Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
J Biomech Eng ; 145(12)2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37542709

RESUMO

Biomechanical engineers and physicists commonly employ biological bone for biomechanics studies, since they are good representations of living bone. Yet, there are challenges to using biological bone, such as cost, degradation, disease, ethics, shipping, sourcing, storage, variability, etc. Therefore, the Synbone® company has developed a series of synthetic bones that have been used by biomechanical investigators to offset some drawbacks of biological bone. There have been a number of published biomechanical reports using these bone surrogates for dental, injury, orthopedic, and other applications. But, there is no prior review paper that has summarized the mechanical properties of these synthetic bones in order to understand their general performance or how well they represent biological bone. Thus, the goal of this article was to survey the English-language literature on the mechanical properties of these synthetic bones. Studies were included if they quantitatively (a) characterized previously unknown values for synthetic bone, (b) validated synthetic versus biological bone, and/or (c) optimized synthetic bone performance by varying geometric or material parameters. This review of data, pros, cons, and future work will hopefully assist biomechanical engineers and physicists that use these synthetic bones as they develop experimental testing regimes and computational models.


Assuntos
Osso e Ossos , Fenômenos Biomecânicos , Teste de Materiais , Análise de Elementos Finitos
2.
J Hand Surg Am ; 47(4): 320-328, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35082086

RESUMO

PURPOSE: The current methods of distal humerus (DH) articular surface visualization only allow a limited view of the joint. This study describes an osteotomy procedure that increases the visualization of and access to the DH articular surface for fixation without compromising ligaments. METHODS: Eighteen fresh-frozen human elbows (9 matched pairs) underwent proximal ulna osteotomy (PUO) or transverse olecranon osteotomy (OO) contralaterally. The visualized articular surface of the DH was demarcated, and the surface areas of the DH, capitellum, and trochlea were measured using 3-dimensional scanning. The angular arc of the articular surface of the capitellum and trochlea was measured using a goniometer. RESULTS: The 3-dimensional scans showed that 87.6% of the total DH surface area was visualized using PUO versus 65.6% using OO. When the trochlea and capitellum surface areas were separated, 94.0% versus 75.9% of the trochlea and 74.8% versus 44.7% of the capitellum were visualized using PUO and OO, respectively. The goniometric angles demonstrated that 98.2% versus 70.9% of the trochlea and 75.1% versus 43.5% of the capitellum articular surface arc angles were visualized using PUO and OO, respectively. After PUO with further release of the flexor-pronator mass was performed, 100% of the DH articular surface was visualized. CONCLUSIONS: Proximal ulnar osteotomy improves the visualization of the DH articular surface. CLINICAL RELEVANCE: Proximal ulna osteotomy spares ligaments, avoids osteotomizing the greater sigmoid notch, involves more robust metaphyseal bone for potentially better fixation, and may permit DH arthroplasty without compromising primary ligamentous elbow stabilizers. Further clinical studies are needed to assess the utility of this type of osteotomy.


Assuntos
Articulação do Cotovelo , Fraturas do Úmero , Olécrano , Cotovelo , Articulação do Cotovelo/cirurgia , Fixação Interna de Fraturas/métodos , Humanos , Fraturas do Úmero/cirurgia , Úmero , Lasers , Olécrano/cirurgia , Osteotomia/métodos , Ulna
3.
J Biomech Eng ; 136(5): 051006, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24598846

RESUMO

The human humerus is the third largest longbone and experiences 2-3% of all fractures. Yet, almost no data exist on its intact biomechanical properties, thus preventing researchers from obtaining a full understanding of humerus behavior during injury and after being repaired with fracture plates and nails. The aim of this experimental study was to compare the biomechanical stiffness and strength of "gold standard" fresh-frozen humeri to a variety of humerus models. A series of five types of intact whole humeri were obtained: human fresh-frozen (n = 19); human embalmed (n = 18); human dried (n = 15); artificial "normal" (n = 12); and artificial "osteoporotic" (n = 12). Humeri were tested under "real world" clinical loading modes for shear stiffness, torsional stiffness, cantilever bending stiffness, and cantilever bending strength. After removing geometric effects, fresh-frozen results were 585.8 ± 181.5 N/mm2 (normalized shear stiffness); 3.1 ± 1.1 N/(mm2 deg) (normalized torsional stiffness); 850.8 ± 347.9 N/mm2 (normalized cantilever stiffness); and 8.3 ± 2.7 N/mm2 (normalized cantilever strength). Compared to fresh-frozen values, statistical equivalence (p ≥ 0.05) was obtained for all four test modes (embalmed humeri), 1 of 4 test modes (dried humeri), 1 of 4 test modes (artificial "normal" humeri), and 1 of 4 test modes (artificial "osteoporotic" humeri). Age and bone mineral density versus experimental results had Pearson linear correlations ranging from R = -0.57 to 0.80. About 77% of human humeri failed via a transverse or oblique distal shaft fracture, whilst 88% of artificial humeri failed with a mixed transverse + oblique fracture. To date, this is the most comprehensive study on the biomechanics of intact human and artificial humeri and can assist researchers to choose an alternate humerus model that can substitute for fresh-frozen humeri.


Assuntos
Materiais Biomiméticos , Úmero , Teste de Materiais , Fenômenos Mecânicos , Adulto , Fenômenos Biomecânicos , Densidade Óssea , Criopreservação , Dessecação , Humanos , Fraturas do Úmero/fisiopatologia , Úmero/fisiologia , Úmero/fisiopatologia , Estresse Mecânico
4.
J Biomech Eng ; 136(9): 091002, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24828985

RESUMO

Femur fracture at the tip of a total hip replacement (THR), commonly known as Vancouver B1 fracture, is mainly treated using rigid metallic bone plates which may result in "stress shielding" leading to bone resorption and implant loosening. To minimize stress shielding, a new carbon fiber (CF)/Flax/Epoxy composite plate has been developed and biomechanically compared to a standard clinical metal plate. For fatigue tests, experiments were done using six artificial femurs cyclically loaded through the femoral head in axial compression for four stages: Stage 1 (intact), stage 2 (after THR insertion), stage 3 (after plate fixation of a simulated Vancouver B1 femoral midshaft fracture gap), and stage 4 (after fracture gap healing). For fracture fixation, one group was fitted with the new CF/Flax/Epoxy plate (n = 3), whereas another group was repaired with a standard clinical metal plate (Zimmer, Warsaw, IN) (n = 3). In addition to axial stiffness measurements, infrared thermography technique was used to capture the femur and plate surface stresses during the testing. Moreover, finite element analysis (FEA) was performed to evaluate the composite plate's axial stiffness and surface stress field. Experimental results showed that the CF/Flax/Epoxy plated femur had comparable axial stiffness (fractured = 645 ± 67 N/mm; healed = 1731 ± 109 N/mm) to the metal-plated femur (fractured = 658 ± 69 N/mm; healed = 1751 ± 39 N/mm) (p = 1.00). However, the bone beneath the CF/Flax/Epoxy plate was the only area that had a significantly higher average surface stress (fractured = 2.10 ± 0.66 MPa; healed = 1.89 ± 0.39 MPa) compared to bone beneath the metal plate (fractured = 1.18 ± 0.93 MPa; healed = 0.71 ± 0.24 MPa) (p < 0.05). FEA bone surface stresses yielded peak of 13 MPa at distal epiphysis (stage 1), 16 MPa at distal epiphysis (stage 2), 85 MPa for composite and 129 MPa for metal-plated femurs at the vicinity of nearest screw just proximal to fracture (stage 3), 21 MPa for composite and 24 MPa for metal-plated femurs at the vicinity of screw farthest away distally from fracture (stage 4). These results confirm that the new CF/Flax/Epoxy material could be a potential candidate for bone fracture plate applications as it can simultaneously provide similar mechanical stiffness and lower stress shielding (i.e., higher bone stress) compared to a standard clinical metal bone plate.


Assuntos
Placas Ósseas , Carbono/química , Compostos de Epóxi/química , Fraturas Ósseas/cirurgia , Teste de Materiais , Metais , Estresse Mecânico , Adulto , Fenômenos Biomecânicos , Fibra de Carbono , Fêmur/lesões , Análise de Elementos Finitos , Humanos
5.
Injury ; 55(2): 111247, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38056059

RESUMO

BACKGROUND: Proximal humerus locked plates (PHLPs) are widely used for fracture surgery. Yet, non-union, malunion, infection, avascular necrosis, screw cut-out (i.e., perforation), fixation failure, and re-operation occur. Most biomechanical investigators compare a specific PHLP configuration to other implants like non-locked plates, nails, wires, and arthroplasties. However, it is unknown whether the PHLP configuration is biomechanically optimal according to some well-known biomechanical criteria. Therefore, this is the first review of the systematic optimization of plate and/or screw design variables for improved PHLP biomechanical performance. METHODS: The PubMed website was searched for papers using the terms "proximal humerus" or "shoulder" plus "biomechanics/biomechanical" plus "locked/locking plates". PHLP papers were included if they were (a) optimization studies that systematically varied plate and screw variables to determine their influence on PHLP's biomechanical performance; (b) focused on plate and screw variables rather than augmentation techniques (i.e., extra implants, bone struts, or cement); (c) published after the year 2000 signaling the commercial availability of locked plate technology; and (d) written in English. RESULTS: The 41 eligible papers involved experimental testing and/or finite element modeling. Plate variables investigated by these papers were geometry, material, and/or position, while screw variables studied were number, distribution, angle, size, and/or threads. Numerical outcomes given by these papers included stiffness, strength, fracture motion, bone and implant stress, and/or the number of loading cycles to failure. But, no paper fully optimized any plate or screw variable for a PHLP by simultaneously applying four well-established biomechanical criteria: (a) allow controlled fracture motion for early callus generation; (b) reduce bone and implant stress below the material's ultimate stress to prevent failure; (c) maintain sufficient bone-plate interface stress to reduce bone resorption (i.e., stress shielding); and (d) increase the number of loading cycles before failure for a clinically beneficial lifespan (i.e., fatigue life). Finally, this review made suggestions for future work, identified clinical implications, and assessed the quality of the papers reviewed. CONCLUSIONS: Applying biomechanical optimization criteria can assist biomedical engineers in designing or evaluating PHLPs, so orthopaedic surgeons can have superior PHLP constructs for clinical use.


Assuntos
Fixação Interna de Fraturas , Fraturas do Ombro , Humanos , Fixação Interna de Fraturas/métodos , Fraturas do Ombro/cirurgia , Parafusos Ósseos , Placas Ósseas , Úmero , Fenômenos Biomecânicos
6.
Biomed Res Int ; 2024: 6015794, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38966093

RESUMO

The goal of this article was to review studies on distal humerus fracture plates (DHFPs) to understand the biomechanical influence of systematically changing the plate or screw variables. The problem is that DHFPs are commonly used surgically, although complications can still occur, and it is unclear if implant configurations are always optimized using biomechanical criteria. A systematic search of the PubMed database was conducted to identify English-language biomechanical optimization studies of DHFPs that parametrically altered plate and/or screw variables to analyze their influence on engineering performance. Intraarticular and extraarticular fracture (EAF) data were separated and organized under commonly used biomechanical outcome metrics. The results identified 52 eligible DHFP studies, which evaluated various plate and screw variables. The most common plate variables evaluated were geometry, hole type, number, and position. Fewer studies assessed screw variables, with number and angle being the most common. However, no studies examined nonmetallic materials for plates or screws, which may be of interest in future research. Also, articles used various combinations of biomechanical outcome metrics, such as interfragmentary fracture motion, bone, plate, or screw stress, number of loading cycles to failure, and overall stiffness (Os) or failure strength (Fs). However, no study evaluated the bone stress under the plate to examine bone "stress shielding," which may impact bone health clinically. Surgeons treating intraarticular and extraarticular distal humerus fractures should seriously consider two precontoured, long, thick, locked, and parallel plates that are secured by long, thick, and plate-to-plate screws that are located at staggered levels along the proximal parts of the plates, as well as an extra transfracture plate screw. Also, research engineers could improve new studies by perusing recommendations in future work (e.g., studying alternative nonmetallic materials or "stress shielding"), clinical ramifications (e.g., benefits of locked plates), and study quality (e.g., experimental validation of computational studies).


Assuntos
Placas Ósseas , Fixação Interna de Fraturas , Fraturas do Úmero , Humanos , Fenômenos Biomecânicos , Fraturas do Úmero/cirurgia , Fraturas do Úmero/fisiopatologia , Fixação Interna de Fraturas/métodos , Fixação Interna de Fraturas/instrumentação , Parafusos Ósseos , Úmero/cirurgia , Úmero/fisiopatologia , Estresse Mecânico , Fraturas Distais do Úmero
7.
Clin Biomech (Bristol, Avon) ; 117: 106296, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38936291

RESUMO

BACKGROUND: This study experimentally validated a computationally optimized screw number and screw distribution far cortical locking distal femur fracture plate and compared the results to traditional implants. METHODS: 24 artificial femurs were osteotomized with a 10 mm fracture gap 60 mm proximal to the intercondylar notch. Three fixation constructs were used. (i) Standard locking plates secured with three far cortical locking screws inserted according to a previously optimized distribution in the femur shaft (n = 8). (ii) Standard locking plates secured with four standard locking screws inserted in alternating plate holes in the femur shaft (n = 8). (iii) Retrograde intramedullary nail secured proximally with one anterior-posterior screw and distally with two oblique screws (n = 8). Axial hip forces (700 and 2800 N) were applied while measuring axial interfragmentary motion, shear interfragmentary motion, and overall stiffness. FINDINGS: Experimental far cortical locking plate results compared well to published computational findings. Far cortical locking femurs contained the highest axial motion within the potential ideal range of 0.2-1 mm and a sheer-to-axial motion ratio < 1.6 at toe-touch weight-bearing (700 N). At full weight-bearing (2800 N), Standard locking-plated femurs had the only axial motion within 0.2-1 mm but had an excess shear-to-axial motion ratio. Nail-implanted femurs underperformed at both forces. INTERPRETATION: For toe-touch weight-bearing, the far cortical locking construct provided optimal biomechanics to allow moderate motion, which has been suggested to encourage early callus formation. Conversely, at full weight-bearing, the standard locking construct offered the biomechanical advantage on fracture motion.

8.
Biomed Mater ; 19(4)2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38688325

RESUMO

Bone fracture plates are usually made from steel or titanium, which are much stiffer than cortical bone. This may cause bone 'stress shielding' (i.e. bone resorption leading to plate loosening) and delayed fracture healing (i.e. fracture motion is less than needed to stimulate callus formation at the fracture). Thus, the authors previously designed, fabricated, and mechanically tested novel 'hybrid' composites made from inorganic and organic materials as potential bone fracture plates that are more flexible to reduce these negative effects. This is the first study to measure the cytotoxicity of these composites via the survival of rat cells. Cubes of carbon fiber/flax fiber/epoxy and glass fiber/flax fiber/epoxy had better cell survival vs. Kevlar fiber/flax fiber/epoxy (57% and 58% vs. 50%). Layers and powders made of carbon fiber/epoxy and glass fiber/epoxy had higher cell survival than Kevlar fiber/epoxy (96%-100% and 100% vs. 39%-90%). The presence of flax fibers usually decreased cell survival. Thus, carbon and glass fiber composites (with or without flax fibers), but not Kevlar fiber composites (with or without flax fibers), may potentially be used for bone fracture plates.


Assuntos
Placas Ósseas , Fibra de Carbono , Sobrevivência Celular , Fraturas Ósseas , Vidro , Teste de Materiais , Animais , Ratos , Sobrevivência Celular/efeitos dos fármacos , Vidro/química , Fibra de Carbono/química , Materiais Biocompatíveis/química , Carbono/química , Consolidação da Fratura , Resinas Epóxi/química , Estresse Mecânico , Titânio/química
9.
Global Spine J ; : 21925682241259695, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38828634

RESUMO

STUDY DESIGN: In-vitro cadaveric biomechanical study. OBJECTIVES: Long posterior spinal fusion is a standard treatment for adult spinal deformity. However, these rigid constructs are known to alter motion and stress to the adjacent non-instrumented vertebrae, increasing the risk of proximal junctional kyphosis (PJK). This study aimed to biomechanically compare a standard rigid construct vs constructs "topped off" with a semi-rigid construct. By understanding semi-rigid constructs' effect on motion and overall construct stiffness, surgeons and researchers could better optimize fusion constructs to potentially decrease the risk of PJK and the need for revision surgery. METHODS: Nine human cadaveric spines (T1-T12) underwent non-destructive biomechanical range of motion tests in pure bending or torsion and were instrumented with an all-pedicle-screw (APS) construct from T6-T9. The specimens were sequentially instrumented with semi-rigid constructs at T5: (i) APS plus sublaminar bands; (ii) APS plus supralaminar hooks; (iii) APS plus transverse process hooks; and (iv) APS plus short pedicle screws. RESULTS: APS plus transverse process hooks had a range of motion (ie, relative angle) for T4-T5 and T5-T6, as well as an overall mechanical stiffness for T1-T12, that was more favourable, as it reduced motion at adjacent levels without a stark increase in stiffness. Moreover, APS plus transverse process hooks had the most linear change for range of motion across the entire T3-T7 range. CONCLUSIONS: Present findings suggest that APS plus transverse process hooks has a favourable biomechanical effect that may reduce PJK for long spinal fusions compared to the other constructs examined.

10.
Med Eng Phys ; 118: 104017, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37536838

RESUMO

Biomedical engineers and physicists frequently use human or animal bone for orthopaedic biomechanics research because they are excellent approximations of living bone. But, there are drawbacks to biological bone, like degradation over time, ethical concerns, high financial costs, inter-specimen variability, storage requirements, supplier sourcing, transportation rules, etc. Consequently, since the late 1980s, the Sawbones® company has been one of the world's largest suppliers of artificial bones for biomechanical testing that counteract many disadvantages of biological bone. There have been many published reports using these bone analogs for research on joint replacement, bone fracture fixation, spine surgery, etc. But, there exists no prior review paper on these artificial bones that gives a comprehensive and in-depth look at the numerical data of interest to biomedical engineers and physicists. Thus, this paper critically reviews 25 years of English-language studies on the biomechanical properties of these artificial bones that (a) characterized unknown or unreported values, (b) validated them against biological bone, and/or (c) optimized different design parameters. This survey of data, advantages, disadvantages, and knowledge gaps will hopefully be useful to biomedical engineers and physicists in developing mechanical testing protocols and computational finite element models.


Assuntos
Osso e Ossos , Fixação Interna de Fraturas , Humanos , Fenômenos Biomecânicos , Fixação Interna de Fraturas/métodos , Análise de Elementos Finitos
11.
Biomed Res Int ; 2023: 4914082, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37780487

RESUMO

Biomechanics researchers often experimentally measure static or fluctuating dynamic contact forces, areas, and stresses at the interface of natural and artificial joints, including the shoulders, elbows, hips, and knees. This information helps explain joint contact mechanics, as well as mechanisms that may contribute to disease, damage, and degradation. Currently, the most common in vitro experimental technique involves a thin pressure-sensitive film inserted into the joint space; but, the film's finite thickness disturbs the joint's ordinary articulation. Similarly, the most common in vivo experimental technique uses video recording of 3D limb motion combined with dynamic analysis of a 3D link-segment model to calculate joint contact force, but this does not provide joint contact area or stress distribution. Moreover, many researchers may be unaware of older or newer alternative techniques that may be more suitable for their particular research application. Thus, this article surveys over 50 years of English-language scientific literature in order to (a) describe the basic working principles, advantages, and disadvantages of each technique, (b) examine the trends among the studies and methods, and (c) make recommendations for future directions. This article will hopefully inform biomechanics investigators about various in vitro and in vivo experimental methods for studying the contact mechanics of joints.


Assuntos
Cartilagem Articular , Projetos de Pesquisa , Movimento (Física) , Articulações , Fenômenos Biomecânicos , Estresse Mecânico
12.
J Biomech ; 160: 111822, 2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37793203

RESUMO

Biomechanics investigators are interested in experimentally measuring stresses experienced by dental structures, whole bones, joint replacements, soft tissues, normal limbs, etc. To do so, various experimental methods have been used that are based on acoustic, optical, piezo-resistive, or other principles, like digital image correlation, fiber optic sensors, photo-elasticity, strain gages, ultrasound, etc. Several biomechanical review papers have surveyed these research technologies, but they do not mention thermography. Thermography can identify temperature anomalies indicating low- or high-stress areas on a bone, implant, prosthesis, etc., which may need to be repaired, replaced, or redesigned to avoid damage, degradation, or failure. In addition, thermography can accurately predict a structure's cyclic fatigue strength. Consequently, this article gives an up-to-date survey of the scientific literature on thermography for biomechanical stress analysis. This review (i) describes the basic physics of thermography, thermo-elastic properties of biomaterials, experimental protocols for thermography, advantages, and disadvantages, (ii) surveys published studies on various applications that used thermography for biomechanical stress measurements, and (iii) discusses general findings and future work. This article is intended to inform biomechanics investigators about the potential of thermography for stress analysis.

13.
Proc Inst Mech Eng H ; 237(7): 791-805, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37366552

RESUMO

Clinical findings, manufacturer instructions, and surgeon's preferences often dictate the implantation of distal femur locked plates (DFLPs), but healing problems and implant failures still persist. Also, most biomechanical researchers compare a particular DFLP configuration to implants like plates and nails. However, this begs the question: Is this specific DFLP configuration biomechanically optimal to encourage early callus formation, reduce bone and implant failure, and minimize bone "stress shielding"? Consequently, it is crucial to optimize, or characterize, the biomechanical performance (stiffness, strength, fracture micro-motion, bone stress, plate stress) of DFLPs influenced by plate variables (geometry, position, material) and screw variables (distribution, size, number, angle, material). Thus, this article reviews 20 years of biomechanical design optimization studies on DFLPs. As such, Google Scholar and PubMed websites were searched for articles in English published since 2000 using the terms "distal femur plates" or "supracondylar femur plates" plus "biomechanics/biomechanical" and "locked/locking," followed by searching article reference lists. Key numerical outcomes and common trends were identified, such as: (a) plate cross-sectional area moment of inertia can be enlarged to lower plate stress at the fracture; (b) plate material has a larger influence on plate stress than plate thickness, buttress screws, and inserts for empty plate holes; (c) screw distribution has a major influence on fracture micro-motion, etc. Recommendations for future work and clinical implications are then provided, such as: (a) simultaneously optimizing fracture micro-motion for early healing, reducing bone and implant stresses to prevent re-injury, lowering "stress shielding" to avoid bone resorption, and ensuring adequate fatigue life; (b) examining alternate non-metallic materials for plates and screws; (c) assessing the influence of condylar screw number, distribution, and angulation, etc. This information can benefit biomedical engineers in designing or evaluating DFLPs, as well as orthopedic surgeons in choosing the best DFLPs for their patients.


Assuntos
Placas Ósseas , Fêmur , Humanos , Fenômenos Biomecânicos , Parafusos Ósseos , Fixação de Fratura
14.
Proc Inst Mech Eng H ; 237(9): 1052-1060, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37485996

RESUMO

After a distal humeral injury, olecranon osteotomy (OO) is a traditional way to visualize the distal humerus for performing fracture fixation. In contrast, the current authors previously showed that novel proximal ulna osteotomy (PUO) allows better access to the distal humerus without ligamentous compromise. Therefore, this study biomechanically compared plating repair following OO versus PUO. The left or right ulna from eight matched pairs of human cadaveric elbows were randomly assigned to receive OO or PUO and repaired using pre-contoured titanium plates. Destructive and non-destructive mechanical tests were performed to assess stability. Mechanical tests on OO versus PUO groups yielded average results for ulna cantilever bending stiffness at a 90° elbow angle (29.6 vs 30.5 N/mm, p = 0.742), triceps tendon pull stiffness at a 90° elbow angle (28.2 vs 24.4 N/mm, p = 0.051), triceps tendon pull stiffness at a 110° elbow angle (61.9 vs 59.5 N/mm, p = 0.640), and triceps tendon pull failure load at a 110° elbow angle (1070.1 vs 1359.7 N, p = 0.078). OO and PUO elbows had similar failure mechanisms, namely, tendon tear or avulsion from the ulna with or without some fracture of the proximal bone fragment, or complete avulsion of the proximal bone fragment from the plate. The similar biomechanical stability (i.e., no statistical difference for 4 of 4 mechanical measurements) and failure mechanisms of OO and PUO plated elbows support the clinical use of PUO as a possible alternative to OO for visualizing the distal humerus.


Assuntos
Fraturas Ósseas , Fraturas do Úmero , Olécrano , Humanos , Olécrano/cirurgia , Olécrano/lesões , Cotovelo , Fenômenos Biomecânicos , Ulna/cirurgia , Úmero/cirurgia , Fixação Interna de Fraturas , Placas Ósseas , Osteotomia/métodos , Fraturas do Úmero/cirurgia
15.
Artigo em Inglês | MEDLINE | ID: mdl-38151986

RESUMO

Currently, there is no established finite element (FE) method to apply physiologically realistic loads and constraints to the humerus. This FE study showed that 2 'simple' methods involving direct head loads, no head constraints, and rigid elbow or mid-length constraints created excessive stresses and bending. However, 2 'intermediate' methods involving direct head loads, but flexible head and elbow constraints, produced lower stresses and bending. Also, 2 'complex' methods involving muscles to generate head loads, plus flexible head and elbow constraints, generated the lowest stresses and moderate bending. This has implications for FE modeling research on intact and implanted humeri.

16.
Proc Inst Mech Eng H ; 226(11): 848-57, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23185955

RESUMO

Few biomechanical studies exist on femoral cementless press-fit stems for revision total knee replacement (TKR) surgeries. The aim of this study was to compare the mechanical quality of the femur-stem interface for a series of commercially available press-fit stems, because this interface may be a 'weak link' which could fail earlier than the femur-TKR bond itself. Also, the femur-stem interface may become particularly critical if distal femur bone degeneration, which may necessitate or follow revision TKR, ever weakens the femur-TKR bond itself. The authors implanted five synthetic femurs each with a Sigma Short Stem (SSS), Sigma Long Stem (SLS), Genesis II Short Stem (GSS), or Genesis II Long Stem (GLS). Axial stiffness, lateral stiffness, 'offset load' torsional stiffness, and 'offset load' torsional strength were measured with a mechanical testing system using displacement control. Axial (range = 1047-1461 N/mm, p = 0.106), lateral (range = 415-462 N/mm, p = 0.297), and torsional (range = 115-139 N/mm, p > 0.055) stiffnesses were not different between groups. The SSS had higher torsional strength (863 N) than the other stems (range = 167-197 N, p < 0.001). Torsional failure occurred by femoral 'spin' around the stem's long axis. There was poor linear correlation between the femur-stem interface area versus axial stiffness (R = 0.38) and torsional stiffness (R = 0.38), and there was a moderate linear correlation versus torsional strength (R = 0.55). Yet, there was a high inverse linear correlation between interfacial surface area versus lateral stiffness (R = 0.79), although this did not result in a statistical difference between stem groups (p = 0.297). These press-fit stems provide equivalent stability, except that the SSS has greater torsional strength.


Assuntos
Fêmur/fisiologia , Fêmur/cirurgia , Prótese do Joelho , Cimentação , Módulo de Elasticidade , Análise de Falha de Equipamento , Humanos , Movimento (Física) , Desenho de Prótese , Resistência à Tração
17.
Med Eng Phys ; 104: 103801, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35641070

RESUMO

Comminuted proximal tibia fractures are an ongoing surgical challenge. This "proof of concept" study is the first step in designing a new percutaneous plate for this injury under toe-touch weight-bearing as prescribed after surgery. Finite element simulations generated design curves for overall stiffness, bone and implant stress, and interfragmentary motion using 3 fixations (no, 1, or 2 "kickstand" (KS) screws across the fracture gap) over a range of plate elastic moduli (EP = 5 to 200 GPa). Combining well-established optimization criteria to enhance callus formation (i.e. 0.2 mm ≤ axial interfragmentary motion ≤ 1 mm; shear / axial interfragmentary motion ratio < 1.6), lessen stress shielding (i.e. bone stress under the proposed plate > bone stress under a traditional titanium or steel plate), and reduce steel screw breakage (i.e. screw max stress < ultimate tensile stress of steel) resulted in plate design recommendations: 172.6 ≤ EP < 200 GPa (no KS screw), 79.8 ≤ EP < 100 GPa (1 KS screw), and 4.9 ≤ EP < 100 GPa (2 KS screws). A prototype plate could be made from materials currently used or proposed for orthopaedics, such as polymers, fiber-reinforced polymers, fiber metal laminates, metal foams, or shape memory alloys.


Assuntos
Fraturas Ósseas , Tíbia , Fenômenos Biomecânicos , Análise de Elementos Finitos , Fixação Interna de Fraturas/métodos , Humanos , Polímeros , Aço
18.
Sci Rep ; 12(1): 12505, 2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35869276

RESUMO

Biomechanical study. To evaluate the performance of the contact surface for 3D printed patient-specific cages using CT-scan 3D endplate reconstructions in comparison to the contact surface of commercial cages. Previous strategies to improve the surface of contact between the device and the endplate have been employed to attenuate the risk of cage subsidence. Patient-specific cages have been used to help, but only finite-element studies have evaluated the effectiveness of this approach. There is a possible mismatch between the CT-scan endplate image used to generate the cage and the real bony endplate anatomy that could limit the performance of the cages. A cadaveric model is used to investigate the possible mismatch between 3D printed patient-specific cages and the endplate and compare them to commercially available cages (Medtronic Fuse and Capstone). Contact area and contact stress were used as outcomes. When PS cage was compared to the Capstone cage, the mean contact area obtained was 100 ± 23.6 mm2 and 57.5 ± 13.7 mm2, respectively (p < 0.001). When compared to the Fuse cage, the mean contact area was 104.8 ± 39.6 mm2 and 55.2 ± 35.1 mm2, respectively(p < 0.001). Patient-specific cages improve the contact area between the implant and the endplate surface, reducing the contact stress and the risk of implant subsidence during LIF surgeries.


Assuntos
Fusão Vertebral , Fenômenos Biomecânicos , Humanos , Vértebras Lombares/diagnóstico por imagem , Vértebras Lombares/cirurgia , Impressão Tridimensional , Próteses e Implantes , Fusão Vertebral/métodos
19.
Global Spine J ; : 21925682221134913, 2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36259252

RESUMO

STUDY DESIGN: Biomechanical study. OBJECTIVES: Several strategies to improve the surface of contact between an interbody device and the endplate have been employed to attenuate the risk of cage subsidence. 3D-printed patient-specific cages have been presented as a promising alternative to help mitigate that risk, but there is a lack of biomechanical evidence supporting their use. We aim to evaluate the biomechanical performance of 3D printed patient-specific lumbar interbody fusion cages in relation to commercial cages in preventing subsidence. METHODS: A cadaveric model is used to investigate the possible advantage of 3D printed patient-specific cages matching the endplate contour using CT-scan imaging in preventing subsidence in relation to commercially available cages (Medtronic Fuse and Capstone). Peak failure force and stiffness were analyzed outcomes for both comparison groups. RESULTS: PS cages resulted in significantly higher construct stiffness when compared to both commercial cages tested (>59%). PS cage peak failure force was 64% higher when compared to Fuse cage (P < .001) and 18% higher when compared to Capstone cage (P = .086). CONCLUSIONS: Patient-specific cages required higher compression forces to produce failure and increased the cage-endplate construct' stiffness, decreasing subsidence risk.

20.
Biomed Res Int ; 2022: 6015067, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36187502

RESUMO

A vertebral compression fracture (VCF) is an injury to a vertebra of the spine affecting the cortical walls and/or middle cancellous section. The most common risk factor for a VCF is osteoporosis, thus predisposing the elderly and postmenopausal women to this injury. Clinical consequences include loss of vertebral height, kyphotic deformity, altered stance, back pain, reduced mobility, reduced abdominal space, and reduced thoracic space, as well as early mortality. To restore vertebral mechanical stability, overall spine function, and patient quality of life, the original percutaneous surgical intervention has been vertebroplasty, whereby bone cement is injected into the affected vertebra. Because vertebroplasty cannot fully restore vertebral height, newer surgical techniques have been developed, such as kyphoplasty, stents, jacks, coils, and cubes. But, relatively few studies have experimentally assessed the biomechanical performance of these newer procedures. This article reviews over 20 years of scientific literature that has experimentally evaluated the biomechanics of percutaneous VCF repair methods. Specifically, this article describes the basic operating principles of the repair methods, the study protocols used to experimentally assess their biomechanical performance, and the actual biomechanical data measured, as well as giving a number of recommendations for future research directions.


Assuntos
Fraturas por Compressão , Fraturas da Coluna Vertebral , Idoso , Cimentos Ósseos , Feminino , Fraturas por Compressão/etiologia , Fraturas por Compressão/cirurgia , Humanos , Qualidade de Vida , Fraturas da Coluna Vertebral/etiologia , Fraturas da Coluna Vertebral/cirurgia , Coluna Vertebral/cirurgia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA