mean values and standard deviations of the T1 and T2∗ times. Precision was calculated across multiple repeated MRF scans. Gaussian filtering is applied on baseline images to improve SNR and match stability. RESULTS: T1 and T2∗ times acquired with MRF in the phantom showed good agreement with reference measurements and conventional mapping methods with deviations of less than 5% for T1 and less than 10% for T2∗ . Baseline images in vivo were free of artifacts and relaxation times yielded good agreement with conventional methods and literature (deviation T1:7±4% , T2∗:6±3% ). CONCLUSIONS: In this feasibility study, the proposed renal MRF sequence resulted in accurate T1 and T2∗ quantification in a single breath-hold.


Assuntos
Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Encéfalo , Humanos , Rim/diagnóstico por imagem , Espectroscopia de Ressonância Magnética , Imagens de Fantasmas
20.
NMR Biomed ; 33(6): e4287, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32153058

RESUMO

Several factors can lead to acute kidney injury, but damage following ischemia and reperfusion injuries is the main risk factor and usually develops into chronic disease. MRI has often been proposed as a method with which to assess renal function. It does so by measuring the renal perfusion of an injected Gd-based contrast agent. The use of pH-responsive agents as part of the CEST (chemical exchange saturation transfer)-MRI technique has recently shown that pH homeostasis is also an important indicator of kidney functionality. However, there is still a need for methods that can provide more than one type of information following the injection of a single contrast agent for the characterization of renal function. Herein we propose, for the first time, dynamic CEST acquisition following iopamidol injection to quantify renal function by assessing both perfusion and pH homeostasis. The aim of this study is to assess renal functionality in a murine unilateral ischemia-reperfusion injury model at two time points (3 and 7 days) after acute kidney injury. The renal-perfusion estimates measured with iopamidol were compared with those obtained with a gadolinium-based agent, via a dynamic contrast enhanced (DCE)-MRI approach, to validate the proposed method. Compared with the contralateral kidneys, the clamped ones showed a significant decrease in renal perfusion, as measured using the DCE-MRI approach, which is consistent with reduced filtration capability. Dynamic CEST-MRI findings provided similar results, indicating that the clamped kidneys displayed significantly reduced renal filtration that persisted up to 7 days after the damage. In addition, CEST-MRI pH imaging showed that the clamped kidneys displayed significantly increased pH values, reflecting the disturbance to pH homeostasis. Our results demonstrate that a single CEST-MRI contrast agent can provide multiple types of information related to renal function and can discern healthy kidneys from pathological ones by combining perfusion measurements with renal pH mapping.


Assuntos
Rim/diagnóstico por imagem , Rim/patologia , Imageamento por Ressonância Magnética , Perfusão , Traumatismo por Reperfusão/diagnóstico por imagem , Doença Aguda , Animais , Meios de Contraste/química , Modelos Animais de Doenças , Gadolínio/química , Concentração de Íons de Hidrogênio , Modelos Lineares , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA