Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
J Physiol ; 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38520402

RESUMO

Lymphatic collecting vessels exhibit spontaneous phasic contractions that are critical for lymph propulsion and tissue fluid homeostasis. This rhythmic activity is driven by action potentials conducted across the lymphatic muscle cell (LMC) layer to produce entrained contractions. The contraction frequency of a lymphatic collecting vessel displays exquisite mechanosensitivity, with a dynamic range from <1 to >20 contractions per minute. A myogenic pacemaker mechanism intrinsic to the LMCs was initially postulated to account for pressure-dependent chronotropy. Further interrogation into the cellular constituents of the lymphatic vessel wall identified non-muscle cell populations that shared some characteristics with interstitial cells of Cajal, which have pacemaker functions in the gastrointestinal and lower urinary tracts, thus raising the possibility of a non-muscle cell pacemaker. However, recent genetic knockout studies in mice support LMCs and a myogenic origin of the pacemaker activity. LMCs exhibit stochastic, but pressure-sensitive, sarcoplasmic reticulum calcium release (puffs and waves) from IP3R1 receptors, which couple to the calcium-activated chloride channel Anoctamin 1, causing depolarisation. The resulting electrical activity integrates across the highly coupled lymphatic muscle electrical syncytia through connexin 45 to modulate diastolic depolarisation. However, multiple other cation channels may also contribute to the ionic pacemaking cycle. Upon reaching threshold, a voltage-gated calcium channel-dependent action potential fires, resulting in a nearly synchronous calcium global calcium flash within the LMC layer to drive an entrained contraction. This review summarizes the key ion channels potentially responsible for the pressure-dependent chronotropy of lymphatic collecting vessels and various mechanisms of IP3R1 regulation that could contribute to frequency tuning.

2.
J Physiol ; 602(14): 3351-3373, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38704841

RESUMO

Ca2+ signalling plays a crucial role in determining lymphatic muscle cell excitability and contractility through its interaction with the Ca2+-activated Cl- channel anoctamin 1 (ANO1). In contrast, the large-conductance (BK) Ca2+-activated K+ channel (KCa) and other KCa channels have prominent vasodilatory actions by hyperpolarizing vascular smooth muscle cells. Here, we assessed the expression and contribution of the KCa family to mouse and rat lymphatic collecting vessel contractile function. The BK channel was the only KCa channel consistently expressed in fluorescence-activated cell sorting-purified mouse lymphatic muscle cell lymphatic muscle cells. We used a pharmacological inhibitor of BK channels, iberiotoxin, and small-conductance Ca2+-activated K+ channels, apamin, to inhibit KCa channels acutely in ex vivo isobaric myography experiments and intracellular membrane potential recordings. In basal conditions, BK channel inhibition had little to no effect on either mouse inguinal-axillary lymphatic vessel (MIALV) or rat mesenteric lymphatic vessel contractions or action potentials (APs). We also tested BK channel inhibition under loss of ANO1 either by genetic ablation (Myh11CreERT2-Ano1 fl/fl, Ano1ismKO) or by pharmacological inhibition with Ani9. In both Ano1ismKO MIALVs and Ani9-pretreated MIALVs, inhibition of BK channels increased contraction amplitude, increased peak AP and broadened the peak of the AP spike. In rat mesenteric lymphatic vessels, BK channel inhibition also abolished the characteristic post-spike notch, which was exaggerated with ANO1 inhibition, and significantly increased the peak potential and broadened the AP spike. We conclude that BK channels are present and functional on mouse and rat lymphatic muscle cells but are otherwise masked by the dominance of ANO1. KEY POINTS: Mouse and rat lymphatic muscle cells express functional BK channels. BK channels make little contribution to either rat or mouse lymphatic collecting vessel contractile function in basal conditions across a physiological pressure range. ANO1 limits the peak membrane potential achieved in the action potential and sets a plateau potential limiting the voltage-dependent activation of BK. BK channels are activated when ANO1 is absent or blocked and slightly impair contractile strength by reducing the peak membrane potential achieved in the action potential spike and accelerating the post-spike repolarization.


Assuntos
Potenciais de Ação , Anoctamina-1 , Canais de Potássio Ativados por Cálcio de Condutância Alta , Vasos Linfáticos , Animais , Anoctamina-1/metabolismo , Anoctamina-1/genética , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Alta/fisiologia , Camundongos , Ratos , Potenciais de Ação/fisiologia , Masculino , Vasos Linfáticos/fisiologia , Vasos Linfáticos/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Contração Muscular/fisiologia , Ratos Sprague-Dawley , Feminino , Miócitos de Músculo Liso/fisiologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos
3.
J Physiol ; 598(15): 3107-3127, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32372450

RESUMO

KEY POINTS: Spontaneous contractions are essential for normal lymph transport and these contractions are exquisitely sensitive to the KATP channel activator pinacidil. KATP channel Kir6.1 and SUR2B subunits are expressed in mouse lymphatic smooth muscle (LSM) and form functional KATP channels as verified by electrophysiological techniques. Global deletion of Kir6.1 or SUR2 subunits results in severely impaired lymphatic contractile responses to pinacidil. Smooth muscle-specific expression of Kir6.1 gain-of-function mutant (GoF) subunits results in profound lymphatic contractile dysfunction and LSM hyperpolarization that is partially rescued by the KATP inhibitor glibenclamide. In contrast, lymphatic endothelial-specific expression of Kir6.1 GoF has essentially no effect on lymphatic contractile function. The high sensitivity of LSM to KATP channel GoF offers an explanation for the lymphoedema observed in patients with Cantú syndrome, a disorder caused by gain-of-function mutations in genes encoding Kir6.1 or SUR2, and suggests that glibenclamide may be an appropriate therapeutic agent. ABSTRACT: This study aimed to understand the functional expression of KATP channel subunits in distinct lymphatic cell types, and assess the consequences of altered KATP channel activity on lymphatic pump function. KATP channel subunits Kir6.1 and SUR2B were expressed in mouse lymphatic muscle by PCR, but only Kir6.1 was expressed in lymphatic endothelium. Spontaneous contractions of popliteal lymphatics from wild-type (WT) (C57BL/6J) mice, assessed by pressure myography, were very sensitive to inhibition by the SUR2-specific KATP channel activator pinacidil, which hyperpolarized both mouse and human lymphatic smooth muscle (LSM). In vessels from mice with deletion of Kir6.1 (Kir6.1-/- ) or SUR2 (SUR2[STOP]) subunits, contractile parameters were not significantly different from those of WT vessels, suggesting that basal KATP channel activity in LSM is not an essential component of the lymphatic pacemaker, and does not exert a strong influence over contractile strength. However, these vessels were >100-fold less sensitive than WT vessels to pinacidil. Smooth muscle-specific expression of a Kir6.1 gain-of-function (GoF) subunit resulted in severely impaired lymphatic contractions and hyperpolarized LSM. Membrane potential and contractile activity was partially restored by the KATP channel inhibitor glibenclamide. In contrast, lymphatic endothelium-specific expression of Kir6.1 GoF subunits had negligible effects on lymphatic contraction frequency or amplitude. Our results demonstrate a high sensitivity of lymphatic contractility to KATP channel activators through activation of Kir6.1/SUR2-dependent channels in LSM. In addition, they offer an explanation for the lymphoedema observed in patients with Cantú syndrome, a disorder caused by gain-of-function mutations in genes encoding Kir6.1/SUR2.


Assuntos
Mutação com Ganho de Função , Hipertricose , Trifosfato de Adenosina , Animais , Humanos , Canais KATP/genética , Camundongos , Camundongos Endogâmicos C57BL , Músculo Liso , Receptores de Sulfonilureias/genética
4.
Circ Res ; 123(8): 964-985, 2018 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-30355030

RESUMO

RATIONALE: Mutations in GJC2 and GJA1, encoding Cxs (connexins) 47 and 43, respectively, are linked to lymphedema, but the underlying mechanisms are unknown. Because efficient lymph transport relies on the coordinated contractions of lymphatic muscle cells (LMCs) and their electrical coupling through Cxs, Cx-related lymphedema is proposed to result from dyssynchronous contractions of lymphatic vessels. OBJECTIVE: To determine which Cx isoforms in LMCs and lymphatic endothelial cells are required for the entrainment of lymphatic contraction waves and efficient lymph transport. METHODS AND RESULTS: We developed novel methods to quantify the spatiotemporal entrainment of lymphatic contraction waves and used optogenetic techniques to analyze calcium signaling within and between the LMC and the lymphatic endothelial cell layers. Genetic deletion of the major lymphatic endothelial cell Cxs (Cx43, Cx47, or Cx37) revealed that none were necessary for the synchronization of the global calcium events that triggered propagating contraction waves. We identified Cx45 in human and mouse LMCs as the critical Cx mediating the conduction of pacemaking signals and entrained contractions. Smooth muscle-specific Cx45 deficiency resulted in 10- to 18-fold reduction in conduction speed, partial-to-severe loss of contractile coordination, and impaired lymph pump function ex vivo and in vivo. Cx45 deficiency resulted in profound inhibition of lymph transport in vivo, but only under an imposed gravitational load. CONCLUSIONS: Our results (1) identify Cx45 as the Cx isoform mediating the entrainment of the contraction waves in LMCs; (2) show that major endothelial Cxs are dispensable for the entrainment of contractions; (3) reveal a lack of coupling between lymphatic endothelial cells and LMCs, in contrast to arterioles; (4) point to lymphatic valve defects, rather than contraction dyssynchrony, as the mechanism underlying GJC2- or GJA1-related lymphedema; and (5) show that a gravitational load exacerbates lymphatic contractile defects in the intact mouse hindlimb, which is likely critical for the development of lymphedema in the adult mouse.


Assuntos
Conexinas/metabolismo , Linfa/metabolismo , Vasos Linfáticos/metabolismo , Linfedema/metabolismo , Contração Muscular , Animais , Sinalização do Cálcio , Conexina 43/genética , Conexina 43/metabolismo , Conexinas/deficiência , Conexinas/genética , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Feminino , Predisposição Genética para Doença , Gravitação , Humanos , Técnicas In Vitro , Vasos Linfáticos/fisiopatologia , Linfedema/genética , Linfedema/fisiopatologia , Masculino , Potenciais da Membrana , Camundongos Knockout , Miócitos de Músculo Liso/metabolismo , Optogenética , Fenótipo , Fatores de Tempo , Proteína alfa-4 de Junções Comunicantes
5.
Am J Physiol Heart Circ Physiol ; 314(5): H991-H1010, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29351458

RESUMO

We identified a regional dichotomy in murine lymphatic contractile function with regard to vessel location within the periphery or visceral cavity. All vessels isolated from peripheral regions [cervical, popliteal, inguinal, axillary, and internodal inguinal axillary (Ing-Ax)] developed robust contractions with maximal ejection fractions (EFs) of 50-80% in our ex vivo isobaric myograph experiments. Conversely, vessels isolated from the visceral cavity (mesenteric, thoracic duct, and iliac) demonstrated maximal EFs of ≤10%. Using pressure myography, sharp electrode membrane potential recordings, and Ca2+ imaging, we assessed the role of L-type Ca2+ channels in this contractile dichotomy. Ing-Ax membrane potential revealed a ~2-s action potential (AP) cycle (resting -35 mV, spike -5 mV, and plateau -11 mV) with a plateau phase that was significantly lengthened by the L-type Ca2+ channel agonist Bay K8644 (BayK; 100 nM). APs recorded from mesenteric vessels, however, displayed a slower upstroke and an elongated time over threshold. BayK (100 nM) increased the mesenteric AP upstroke velocity and plateau duration but also significantly hyperpolarized the vessel. Contractions of vessels from both regions were preceded by Ca2+ flashes, detected with a smooth muscle-specific endogenous Ca2+ reporter, that typically were coordinated over the length of the vessel. Similar to the membrane potential recordings, Ca2+ flashes in mesenteric vessels were weaker and had a slower rise time but were longer lasting than those in Ing-Ax vessels. BayK (100 nM) significantly increased the Ca2+ transient amplitude and duration in both vessels and decreased time to peak Ca2+ in mesenteric vessels. However, a higher concentration (1 µM) of BayK was required to produce even a modest increase in EF in visceral lymphatics, which remained at <20%. NEW & NOTEWORTHY Lymphatic collecting vessels isolated from murine peripheral tissues, but not from the visceral cavities, display robust contractile behavior similar to lymphatic vessels from other animal models and humans. These differences are partially explained by L-type Ca2+ channel activity as revealed by the first measurements of murine lymphatic action potentials and contraction-associated Ca2+ transients.


Assuntos
Canais de Cálcio Tipo L/metabolismo , Sinalização do Cálcio , Cálcio/metabolismo , Vasos Linfáticos/metabolismo , Contração Muscular , Músculo Liso/metabolismo , Éster Metílico do Ácido 3-Piridinacarboxílico, 1,4-Di-Hidro-2,6-Dimetil-5-Nitro-4-(2-(Trifluormetil)fenil)/farmacologia , Potenciais de Ação , Animais , Agonistas dos Canais de Cálcio/farmacologia , Canais de Cálcio Tipo L/efeitos dos fármacos , Sinalização do Cálcio/efeitos dos fármacos , Relação Dose-Resposta a Droga , Cinética , Vasos Linfáticos/diagnóstico por imagem , Vasos Linfáticos/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Contração Muscular/efeitos dos fármacos , Músculo Liso/efeitos dos fármacos
6.
J Physiol ; 595(24): 7347-7368, 2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-28994159

RESUMO

KEY POINTS: Endothelial cell function in resistance arteries integrates Ca2+ signalling with hyperpolarization to promote relaxation of smooth muscle cells and increase tissue blood flow. Whether complementary signalling occurs in lymphatic endothelium is unknown. Intracellular calcium and membrane potential were evaluated in endothelial cell tubes freshly isolated from mouse collecting lymphatic vessels of the popliteal fossa. Resting membrane potential measured using intracellular microelectrodes averaged ∼-70 mV. Stimulation of lymphatic endothelium by acetylcholine or a TRPV4 channel agonist increased intracellular Ca2+ with robust depolarization. Findings from Trpv4-/- mice and with computational modelling suggest that the initial mobilization of intracellular Ca2+ leads to influx of Ca2+ and Na+ through TRPV4 channels to evoke depolarization. Lymphatic endothelial cells lack the Ca2+ -activated K+ channels present in arterial endothelium to generate endothelium-derived hyperpolarization. Absence of this signalling pathway with effective depolarization may promote rapid conduction of contraction along lymphatic muscle during lymph propulsion. ABSTRACT: Subsequent to a rise in intracellular Ca2+ ([Ca2+ ]i ), hyperpolarization of the endothelium coordinates vascular smooth muscle relaxation along resistance arteries during blood flow control. In the lymphatic vasculature, collecting vessels generate rapid contractions coordinated along lymphangions to propel lymph, but the underlying signalling pathways are unknown. We tested the hypothesis that lymphatic endothelial cells (LECs) exhibit Ca2+ and electrical signalling properties that facilitate lymph propulsion. To study electrical and intracellular Ca2+ signalling dynamics in lymphatic endothelium, we excised collecting lymphatic vessels from the popliteal fossa of mice and removed their muscle cells to isolate intact LEC tubes (LECTs). Intracellular recording revealed a resting membrane potential of ∼-70 mV. Acetylcholine (ACh) increased [Ca2+ ]i with a time course similar to that observed in endothelium of resistance arteries (i.e. rapid initial peak with a sustained 'plateau'). In striking contrast to the endothelium-derived hyperpolarization (EDH) characteristic of arteries, LECs depolarized (>15 mV) to either ACh or TRPV4 channel activation. This depolarization was facilitated by the absence of Ca2+ -activated K+ (KCa ) channels as confirmed with PCR, persisted in the absence of extracellular Ca2+ , was abolished by LaCl3 and was attenuated ∼70% in LECTs from Trpv4-/- mice. Computational modelling of ion fluxes in LECs indicated that omitting K+ channels supports our experimental results. These findings reveal novel signalling events in LECs, which are devoid of the KCa activity abundant in arterial endothelium. Absence of EDH with effective depolarization of LECs may promote the rapid conduction of contraction waves along lymphatic muscle during lymph propulsion.


Assuntos
Sinalização do Cálcio , Endotélio Vascular/metabolismo , Vasos Linfáticos/metabolismo , Potenciais da Membrana , Acetilcolina/farmacologia , Animais , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/fisiologia , Leucina/análogos & derivados , Leucina/farmacologia , Vasos Linfáticos/efeitos dos fármacos , Vasos Linfáticos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Sulfonamidas/farmacologia , Canais de Cátion TRPV/agonistas , Canais de Cátion TRPV/metabolismo
7.
J Physiol ; 594(20): 5749-5768, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-27219461

RESUMO

A combination of extrinsic (passive) and intrinsic (active) forces move lymph against a hydrostatic pressure gradient in most regions of the body. The effectiveness of the lymph pump system impacts not only interstitial fluid balance but other aspects of overall homeostasis. This review focuses on the mechanisms that regulate the intrinsic, active contractions of collecting lymphatic vessels in relation to their ability to actively transport lymph. Lymph propulsion requires not only robust contractions of lymphatic muscle cells, but contraction waves that are synchronized over the length of a lymphangion as well as properly functioning intraluminal valves. Normal lymphatic pump function is determined by the intrinsic properties of lymphatic muscle and the regulation of pumping by lymphatic preload, afterload, spontaneous contraction rate, contractility and neural influences. Lymphatic contractile dysfunction, barrier dysfunction and valve defects are common themes among pathologies that directly involve the lymphatic system, such as inherited and acquired forms of lymphoedema, and pathologies that indirectly involve the lymphatic system, such as inflammation, obesity and metabolic syndrome, and inflammatory bowel disease.


Assuntos
Linfa/fisiologia , Sistema Linfático/fisiologia , Vasos Linfáticos/fisiologia , Animais , Humanos , Contração Muscular/fisiologia , Músculo Liso/fisiologia , Pressão
8.
Am J Physiol Heart Circ Physiol ; 310(3): H385-93, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26637560

RESUMO

Shear-dependent inhibition of lymphatic thoracic duct (TD) contractility is principally mediated by nitric oxide (NO). Endothelial dysfunction and poor NO bioavailability are hallmarks of vasculature dysfunction in states of insulin resistance and metabolic syndrome (MetSyn). We tested the hypothesis that flow-dependent regulation of lymphatic contractility is impaired under conditions of MetSyn. We utilized a 7-wk high-fructose-fed male Sprague-Dawley rat model of MetSyn and determined the stretch- and flow-dependent contractile responses in an isobaric ex vivo TD preparation. TD diameters were tracked and contractile parameters were determined in response to different transmural pressures, imposed flow, exogenous NO stimulation by S-nitro-N-acetylpenicillamine (SNAP), and inhibition of NO synthase (NOS) by l-nitro-arginine methyl ester (l-NAME) and the reactive oxygen species (ROS) scavenging molecule 4-hydroxy-tempo (tempol). Expression of endothelial NO synthase (eNOS) in TD was determined using Western blot. Approximately 25% of the normal flow-mediated inhibition of contraction frequency was lost in TDs isolated from MetSyn rats despite a comparable SNAP response. Inhibition of NOS with l-NAME abolished the differences in the shear-dependent contraction frequency regulation between control and MetSyn TDs, whereas tempol did not restore the flow responses in MetSyn TDs. We found a significant reduction in eNOS expression in MetSyn TDs suggesting that diminished NO production is partially responsible for impaired flow response. Thus our data provide the first evidence that MetSyn conditions diminish eNOS expression in TD endothelium, thereby affecting the flow-mediated changes in TD lymphatic function.


Assuntos
Endotélio Linfático/metabolismo , Síndrome Metabólica/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Ducto Torácico/metabolismo , Animais , Antioxidantes/farmacologia , Óxidos N-Cíclicos/farmacologia , Endotélio Linfático/efeitos dos fármacos , Endotélio Linfático/fisiopatologia , Inibidores Enzimáticos/farmacologia , Masculino , Síndrome Metabólica/fisiopatologia , Contração Muscular/efeitos dos fármacos , Contração Muscular/fisiologia , Relaxamento Muscular/efeitos dos fármacos , Relaxamento Muscular/fisiologia , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico/metabolismo , Doadores de Óxido Nítrico/farmacologia , Óxido Nítrico Sintase Tipo III/antagonistas & inibidores , Penicilamina/análogos & derivados , Penicilamina/farmacologia , Fluxo Pulsátil/efeitos dos fármacos , Fluxo Pulsátil/fisiologia , Ratos , Ratos Sprague-Dawley , Marcadores de Spin , Ducto Torácico/efeitos dos fármacos , Ducto Torácico/fisiopatologia
9.
Microcirculation ; 23(7): 558-570, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27588380

RESUMO

OBJECTIVE: The intrinsic lymphatic pump is critical to proper lymph transport and is impaired in models of the MetSyn. Lymphatic contractile inhibition under inflammatory conditions has been linked with elevated NO production by activated myeloid-derived cells. Hence we hypothesized that inhibition of the MLV pump function in MetSyn animals was dependent on NO and was associated with altered macrophage recruitment and polarization within the MLV. METHODS: We used a high fructose-fed rat model of MetSyn. Macrophage polarization was determined by whole mount immunofluorescence in mesenteric neurovascular bundles based on expression of CD163, CD206, and MHCII. We also utilized isolated vessel isobaric preparations to determine the role for elevated NO production in the inhibition of MLV contractility. Both LECs and LMCs were used to assess the cytokines and chemokines to test how the lymphatic cells response to inflammatory conditions. RESULTS: Data demonstrated a greater accumulation of M1-skewed (CD163+ MHCII+ ) macrophages that were observed both within the perivascular adipose tissue and invested along the lymphatic vessels in MetSyn rats when compared to control rats. LECs and LMCs basally express the macrophage maturation polarization cytokines monocyte colony-stimulating factor and dramatically up regulate the M1 promoting cytokine granulocyte/monocyte colony-stimulating factor in response to lipopolysaccharide stimulation. MetSyn MLVs exhibited altered phasic contraction frequency. Incubation of MetSyn MLVs with LNAME or Glib had a partial restoration of lymphatic contraction frequency. CONCLUSION: The data presented here provide the first evidence for a correlation between alterations in macrophage status and lymphatic dysfunction that is partially mediated by NO and KATP channel in MetSyn rats.


Assuntos
Vasos Linfáticos/fisiologia , Tecido Linfoide/citologia , Macrófagos/metabolismo , Mesentério/citologia , Síndrome Metabólica/imunologia , Contração Muscular/imunologia , Animais , Antígenos CD/análise , Antígenos de Diferenciação Mielomonocítica/análise , Quimiocinas/metabolismo , Citocinas/metabolismo , Antígenos de Histocompatibilidade Classe II/análise , Imunofenotipagem , Lectinas Tipo C/análise , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Masculino , Receptor de Manose , Lectinas de Ligação a Manose/análise , Síndrome Metabólica/fisiopatologia , Contração Muscular/efeitos dos fármacos , Contração Muscular/fisiologia , Óxido Nítrico/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores de Superfície Celular/análise
10.
Am J Physiol Heart Circ Physiol ; 309(12): H2042-57, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26453331

RESUMO

Impairment of the lymphatic system is apparent in multiple inflammatory pathologies connected to elevated endotoxins such as LPS. However, the direct mechanisms by which LPS influences the lymphatic contractility are not well understood. We hypothesized that a dynamic modulation of innate immune cell populations in mesentery under inflammatory conditions perturbs tissue cytokine/chemokine homeostasis and subsequently influences lymphatic function. We used rats that were intraperitoneally injected with LPS (10 mg/kg) to determine the changes in the profiles of innate immune cells in the mesentery and in the stretch-mediated contractile responses of isolated lymphatic preparations. Results demonstrated a reduction in the phasic contractile activity of mesenteric lymphatic vessels from LPS-injected rats and a severe impairment of lymphatic pump function and flow. There was a significant reduction in the number of neutrophils and an increase in monocytes/macrophages present on the lymphatic vessels and in the clear mesentery of the LPS group. This population of monocytes and macrophages established a robust M2 phenotype, with the majority showing high expression of CD163 and CD206. Several cytokines and chemoattractants for neutrophils and macrophages were significantly changed in the mesentery of LPS-injected rats. Treatment of lymphatic muscle cells (LMCs) with LPS showed significant changes in the expression of adhesion molecules, VCAM1, ICAM1, CXCR2, and galectin-9. LPS-TLR4-mediated regulation of pAKT, pERK pI-κB, and pMLC20 in LMCs promoted both contractile and inflammatory pathways. Thus, our data provide the first evidence connecting the dynamic changes in innate immune cells on or near the lymphatics and complex cytokine milieu during inflammation with lymphatic dysfunction.


Assuntos
Polaridade Celular/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Doenças Linfáticas/induzido quimicamente , Vasos Linfáticos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Mesentério/patologia , Infiltração de Neutrófilos/efeitos dos fármacos , Animais , Moléculas de Adesão Celular/metabolismo , Quimiocinas/biossíntese , Citocinas/biossíntese , Imunidade Inata/efeitos dos fármacos , Técnicas In Vitro , Inflamação/induzido quimicamente , Inflamação/patologia , Doenças Linfáticas/patologia , Vasos Linfáticos/citologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Contração Muscular/efeitos dos fármacos , Músculo Liso Vascular/patologia , Ratos , Ratos Sprague-Dawley
11.
Angiogenesis ; 17(2): 395-406, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24141404

RESUMO

Proper lymphatic function is necessary for the transport of fluids, macromolecules, antigens and immune cells out of the interstitium. The lymphatic endothelium plays important roles in the modulation of lymphatic contractile activity and lymph transport, but it's role as a barrier between the lymph and interstitial compartments is less well understood. Alterations in lymphatic function have long been associated with edema and inflammation although the integrity of the lymphatic endothelial barrier during inflammation is not well-defined. In this paper we evaluated the integrity of the lymphatic barrier in response to inflammatory stimuli commonly associated with increased blood endothelial permeability. We utilized in vitro assays of lymphatic endothelial cell (LEC) monolayer barrier function after treatment with different inflammatory cytokines and signaling molecules including TNF-α, IL-6, IL-1ß, IFN-γ and LPS. Moderate increases in an index of monolayer barrier dysfunction were noted with all treatments (20-60 % increase) except IFN-γ which caused a greater than 2.5-fold increase. Cytokine-induced barrier dysfunction was blocked or reduced by the addition of LNAME, except for IL-1ß and LPS treatments, suggesting a regulatory role for nitric oxide. The decreased LEC barrier was associated with modulation of both intercellular adhesion and intracellular cytoskeletal activation. Cytokine treatments reduced the expression of VE-cadherin and increased scavenging of ß-catenin in the LECs and this was partially reversed by LNAME. Likewise the phosphorylation of myosin light chain 20 at the regulatory serine 19 site, which accompanied the elevated monolayer barrier dysfunction in response to cytokine treatment, was also blunted by LNAME application. This suggests that the lymphatic barrier is regulated during inflammation and that certain inflammatory signals may induce large increases in permeability.


Assuntos
Permeabilidade da Membrana Celular/efeitos dos fármacos , Citocinas/farmacologia , Células Endoteliais/citologia , Endotélio Vascular/citologia , Mediadores da Inflamação/farmacologia , Animais , Antígenos CD/metabolismo , Western Blotting , Caderinas/metabolismo , Proliferação de Células/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Imunofluorescência , Antígeno Nuclear de Célula em Proliferação/metabolismo , Ratos Sprague-Dawley , S-Nitroso-N-Acetilpenicilamina/farmacologia , Proteínas de Transporte Vesicular/metabolismo
12.
Front Cell Dev Biol ; 12: 1331291, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38450249

RESUMO

Introduction: The bileaflet valves found in collecting lymphatic vessels and some veins are essential for maintaining a unidirectional flow, which is important for lymphatic and venous function. Under an adverse pressure gradient, the two leaflets tightly overlap to prevent backflow. Valves are proposed to share four main stages of development, based on images obtained from randomly oriented valves in fixed mouse embryos, with the best structural views obtained from larger venous valves. It is not known at what stage lymphatic valves (LVs) become functional (e.g., able to oppose backflow), although a requirement for stage 4 is presumed. Methods: To gain an insight into this sequence of events for LVs, we used Prox1CreER T2 :Foxo1 fl/fl mice and Foxc2CreER T2 :Foxo1 fl/fl mouse models, in which deletion of the valve repressor factor Foxo1 promotes the development of new LVs in adult lymphatic vessels. Both strains also contained a Prox1eGFP reporter to image the lymphatic endothelium. Mesenteric collecting lymphatic vessels were dissected, cannulated, and pressurized for ex vivo tests of valve function. LVs at various stages (1-4 and intermediate) were identified in multi-valve segments, which were subsequently shortened to perform the backleak test on single valves. The GFP signal was then imaged at high magnification using a confocal microscope. Z-stack reconstructions enabled 1:1 comparisons of LV morphology with a quantitative measurement of back leak. Results: As expected, LVs of stages 1-3 were completely leaky in response to outflow pressure elevation. Stage 4 valves were generally not leaky, but valve integrity depended on the Cre line used to induce new valve formation. A high percentage of valves at leaflet an intermediate stage (3.5), in which there was an insertion of a second commissure, but without proper luminal alignment, effectively resisted back leak when the outflow pressure was increased. Discussion: Our findings represent the first 3D images of developing lymphatic valves and indicate that valves become competent between stages 3 and 4 of development.

13.
Function (Oxf) ; 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39075985

RESUMO

Lymphatic dysfunction is an underlying component of multiple metabolic diseases, including diabetes, obesity, and metabolic syndrome. We investigated the roles of KATP channels in lymphatic contractile dysfunction in response to acute metabolic stress induced by inhibition of the mitochondrial electron transport chain. Ex vivo popliteal lymphatic vessels from mice were exposed to the electron transport chain inhibitors antimycin A and rotenone, or the oxidative phosphorylation inhibitor/protonophore, CCCP. Each inhibitor led to a significant reduction in the frequency of spontaneous lymphatic contractions and calculated pump flow, without a significant change in contraction amplitude. Contraction frequency was restored by the KATP channel inhibitor, glibenclamide. Lymphatic vessels from mice with global Kir6.1 deficiency or expressing a smooth muscle-specific dominant negative Kir6.1 channel were resistant to inhibition. Antimycin A inhibited the spontaneous action potentials generated in lymphatic muscle and this effect was reversed by glibenclamide, confirming the role of KATP channels. Antimycin A, but not rotenone or CCCP, increased dihydrorhodamine fluorescence in lymphatic muscle, indicating ROS production. Pretreatment with tiron or catalase prevented the effect of antimycin A on wild-type lymphatic vessels, consistent with its action being mediated by ROS. Our results support the conclusion that KATP channels in lymphatic muscle can be directly activated by reduced mitochondrial ATP production or ROS generation, consequent to acute metabolic stress, leading to contractile dysfunction through inhibition of the ionic pacemaker controlling spontaneous lymphatic contractions. We propose that a similar activation of KATP channels contributes to lymphatic dysfunction in metabolic disease.

14.
JCI Insight ; 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39074069

RESUMO

The expression of the gap junction molecule connexin-45 (Cx45; GJC1) in lymphatic endothelium and its functional relevance were not previously known. We found that Cx45 was expressed widely in the endothelium of murine lymphatics, in both valve and non-valve regions. Cell-specific deletion of Cx45, driven by a constitutive Cre line (Lyve1-Cre) or an inducible Cre line (Prox1-CreERT2), compromised the function of lymphatic valves, as assessed by physiological tests (back leak and closure) of isolated, single-valve vessel segments. The defects were comparable to those previously reported for loss of Cx43 and, like Cx43, deletion of Cx45 resulted in shortening and/or increased asymmetry of lymphatic valve leaflets, providing an explanation for the compromised valve function. In contrast to Cx43, LEC-specific deletion of Cx45 did not alter the number of valves in mesenteric or dermal lymphatic networks, or the expression patterns of the canonical valve-associated proteins PROX1, ITGA9 or CLAUDIN5. Constitutive deletion of Cx45 from LECs resulted in increased backflow of injected tracer in popliteal networks in vivo and compromised the integrity of the LEC permeability barrier in a subset of collecting vessels. These findings provide evidence for an unexpected role of Cx45 in the development and maintenance of lymphatic valves.

15.
bioRxiv ; 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38826322

RESUMO

Rationale: TRPV4 channels are critical regulators of blood vascular function and have been shown to be dysregulated in many disease conditions in association with inflammation and tissue fibrosis. These are key features in the pathophysiology of lymphatic system diseases, including lymphedema and lipedema; however, the role of TRPV4 channels in the lymphatic system remains largely unexplored. TRPV4 channels are calcium permeable, non-selective cation channels that are activated by diverse stimuli, including shear stress, stretch, temperature, and cell metabolites, which may regulate lymphatic contractile function. Objective: To characterize the expression of TRPV4 channels in collecting lymphatic vessels and to determine the extent to which these channels regulate the contractile function of lymphatics. Methods and Results: Pressure myography on intact, isolated, and cannulated lymphatic vessels showed that pharmacological activation of TRPV4 channels with GSK1016790A (GSK101) led to contractile dysregulation. The response to GSK101 was multiphasic and included, 1) initial robust constriction that was sustained for ≥1 minute and in some instances remained for ≥4 minutes; and 2) subsequent vasodilation and partial or complete inhibition of lymphatic contractions associated with release of nitric oxide. The functional response to activation of TRPV4 channels displayed differences across lymphatics from four anatomical regions, but these differences were consistent across different species (mouse, rat, and non-human primate). Importantly, similar responses were observed following activation of TRPV4 channels in arterioles. The initial and sustained constriction was prevented with the COX inhibitor, indomethacin. We generated a controlled and spatially defined single-cell RNA sequencing (scRNAseq) dataset from intact and microdissected collecting lymphatic vessels. Our data uncovered a subset of macrophages displaying the highest expression of Trpv4 compared to other cell types within and surrounding the lymphatic vessel wall. These macrophages displayed a transcriptomic profile consistent with that of tissue-resident macrophages (TRMs), including differential expression of Lyve1 , Cd163 , Folr2 , Mrc1 , Ccl8 , Apoe , Cd209f , Cd209d , and Cd209g ; and at least half of these macrophages also expressed Timd4. This subset of macrophages also highly expressed Txa2s , which encodes the thromboxane A2 (TXA2) synthase. Inhibition of TXA2 receptors (TXA2Rs) prevented TRPV4-mediated contractile dysregulation. TXA2R activation on LMCs caused an increase in mobilization of calcium from intracellular stores through Ip3 receptors which promoted store operated calcium entry and vasoconstriction. Conclusions: Clinical studies have linked cancer-related lymphedema with an increased infiltration of macrophages. While these macrophages have known anti-inflammatory and pro-lymphangiogenic roles, as well as promote tissue repair, our results point to detrimental effects to the pumping capacity of collecting lymphatic vessels mediated by activation of TRPV4 channels in macrophages. Pharmacological targeting of TRPV4 channels in LYVE1-expressing macrophages or pharmacological targeting of TXA2Rs may offer novel therapeutic strategies to improve lymphatic pumping function and lymph transport in lymphedema.

16.
Res Sq ; 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37333279

RESUMO

We previously identified two isoforms of T-type, voltage-gated calcium (Ca v 3) channels (Ca v 3.1, Ca v 3.2) that are functionally expressed in murine lymphatic muscle cells; however, contractile tests of lymphatic vessels from single and double Ca v 3 knock-out (DKO) mice, exhibited nearly identical parameters of spontaneous twitch contractions as wild-type (WT) vessels, suggesting that Ca v 3 channels play no significant role. Here, we considered the possibility that the contribution of Ca v 3 channels might be too subtle to detect in standard contraction analyses. We compared the sensitivity of lymphatic vessels from WT and Ca v 3 DKO mice to the L-type calcium channel (Ca v 1.2) inhibitor nifedipine and found that the latter vessels were significantly more sensitive to inhibition, suggesting that the contribution of Ca v 3 channels might normally be masked by Ca v 1.2 channel activity. We hypothesized that shifting the resting membrane potential (Vm) of lymphatic muscle to a more negative voltage might enhance the contribution of Ca v 3 channels. Because even slight hyperpolarization is known to completely silence spontaneous contractions, we devised a method to evoke nerve-independent, twitch contractions from mouse lymphatic vessels using single, short pulses of electric field stimulation (EFS). TTX was present throughout to block the potential contributions of voltage-gated Na + channels in perivascular nerves and lymphatic muscle. In WT vessels, EFS evoked single contractions that were comparable in amplitude and degree of entrainment to those occurring spontaneously. When Ca v 1.2 channels were blocked or deleted, only small residual EFS-evoked contractions (~ 5% of normal amplitude) were present. These residual, EFS-evoked contractions were enhanced (to 10-15%) by the K ATP channel activator pinacidil (PIN) but were absent in Ca v 3 DKO vessels. Our results point to a subtle contribution of Ca v 3 channels to lymphatic contractions that can be unmasked in the absence of Ca v 1.2 channel activity and when the resting Vm is more hyperpolarized than normal.

17.
Sci Rep ; 13(1): 15862, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37739992

RESUMO

We previously identified two isoforms of T-type, voltage-gated calcium (Cav3) channels (Cav3.1, Cav3.2) that are functionally expressed in murine lymphatic muscle cells; however, contractile tests of lymphatic vessels from single and double Cav3 knock-out (DKO) mice, exhibited nearly identical parameters of spontaneous twitch contractions as wild-type (WT) vessels, suggesting that Cav3 channels play no significant role. Here, we considered the possibility that the contribution of Cav3 channels might be too subtle to detect in standard contraction analyses. We compared the sensitivity of lymphatic vessels from WT and Cav3 DKO mice to the L-type calcium channel (Cav1.2) inhibitor nifedipine and found that the latter vessels were significantly more sensitive to inhibition, suggesting that the contribution of Cav3 channels might normally be masked by Cav1.2 channel activity. We hypothesized that shifting the resting membrane potential (Vm) of lymphatic muscle to a more negative voltage might enhance the contribution of Cav3 channels. Because even slight hyperpolarization is known to completely silence spontaneous contractions, we devised a method to evoke nerve-independent, twitch contractions from mouse lymphatic vessels using single, short pulses of electric field stimulation (EFS). TTX was present throughout to block the potential contributions of voltage-gated Na+ channels in perivascular nerves and lymphatic muscle. In WT vessels, EFS evoked single contractions that were comparable in amplitude and degree of entrainment to those occurring spontaneously. When Cav1.2 channels were blocked or deleted, only small residual EFS-evoked contractions (~ 5% of normal amplitude) were present. These residual, EFS-evoked contractions were enhanced (to 10-15%) by the KATP channel activator pinacidil (PIN) but were absent in Cav3 DKO vessels. Our results point to a subtle contribution of Cav3 channels to lymphatic contractions that can be unmasked in the absence of Cav1.2 channel activity and when the resting Vm is more hyperpolarized than normal.


Assuntos
Canais de Cálcio Tipo T , Vasos Linfáticos , Animais , Camundongos , Músculos , Canais de Cálcio Tipo L , Cálcio da Dieta
18.
J Gen Physiol ; 155(12)2023 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-37851028

RESUMO

Lymphatic system defects are involved in a wide range of diseases, including obesity, cardiovascular disease, and neurological disorders, such as Alzheimer's disease. Fluid return through the lymphatic vascular system is primarily provided by contractions of muscle cells in the walls of lymphatic vessels, which are in turn driven by electrochemical oscillations that cause rhythmic action potentials and associated surges in intracellular calcium ion concentration. There is an incomplete understanding of the mechanisms involved in these repeated events, restricting the development of pharmacological treatments for dysfunction. Previously, we proposed a model where autonomous oscillations in the membrane potential (M-clock) drove passive oscillations in the calcium concentration (C-clock). In this paper, to model more accurately what is known about the underlying physiology, we extend this model to the case where the M-clock and the C-clock oscillators are both active but coupled together, thus both driving the action potentials. This extension results from modifications to the model's description of the IP3 receptor, a key C-clock mechanism. The synchronised dual-driving clock behaviour enables the model to match IP3 receptor knock-out data, thus resolving an issue with previous models. We also use phase-plane analysis to explain the mechanisms of coupling of the dual clocks. The model has the potential to help determine mechanisms and find targets for pharmacological treatment of some causes of lymphoedema.


Assuntos
Relógios Biológicos , Vasos Linfáticos , Relógios Biológicos/fisiologia , Receptores de Inositol 1,4,5-Trifosfato/genética , Cálcio/metabolismo , Células Musculares/metabolismo , Vasos Linfáticos/fisiologia
19.
J Gen Physiol ; 155(12)2023 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-37851027

RESUMO

Pressure-dependent chronotropy of murine lymphatic collecting vessels relies on the activation of the Ca2+-activated chloride channel encoded by Anoctamin 1 (Ano1) in lymphatic muscle cells. Genetic ablation or pharmacological inhibition of ANO1 results in a significant reduction in basal contraction frequency and essentially complete loss of pressure-dependent frequency modulation by decreasing the rate of the diastolic depolarization phase of the ionic pacemaker in lymphatic muscle cells (LMCs). Oscillating Ca2+ release from sarcoendoplasmic reticulum Ca2+ channels has been hypothesized to drive ANO1 activity during diastole, but the source of Ca2+ for ANO1 activation in smooth muscle remains unclear. Here, we investigated the role of the inositol triphosphate receptor 1 (Itpr1; Ip3r1) in this process using pressure myography, Ca2+ imaging, and membrane potential recordings in LMCs of ex vivo pressurized inguinal-axillary lymphatic vessels from control or Myh11CreERT2;Ip3r1fl/fl (Ip3r1ismKO) mice. Ip3r1ismKO vessels had significant reductions in contraction frequency and tone but an increased contraction amplitude. Membrane potential recordings from LMCs of Ip3r1ismKO vessels revealed a depressed diastolic depolarization rate and an elongation of the plateau phase of the action potential (AP). Ca2+ imaging of LMCs using the genetically encoded Ca2+ sensor GCaMP6f demonstrated an elongation of the Ca2+ flash associated with an AP-driven contraction. Critically, diastolic subcellular Ca2+ transients were absent in LMCs of Ip3r1ismKO mice, demonstrating the necessity of IP3R1 activity in controlling ANO1-mediated diastolic depolarization. These findings indicate a critical role for IP3R1 in lymphatic vessel pressure-dependent chronotropy and contractile regulation.


Assuntos
Cálcio , Vasos Linfáticos , Animais , Camundongos , Anoctamina-1 , Cálcio/metabolismo , Diástole , Receptores de Inositol 1,4,5-Trifosfato
20.
Am J Physiol Heart Circ Physiol ; 302(3): H643-53, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-22159997

RESUMO

Numerous studies on metabolic syndrome (MetSyn), a cluster of metabolic abnormalities, have demonstrated its profound impact on cardiovascular and blood microvascular health; however, the effects of MetSyn on lymphatic function are not well understood. We hypothesized that MetSyn would modulate lymphatic muscle activity and alter muscularized lymphatic function similar to the impairment of blood vessel function associated with MetSyn, particularly given the direct proximity of the lymphatics to the chronically inflamed adipose depots. To test this hypothesis, rats were placed on a high-fructose diet (60%) for 7 wk, and their progression to MetSyn was assessed through serum insulin and triglyceride levels in addition to the expression of metabolic and inflammatory genes in the liver. Mesenteric lymphatic vessels were isolated and subjected to different transmural pressures while lymphatic pumping and contractile parameters were evaluated. Lymphatics from MetSyn rats had significant negative chronotropic effects at all pressures that effectively reduced the intrinsic flow-generating capacity of these vessels by ∼50%. Furthermore, lymphatics were remodeled to a significantly smaller diameter in the animals with MetSyn. Wire myograph experiments demonstrated that permeabilized lymphatics from the MetSyn group exhibited a significant decrease in force generation and were less sensitive to Ca(2+), although there were no significant changes in lymphatic muscle cell coverage or morphology. Thus, our data provide the first evidence that MetSyn induces a remodeling of collecting lymphatics, thereby effectively reducing their potential load capabilities and impairing the intrinsic contractility required for proper lymph flow.


Assuntos
Doenças Linfáticas/etiologia , Doenças Linfáticas/fisiopatologia , Vasos Linfáticos/fisiopatologia , Síndrome Metabólica/complicações , Síndrome Metabólica/fisiopatologia , Animais , Cálcio/fisiologia , Modelos Animais de Doenças , Frutosamina/farmacologia , Doenças Linfáticas/metabolismo , Vasos Linfáticos/metabolismo , Masculino , Síndrome Metabólica/metabolismo , Contração Muscular/fisiologia , Músculo Liso/metabolismo , Músculo Liso/fisiopatologia , Permeabilidade , Pressão , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA