RESUMO
A metabotropic glutamate receptor coupled to phospholipase D (PLD-mGluR) was discovered in the hippocampus over three decades ago. Its pharmacology and direct linkage to PLD activation are well established and indicate it is a highly atypical glutamate receptor. A receptor with the same pharmacology is present in spindle primary sensory terminals where its blockade can totally abolish, and its activation can double, the normal stretch-evoked firing. We report here the first identification of this PLD-mGluR protein, by capitalizing on its expression in primary mechanosensory terminals, developing an enriched source, pharmacological profiling to identify an optimal ligand, and then functionalizing it as a molecular tool. Evidence from immunofluorescence, western and far-western blotting indicates PLD-mGluR is homomeric GluK2, since GluK2 is the only glutamate receptor protein/receptor subunit present in spindle mechanosensory terminals. Its expression was also found in the lanceolate palisade ending of hair follicle, also known to contain the PLD-mGluR. Finally, in a mouse model with ionotropic function ablated in the GluK2 subunit, spindle glutamatergic responses were still present, confirming it acts purely metabotropically. We conclude the PLD-mGluR is a homomeric GluK2 kainate receptor signalling purely metabotropically and it is common to other, perhaps all, primary mechanosensory endings.
Assuntos
Fosfolipase D , Receptores de Glutamato Metabotrópico , Animais , Camundongos , Hipocampo/metabolismo , Terminações Nervosas/metabolismo , Fosfolipase D/metabolismo , Receptores de Glutamato/metabolismo , Receptores de Glutamato Metabotrópico/metabolismoRESUMO
Resistance to infection is critically dependent on the ability of pattern recognition receptors to recognize microbial invasion and induce protective immune responses. One such family of receptors are the C-type lectins, which are central to antifungal immunity. These receptors activate key effector mechanisms upon recognition of conserved fungal cell-wall carbohydrates. However, several other immunologically active fungal ligands have been described; these include melanin, for which the mechanism of recognition is hitherto undefined. Here we identify a C-type lectin receptor, melanin-sensing C-type lectin receptor (MelLec), that has an essential role in antifungal immunity through recognition of the naphthalene-diol unit of 1,8-dihydroxynaphthalene (DHN)-melanin. MelLec recognizes melanin in conidial spores of Aspergillus fumigatus as well as in other DHN-melanized fungi. MelLec is ubiquitously expressed by CD31+ endothelial cells in mice, and is also expressed by a sub-population of these cells that co-express epithelial cell adhesion molecule and are detected only in the lung and the liver. In mouse models, MelLec was required for protection against disseminated infection with A. fumigatus. In humans, MelLec is also expressed by myeloid cells, and we identified a single nucleotide polymorphism of this receptor that negatively affected myeloid inflammatory responses and significantly increased the susceptibility of stem-cell transplant recipients to disseminated Aspergillus infections. MelLec therefore recognizes an immunologically active component commonly found on fungi and has an essential role in protective antifungal immunity in both mice and humans.
Assuntos
Aspergillus fumigatus/imunologia , Lectinas Tipo C/imunologia , Melaninas/imunologia , Naftóis/imunologia , Animais , Aspergilose/imunologia , Aspergilose/microbiologia , Aspergilose/prevenção & controle , Aspergillus fumigatus/química , Aspergillus fumigatus/patogenicidade , Parede Celular/química , Parede Celular/imunologia , Feminino , Humanos , Macrófagos/imunologia , Melaninas/química , Camundongos , Camundongos Endogâmicos C57BL , Naftóis/química , Ratos , Ratos Sprague-Dawley , Esporos Fúngicos/química , Esporos Fúngicos/imunologia , Especificidade por SubstratoRESUMO
We describe the chemical synthesis of the fungal naphthopyrones YWA1 and fonsecin B, as well as their functionalization with an amine-spacer arm and the conjugation of the resulting molecules to three different functional tags (i.e., biotin, Oregon green, 1-[3-(succinimidyloxycarbonyl)benzyl]-4-[5-(4-methoxyphenyl)-2-oxazolyl]pyridinium bromide (PyMPO)). The naphthopyrone-biotin and -PyMPO constructs maintained the ability to bind the C-type lectin receptor MelLec, whose interaction with immunologically active fungal metabolites (i.e., 1,8-dihydroxynaphthalene-(DHN)-melanin and YWA1) is a key step in host recognition and induction of protective immune responses against Aspergillus fumigatus. The fluorescent Fonsecin B-PyMPO construct 21 was used to selectively visualize MelLec-expressing cells, thus validating the potential of this strategy for studying the role and functions of MelLec in immunity.
Assuntos
Aspergilose , Aspergillus fumigatus , Humanos , Imunidade , Melaninas , Esporos FúngicosRESUMO
The tetrazine/trans-cyclooctene (TCO) inverse electron-demand Diels-Alder (IEDDA) reaction is the fastest bioorthogonal "click" ligation process reported to date. In this context, TCO reagents have found widespread applications; however, their availability and structural diversity is still somewhat limited due to challenges connected with their synthesis and structural modification. To address this issue, we developed a novel strategy for the conjugation of TCO derivatives to a biomolecule, which allows for the creation of greater structural diversity from a single precursor molecule, i.e., trans,trans-1,5-cyclooctadiene [(E,E)-COD] 1, whose preparation requires standard laboratory equipment and readily available reagents. This two-step strategy relies on the use of new bifunctional TCO linkers (5a-11a) for IEDDA reactions, which can be synthesized via 1,3-dipolar cycloaddition of (E,E)-COD 1 with different azido spacers (5-11) carrying an electrophilic function (NHS-ester, N-succinimidyl carbonate, p-nitrophenyl-carbonate, maleimide) in the ω-position. Following bioconjugation of these electrophilic linkers to the nucleophilic residue (cysteine or lysine) of a protein (step 1), the resulting TCO-decorated constructs can be subjected to a IEDDA reaction with tetrazines functionalized with fluorescent or near-infrared (NIR) tags (step 2). We successfully used this strategy to label bovine serum albumin with the TCO linker 8a and subsequently reacted it in a cell lysate with the fluorescein-isothiocyanate (FITC)-derived tetrazine 12. The same strategy was then used to label the bacterial wall of Gram-positive Staphylococcus aureus, showing the potential of these linkers for live-cell imaging. Finally, we determined the impact of structural differences of the linkers upon the stability of the bioorthogonal constructs. The compounds for stability studies were prepared by conjugation of TCO linkers 6a, 8a, and 10a to mAbs, such as Rituximab and Obinutuzumab, and subsequent labeling with a reactive Cy3-functionalized tetrazine.
Assuntos
Alcadienos/química , Corantes Fluorescentes/química , Alcadienos/síntese química , Animais , Bovinos , Química Click , Reação de Cicloadição , Ciclo-Octanos/síntese química , Ciclo-Octanos/química , Corantes Fluorescentes/síntese química , Soroalbumina Bovina/química , Staphylococcus aureus/citologia , Staphylococcus aureus/isolamento & purificaçãoRESUMO
Prostate cancer represents a major public health threat as it is one of the most common male cancers worldwide. The prostate-specific membrane antigen (PSMA) is highly over-expressed in prostatic cancer cells in a manner that correlates with both tumour stage and clinical outcome. As such, PSMA has been identified as an attractive target for both imaging and treatment of prostate cancer. In recent years the focus on urea-based peptidomimetic inhibitors of the PSMA (representing low molecular weight/high affinity binders) has intensified as they have found use in the clinical imaging of prostate tumours. Reported herein are the design, synthesis and evaluation of a new fluorinated PSMA targeting small-molecule, FDA-PEG-GUL, which possesses the Glu-NH-CO-NH-Lys pharmacophore conjugated to a 5'-fluorodeoxy-adenosine unit. Inhibition assays were performed with FDA-PEG-GUL which revealed that it inhibits the PSMA in the nanomolar range. Additionally, it has been purposely designed so that it can be produced using the fluorinase enzyme from its chlorinated precursor, allowing for the enzymatic synthesis of radiolabelled [18F]FDA-PEG-GUL via a nucleophilic reaction that takes place in experimentally advantageous conditions (in water at neutral pH and at ambient temperature). Specific binding of [18F]FDA-PEG-GUL to PSMA expressing cancer cells was demonstrated, validating it as a promising PSMA diagnostic tool. This work establishes a successful substrate scope expansion for the fluorinase and demonstrates its first application towards targeting the PSMA.
Assuntos
Antígenos de Superfície/metabolismo , Proteínas de Bactérias/metabolismo , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/metabolismo , Radioisótopos de Flúor , Glutamato Carboxipeptidase II/metabolismo , Lisina/química , Oxirredutases/metabolismo , Radioquímica/métodos , Linhagem Celular Tumoral , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Glutamato Carboxipeptidase II/antagonistas & inibidores , Humanos , Marcação por Isótopo , Ligantes , Streptomyces/enzimologiaRESUMO
The use of radiolabelled antibodies and antibody-derived recombinant constructs has shown promise for both imaging and therapeutic use. In this context, the biotin-avidin/streptavidin pairing, along with the inverse-electron-demand Diels-Alder (iEDDA) reaction, have found application in pretargeting approaches for positron emission tomography (PET). This study reports the fluorinase-mediated transhalogenation [5'-chloro-5'-deoxyadenosine (ClDA) substrates to 5'-fluoro-5'-deoxyadenosine (FDA) products] of two antibody pretargeting tools, a FDA-PEG-tetrazine and a [18 F]FDA-PEG-biotin, and each is assessed either for its compatibility towards iEDDA ligation to trans-cyclooctene or for its affinity to avidin. A protocol to avoid radiolytically promoted oxidation of biotin during the synthesis of [18 F]FDA-PEG-biotin was developed. The study adds to the repertoire of conjugates for use in fluorinase-catalysed radiosynthesis for PET and shows that the fluorinase will accept a wide range of ClDA substrates tethered at C-2 of the adenine ring with a PEGylated cargo. The method is exceptional because the nucleophilic reaction with [18 F]fluoride takes place in water at neutral pH and at ambient temperature.
Assuntos
Biotina/química , Desoxiadenosinas/química , Radioisótopos de Flúor/química , Imunoconjugados/química , Polietilenoglicóis/química , Tomografia por Emissão de Pósitrons/métodos , Proteínas de Bactérias/química , Biotina/síntese química , Reação de Cicloadição , Ciclo-Octanos/síntese química , Ciclo-Octanos/química , Desoxiadenosinas/síntese química , Halogenação , Oxirredutases/química , Polietilenoglicóis/síntese química , Compostos Radiofarmacêuticos/síntese química , Compostos Radiofarmacêuticos/química , Estreptavidina/químicaRESUMO
The A2A adenosine receptor belongs to a family of G-coupled protein receptors that have been subjected to extensive investigation over the last few decades. Due to their prominent role in the biological functions of the heart, lungs, CNS and brain, they have become a target for the treatment of illnesses ranging from cancer immunotherapy to Parkinson's disease. The imaging of such receptors by using positron emission tomography (PET) has also been of interest, potentially providing a valuable tool for analysing and diagnosing various myocardial and neurodegenerative disorders, as well as offering support to drug discovery trials. Reported herein are the design, synthesis and evaluation of two new 5'-fluorodeoxy-adenosine (FDA)-based receptor agonists (FDA-PP1 and FDA-PP2), each substituted at the C-2 position with a terminally functionalised ethynyl unit. The structures enable a synthesis of 18 F-labelled analogues by direct, last-step radiosynthesis from chlorinated precursors using the fluorinase enzyme (5'-fluoro-5'-deoxyadenosine synthase), which catalyses a transhalogenation reaction. This delivers a new class of A2A adenosine receptor agonist that can be directly radiolabelled for exploration in PET studies.
Assuntos
Proteínas de Bactérias/metabolismo , Halogenação , Oxirredutases/metabolismo , Tomografia por Emissão de Pósitrons , Agonistas do Receptor Purinérgico P1/química , Proteínas de Bactérias/química , Radioisótopos de Flúor , Humanos , Conformação Molecular , Oxirredutases/química , Agonistas do Receptor Purinérgico P1/síntese química , Agonistas do Receptor Purinérgico P1/metabolismo , Receptor A2A de Adenosina/metabolismoRESUMO
Synthetic tubulysins 24 a-m, containing non-hydrolysable N-substituents on tubuvaline (Tuv), were obtained in high purity and good overall yields using a multistep synthesis. A key step was the formation of differently N-substituted Ile-Tuv fragments 10 by using an aza-Michael reaction of azido-Ile derivatives 8 with the α,ß-unsaturated oxo-thiazole 5. A structure-activity relationship study using a panel of human tumour cell lines showed strong anti-proliferative activity for all compounds 24 a-m, with IC50 values in the sub-nanomolar range, which were distinctly lower than those of tubulysinâ A, vinorelbine and paclitaxel. Furthermore, 24 a-m were able to overcome cross-resistance to paclitaxel and vinorelbine in two tumour cell lines with acquired resistance to doxorubicin. Compounds 24 e and 24 g were selected as leads to evaluate their mechanism of action. In vitro assays showed that both 24 e and 24 g interfere with tubulin polymerization in a vinca alkaloid-like manner and prevent paclitaxel-induced assembly of tubulin polymers. Both compounds exerted antimitotic activity and induced apoptosis in cancer cells at very low concentrations. Compound 24 e also exhibited potent antitumor activity at well tolerated doses on in vivo models of diffuse malignant peritoneal mesothelioma, such as MESOII peritoneal mesothelioma xenografts, the growth of which was not significantly affected by vinorelbine. These results indicate that synthetic tubulysins 24 could be used as standalone chemotherapeutic agents in difficult-to-treat cancers.
Assuntos
Antineoplásicos/síntese química , Moduladores de Tubulina/síntese química , Tubulina (Proteína)/metabolismo , Valina/análogos & derivados , Animais , Antineoplásicos/uso terapêutico , Antineoplásicos/toxicidade , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Células HT29 , Humanos , Camundongos , Microscopia de Fluorescência , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Paclitaxel/toxicidade , Relação Estrutura-Atividade , Transplante Heterólogo , Tubulina (Proteína)/química , Moduladores de Tubulina/uso terapêutico , Moduladores de Tubulina/toxicidade , Valina/química , Vimblastina/análogos & derivados , Vimblastina/uso terapêutico , Vimblastina/toxicidade , VinorelbinaRESUMO
We report the synthesis of terminally fluorinated HU-210 and HU-211 analogues (HU-210F and HU-211F, respectively) and their biological evaluation as ligands of cannabinoid receptors (CB1 and CB2) and N-methyl d-aspartate receptor (NMDAR). [18F]-labelled HU-210F was radiosynthesised from the bromo-substituted precursor. In vitro assays showed that both HU-210F and HU-211F retain the potent pharmacological profile of HU-210 and HU-211, suggesting that [18F]-radiolabelled HU-210F and HU-211F could have potential as PET tracers for in vivo imaging.
RESUMO
With the aim of identifying a fluorinated bile acid derivative that could be used as [18F]-labeled Positron Emission Tomography (PET) tracer for imaging the in vivo functioning of liver transporter proteins, and particularly of OATP1B1, three fluorinated bile acid triazole derivatives of cholic, deoxycholic and lithocholic acid (CATD, DCATD and LCATD 4a-c, respectively) were synthesized and labeled with tritium. In vitro transport properties were studied with cell-based assays to identify the best substrate for OATP1B1. In addition, the lead compound, LCATD (4c), was tested as a substrate of other liver uptake transporters OATP1B3, NTCP and efflux transporter BSEP to evaluate its specificity of liver transport. The results suggest that 4c is a good substrate of OATP1B1 and NTCP, whereas it is a poor substrate of OATP1B3. The efflux transporter BSEP also appears to be involved in the excretion of 4c from hepatocytes. The automated radiosynthesis of [18F]-4c was accomplished in a multi-GBq scale and a pilot imaging experiment in a wild type rat was performed after i.v. administration to assess the biodistribution and clearance of the tracer. PET imaging revealed that radioactivity was primarily located in the liver (tmax=75s) and cleared exclusively through the bile, thus allowing to image the hepatobiliary excretion of bile acids in the animal model. These findings suggest that [18F]-LCATD 4c is a promising PET probe for the evaluation of hepatic transporters OATP1B1, NTCP and BSEP activity with potential for studying drug-drug interactions and drug-induced toxicity involving these transporters.
Assuntos
Ácidos e Sais Biliares/química , Desenho de Fármacos , Fígado/metabolismo , Tomografia por Emissão de Pósitrons , Animais , Ácidos e Sais Biliares/síntese química , Transporte Biológico , Feminino , Halogenação , Estrutura Molecular , Traçadores Radioativos , Ratos Sprague-DawleyRESUMO
Hyperpolarization enhances the intensity of the NMR signals of a molecule, whose in vivo metabolic fate can be monitored by MRI with higher sensitivity. SABRE is a hyperpolarization technique that could potentially be used to image nitric oxide (NO) production in vivo. This would be very important, because NO dysregulation is involved in several pathologies, including cardiovascular ones. The nitric oxide synthase (NOS) pathway leads to NO production via conversion of l-arginine into l-citrulline. NO is a free radical gas with a short half-life in vivo (≈5s), therefore direct NO quantification is challenging. An indirect method - based on quantifying conversion of an l-Arg- to l-Cit-derivative by 1H NMR spectroscopy - is herein proposed. A small library of pyridyl containing l-Arg derivatives was designed and synthesised. In vitro tests showed that compounds 4a-j and 11a-c were better or equivalent substrates for the eNOS enzyme (NO2- production=19-46µM) than native l-Arg (NO2- production=25µM). Enzymatic conversion of l-Arg to l-Cit derivatives could be monitored by 1H NMR. The maximum hyperpolarization achieved by SABRE reached 870-fold NMR signal enhancement, which opens up exciting future perspectives of using these molecules as hyperpolarized MRI tracers in vivo.
Assuntos
Arginina/síntese química , Óxido Nítrico Sintase Tipo III/metabolismo , Óxido Nítrico/metabolismo , Animais , Arginina/análogos & derivados , Arginina/metabolismo , Biocatálise , Bovinos , Espectroscopia de Ressonância Magnética , Óxido Nítrico/análise , Óxido Nítrico Sintase Tipo III/química , Óxido Nítrico Sintase Tipo III/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Especificidade por SubstratoRESUMO
The α-proteobacterium Sinorhizobium meliloti establishes a chronic intracellular infection during the symbiosis with its legume hosts. Within specialized host cells, S. meliloti differentiates into highly polyploid, enlarged nitrogen-fixing bacteroids. This differentiation is driven by host cells through the production of defensin-like peptides called "nodule-specific cysteine-rich" (NCR) peptides. Recent research has shown that synthesized NCR peptides exhibit antimicrobial activity at high concentrations but cause bacterial endoreduplication at sublethal concentrations. We leveraged synchronized S. meliloti populations to determine how treatment with a sublethal NCR peptide affects the cell cycle and physiology of bacteria at the molecular level. We found that at sublethal levels a representative NCR peptide specifically blocks cell division and antagonizes Z-ring function. Gene-expression profiling revealed that the cell division block was produced, in part, through the substantial transcriptional response elicited by sublethal NCR treatment that affected â¼15% of the genome. Expression of critical cell-cycle regulators, including ctrA, and cell division genes, including genes required for Z-ring function, were greatly attenuated in NCR-treated cells. In addition, our experiments identified important symbiosis functions and stress responses that are induced by sublethal levels of NCR peptides and other antimicrobial peptides. Several of these stress-response pathways also are found in related α-proteobacterial pathogens and might be used by S. meliloti to sense host cues during infection. Our data suggest a model in which, in addition to provoking stress responses, NCR peptides target intracellular regulatory pathways to drive S. meliloti endoreduplication and differentiation during symbiosis.
Assuntos
Ciclo Celular/fisiologia , Fabaceae/microbiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Sinorhizobium meliloti/fisiologia , Simbiose , DNA Complementar/genética , Fabaceae/metabolismo , Perfilação da Expressão Gênica , Análise em Microsséries , Modelos Biológicos , Reação em Cadeia da Polimerase , Nódulos Radiculares de Plantas/metabolismo , Nódulos Radiculares de Plantas/microbiologia , Sinorhizobium meliloti/metabolismoRESUMO
Cyclic CNGRC (cCNGRC) peptides are very important targeting ligands for Aminopeptidase N (APN or CD13), which is overexpressed on the surface of many cancer cells. In this work we have (1) developed an efficient solid-phase synthesis and (2) tested on purified porcine APN and APN-expressing human cells two different classes of cCNGRC peptides: the first carrying a biotin affinity tag or a fluorescent tag attached to the carboxyl Arg-Cys-COOH terminus and the second with the tags attached to the amino H2N-Cys-Asn terminus. Carboxyl-terminus functionalized cCNGRC peptides 3, 6, and 8 showed good affinity for porcine APN and very good capacity to target and be internalized into APN-expressing cells. In contrast, amino-terminus functionalized cCNGRC peptides 4, 5, and 7 displayed significantly decreased affinity and targeting capacity. These results, which are in agreement with the recently reported X-ray structure of a cCNGRC peptide bound to APN showing important stabilizing interactions between the unprotected cCNGRC amino terminus and the APN active site, indicate that the carboxyl and not the amino-terminus of cCNGRC peptides should be used as a "handle" for the attachment of toxic payloads for therapy or isotopically labeled functions for imaging and nuclear medicine.
Assuntos
Antígenos CD13/metabolismo , Oligopeptídeos/química , Oligopeptídeos/metabolismo , Sequência de Aminoácidos , Animais , Linhagem Celular Tumoral , Humanos , Modelos Moleculares , Conformação Proteica , SuínosRESUMO
We report a last-step fluorinase-catalyzed [(18) F]-fluorination of a cysteine-containing RGD peptide. The peptide was attached through sulfur to a modified and more hydrophilic variant of the recently disclosed Barbas linker which was itself linked to a chloroadenosine moiety via a PEGylated chain. The fluorinase was able to use this construct as a substrate for a transhalogenation reaction to generate [(18) F]-radiolabeled RGD peptides, which retained high affinity to cancer-cell relevant αv ß3 integrins.
Assuntos
Cisteína/química , Radioisótopos de Flúor/química , Humanos , Modelos Moleculares , PeptídeosRESUMO
Transporter proteins expressed on the cell membranes of hepatocytes are directly involved in the hepatic clearance, mediating the transport of drugs and metabolites through the hepatocyte, from the bloodstream into the bile. Reduction of hepatic transporter activity (due to chemical inhibition, genetic polymorphism, or low expression) can increase systemic or liver exposure to potentially toxic compounds, causing adverse effects. Many clinically used drugs have been associated with inhibition of hepatic transporters in vitro, suggesting the potential involvement of liver transporters in drug-drug interactions (DDIs). Recently, radiolabeled hepatic transporter substrates have been successfully employed in positron emission tomography (PET) imaging to demonstrate inhibition of clinically relevant hepatic transporters. The present article briefly describes the clinical relevance of hepatic transporters followed by a review of the application of PET imaging for the determination of pharmacokinetic parameters useful to describe the transporter activity and the design, accessibility, and preclinical and clinical applications of available radiotracers. Finally, based on the analysis of the strengths and limitations of the available tracers, some criteria for the development of novel PET probes for hepatic transporters and new potential applications are suggested.
Assuntos
Transporte Biológico/fisiologia , Hepatócitos/metabolismo , Fígado/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Bile/metabolismo , Humanos , Tomografia por Emissão de Pósitrons/métodosRESUMO
Dimethylarginine dimethylaminohydrolase (DDAH) is a key enzyme involved in the metabolism of asymmetric dimethylarginine (ADMA) and N-monomethyl arginine (NMMA), which are endogenous inhibitors of the nitric oxide synthase (NOS) family of enzymes. Two isoforms of DDAH have been identified in humans, DDAH-1 and DDAH-2. DDAH-1 inhibition represents a promising strategy to limit the overproduction of NO in pathological states without affecting the homeostatic role of this important messenger molecule. Here we describe the design and synthesis of 12 novel DDAH-1 inhibitors and report their derived kinetic parameters, IC50 and Ki. Arginine analogue 10a, characterized by an acylsulfonamide isosteric replacement of the carboxylate, showed a 13-fold greater inhibitory potential relative to the known DDAH-1 inhibitor, L-257. Compound 10a was utilized to study the putative binding interactions of human DDAH-1 inhibition using molecular dynamics simulations. The latter suggests that several stabilizing interactions occur in the DDAH-1 active-site, providing structural insights for the enhanced inhibitory potential demonstrated by in vitro inhibition studies.
Assuntos
Amidoidrolases/antagonistas & inibidores , Arginina/análogos & derivados , Arginina/farmacologia , Desenho de Fármacos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Amidoidrolases/química , Amidoidrolases/metabolismo , Domínio Catalítico/efeitos dos fármacos , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Triazóis/química , Triazóis/farmacologiaRESUMO
Sinorhizobium meliloti differentiates into persisting, nitrogen-fixing bacteroids within root nodules of the legume Medicago truncatula. Nodule-specific cysteine-rich antimicrobial peptides (NCR AMPs) and the bacterial BacA protein are essential for bacteroid development. However, the bacterial factors central to the NCR AMP response and the in planta role of BacA are unknown. We investigated the hypothesis that BacA is critical for the bacterial response towards NCR AMPs. We found that BacA was not essential for NCR AMPs to induce features of S. meliloti bacteroids in vitro. Instead, BacA was critical to reduce the amount of NCR AMP-induced membrane permeabilization and bacterial killing in vitro. Within M. truncatula, both wild-type and BacA-deficient mutant bacteria were challenged with NCR AMPs, but this resulted in persistence of the wild-type bacteria and rapid cell death of the mutant bacteria. In contrast, BacA was dispensable for bacterial survival in an M. truncatula dnf1 mutant defective in NCR AMP transport to the bacterial compartment. Therefore, BacA is critical for the legume symbiosis by protecting S. meliloti against the bactericidal effects of NCR AMPs. Host AMPs are ubiquitous in nature and BacA proteins are essential for other chronic host infections by symbiotic and pathogenic bacteria. Hence, our findings suggest that BacA-mediated protection of bacteria against host AMPs is a critical stage in the establishment of different prolonged host infections.
Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , Cisteína/metabolismo , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Medicago truncatula/microbiologia , Sinorhizobium meliloti/efeitos dos fármacos , Sinorhizobium meliloti/fisiologia , Simbiose/efeitos dos fármacos , Sequência de Aminoácidos , Peptídeos Catiônicos Antimicrobianos/química , Proteínas de Bactérias/metabolismo , Medicago truncatula/efeitos dos fármacos , Viabilidade Microbiana/efeitos dos fármacos , Dados de Sequência Molecular , Mutação/genética , Estrutura Secundária de Proteína , Sinorhizobium meliloti/citologiaRESUMO
(-)-Kainic acid potently increases stretch-induced afferent firing in muscle spindles, probably acting through a hitherto uncloned phospholipase D (PLD)-coupled mGlu receptor. Structural modification of (-)-kainic acid was undertaken to explore the C-4 substituent effect on the pharmacology related to muscle spindle firing. Three analogues 1a-c were synthesised by highly stereoselective additions of a CF3, a hydride and an alkynyl group to the Re face of the key pyrrolidin-4-one intermediate 5a followed by further structural modifications. Only the 4-(1,2,3-triazolyl)-kainate derivative 1c retained the kainate-like agonism, increasing firing in a dose-dependent manner. Further modification of 1c by introduction of a PEG-biotin chain on the 1,2,3-triazole fragment afforded compound 14 which retained robust agonism at 1 µM and appears to be suitable for future use in pull-down assays and far western blotting for PLD-mGluR isolation.
Assuntos
Ácido Caínico/análogos & derivados , Ácido Caínico/farmacologia , Fusos Musculares/efeitos dos fármacos , Fosfolipase D/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Animais , Ligantes , Camundongos , Modelos Moleculares , Fusos Musculares/fisiologia , Receptores de Glutamato Metabotrópico/agonistasRESUMO
Increased proliferation and reduced apoptosis of pulmonary artery smooth muscle cells (PASMCs) is recognised as a universal hallmark of pulmonary arterial hypertension (PAH), in part related to the association with reduced pyruvate dehydrogenase (PDH) activity, resulting in decreased oxidative phosphorylation of glucose and increased aerobic glycolysis (Warburg effect). Perhexiline is a well-recognised carnitine palmitoyltransferase-1 (CPT1) inhibitor used in cardiac diseases, which reciprocally increases PDH activity, but is associated with variable pharmacokinetics related to polymorphic variation of the cytochrome P450-2D6 (CYP2D6) enzyme, resulting in the risk of neuro and hepatotoxicity in 'slow metabolisers' unless blood levels are monitored and dose adjusted. We have previously reported that a novel perhexiline fluorinated derivative (FPER-1) has the same therapeutic profile as perhexiline but is not metabolised by CYP2D6, resulting in more predictable pharmacokinetics than the parent drug. We sought to investigate the effects of perhexiline and FPER-1 on PDH flux in PASMCs from patients with PAH. We first confirmed that PAH PASMCs exhibited increased cell proliferation, enhanced phosphorylation of AKTSer473, ERK 1/2Thr202/Tyr204 and PDH-E1αSer293, indicating a Warburg effect when compared to healthy PASMCs. Pre-treatment with perhexiline or FPER-1 significantly attenuated PAH PASMC proliferation in a concentration-dependent manner and suppressed the activation of the AKTSer473 but had no effect on the ERK pathway. Perhexiline and FPER-1 markedly activated PDH (seen as dephosphorylation of PDH-E1αSer293), reduced glycolysis, and upregulated mitochondrial respiration in these PAH PASMCs as detected by Seahorse analysis. However, both perhexiline and FPER-1 did not induce apoptosis as measured by caspase 3/7 activity. We show for the first time that both perhexiline and FPER-1 may represent therapeutic agents for reducing cell proliferation in human PAH PASMCs, by reversing Warburg physiology.