RESUMO
High density lipoproteins (HDL) are key components of reverse cholesterol transport pathway. HDL removes excessive cholesterol from peripheral cells, including macrophages, providing protection from cholesterol accumulation and conversion into foam cells, which is a key event in pathogenesis of atherosclerosis. The mechanism of cellular cholesterol efflux stimulation by HDL involves interaction with the ABCA1 lipid transporter and ensuing transfer of cholesterol to HDL particles. In this study, we looked for additional proteins contributing to HDL-dependent cholesterol efflux. Using RNAseq, we analyzed mRNAs induced by HDL in human monocyte-derived macrophages and identified three genes, fatty acid desaturase 1 (FADS1), insulin induced gene 1 (INSIG1), and the low-density lipoprotein receptor (LDLR), expression of which was significantly upregulated by HDL. We individually knocked down these genes in THP-1 cells using gene silencing by siRNA, and measured cellular cholesterol efflux to HDL. Knock down of FADS1 did not significantly change cholesterol efflux (pâ¯=â¯0.70), but knockdown of INSIG1 and LDLR resulted in highly significant reduction of the efflux to HDL (67% and 75% of control, respectively, pâ¯<â¯0.001). Importantly, the suppression of cholesterol efflux was independent of known effects of these genes on cellular cholesterol content, as cells were loaded with cholesterol using acetylated LDL. These results indicate that HDL particles stimulate expression of genes that enhance cellular cholesterol transfer to HDL.
Assuntos
HDL-Colesterol/genética , Macrófagos/fisiologia , Transportador 1 de Cassete de Ligação de ATP/genética , Aterosclerose/fisiopatologia , Transporte Biológico , Colesterol , HDL-Colesterol/metabolismo , Dessaturase de Ácido Graxo Delta-5 , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/metabolismo , Células Espumosas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/genética , Inativação Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Lipoproteínas HDL/genética , Lipoproteínas HDL/metabolismo , Macrófagos/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , RNA Mensageiro , RNA Interferente Pequeno , Receptores de LDL/genética , Receptores de LDL/metabolismo , Células THP-1 , Regulação para CimaRESUMO
The leading cause of death worldwide is cardiovascular disease. Among the conditions related to the term, the most prominent one is the development of atherosclerotic plaques in the walls of arteries. The situation gets even worse with the fact that the plaque development may stay asymptomatic for a prolonged period of time. When it manifests as a cardiovascular disorder, it is already too late: the unfortunate individual is prescribed with a plethora of synthetic drugs, which are of debatable efficacy in the prevention of atherosclerotic lesions and safety. Cell models could be useful for the purpose of screening substances potentially effective against atherosclerosis progression and effective in reduction of already present plaques. In this overview, we present studies making use of in vitro and ex vivo models of atherosclerosis development that can prove valuable for clinical applications.
Assuntos
Aterosclerose/metabolismo , Aterosclerose/terapia , Modelos Biológicos , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/terapia , Animais , Aterosclerose/patologia , Humanos , Placa Aterosclerótica/patologiaRESUMO
Modified low-density lipoprotein (LDL) is the main source of lipid accumulation in the arterial wall affected by atherosclerosis. We aimed to compare the properties of apolipoprotein B (apoB) from native and modified LDL. Modified (desialylated) LDL and native LDL were extracted from blood of atherosclerotic patients. We characterized apoB structure of LDL particles in total LDL preparation, circulating modified LDL (cmLDL), and native LDL. Intact cmLDL had a twofold lower content of free amino groups than native LDL. Delipidated apoB from cmLDL also had a lower content of free amino groups. The rates of tryptic hydrolysis and elastase digestion of cmLDL were twofold higher in comparison to native LDL. Therefore, cmLDL from atherosclerotic patients had altered apoB properties. Our observations strengthen the hypothesis of multiple modification of LDL in the bloodstream and underscore the importance of desialylated LDL as a possible marker of atherosclerosis.
RESUMO
In this mini-review, the role of macrophage phenotypes in atherogenesis is considered. Recent studies on distribution of M1 and M2 macrophages in different types of atherosclerotic lesions indicate that macrophages exhibit a high degree of plasticity of phenotype in response to various conditions in microenvironment. The effect of the accumulation of cholesterol, a key event in atherogenesis, on the macrophage phenotype is also discussed. The article presents the results of transcriptome analysis of cholesterol-loaded macrophages revealing genes involved in immune response whose expression rate has changed the most. It turned out that the interaction of macrophages with modified LDL leads to higher expression levels of pro-inflammatory marker TNF-α and antiinflammatory marker CCL18. Phenotypic profile of macrophage activation could be a good target for testing of novel anti-atherogenic immunocorrectors. A number of anti-atherogenic drugs were tested as potential immunocorrectors using primary macrophage-based model.
Assuntos
Adjuvantes Imunológicos/farmacologia , Anticolesterolemiantes/farmacologia , Aterosclerose/tratamento farmacológico , Aterosclerose/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Animais , HumanosRESUMO
Atherogenic modification of low-density lipoprotein (LDL) plays a crucial role in the pathogenesis of atherosclerosis, as modified LDL, but not native LDL, induces pronounced accumulation of cholesterol and lipids in the arterial wall. It is likely that LDL particles undergo multiple modifications in human plasma: desialylation, changes in size and density, acquisition of negative electric charge, oxidation, and complex formation. In a total LDL preparation isolated from pooled plasma of patients with coronary atherosclerosis and from healthy subjects, two subfractions of LDL could be identified: desialylated LDL bound by a lectin affinity column and normally sialylated (native) LDL that passed through the column. The desialylated LDL subfraction therefore represents circulating modified LDL. In this work, we performed a careful analysis of LDL particles to reveal changes in the composition of glycoconjugates associated with proteins and lipids. Protein fraction of LDL from atherosclerotic patients contained similar amounts of glucosamine, galactose, and mannose, but a 1.6-fold lower level of sialic acid as compared to healthy donors. Lipid-bound glycoconjugates of total LDL from patients with coronary atherosclerosis contained 1.5-2-fold less neutral monosaccharides than total LDL from healthy donors. Patient-derived LDL also contained significantly less sialic acid. Our results demonstrate that carbohydrate composition of LDL from atherosclerotic patients was altered in comparison to healthy controls. In particular, prominent decrease in the sialic acid content was observed. This strengthens the hypothesis of multiple modification of LDL particles in the bloodstream and underscores the clinical importance of desialylated LDL as a possible marker of atherosclerosis progression.