Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Clin Oral Investig ; 28(1): 52, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38163819

RESUMO

OBJECTIVES: Periodontal diseases are chronic, inflammatory disorders that involve the destruction of supporting tissues surrounding the teeth which leads to permanent damage and substantially heightens systemic exposure. If left untreated, dental, oral, and craniofacial diseases (DOCs), especially periodontitis, can increase an individual's risk in developing complex traits including cardiovascular diseases (CVDs). In this study, we are focused on systematically investigating causality between periodontitis with CVDs with the application of artificial intelligence (AI), machine learning (ML) algorithms, and state-of-the-art bioinformatics approaches using RNA-seq-driven gene expression data of CVD patients. MATERIALS AND METHODS: In this study, we built a cohort of CVD patients, collected their blood samples, and performed RNA-seq and gene expression analysis to generate transcriptomic profiles. We proposed a nexus of AI/ML approaches for the identification of significant biomarkers, and predictive analysis. We implemented recursive feature elimination, Pearson correlation, chi-square, and analysis of variance to detect significant biomarkers, and utilized random forest and support vector machines for predictive analysis. RESULTS: Our AI/ML analyses have led us to the preliminary conclusion that GAS5, GPX1, HLA-B, and SNHG6 are the potential gene markers that can be used to explain the causal relationship between periodontitis and CVDs. CONCLUSIONS: CVDs are relatively common in patients with periodontal disease, and an increased risk of CVD is associated with periodontal disease independent of gender. Genetic susceptibility contributing to periodontitis and CVDs have been suggested to some extent, based on the similar degree of heritability shared between both complex diseases.


Assuntos
Doenças Cardiovasculares , Doenças Periodontais , Periodontite , Humanos , Doenças Cardiovasculares/complicações , Doenças Cardiovasculares/genética , Inteligência Artificial , Periodontite/complicações , Doenças Periodontais/complicações , Genômica , Biomarcadores , Aprendizado de Máquina
2.
Sci Rep ; 14(1): 1, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167627

RESUMO

Personalized interventions are deemed vital given the intricate characteristics, advancement, inherent genetic composition, and diversity of cardiovascular diseases (CVDs). The appropriate utilization of artificial intelligence (AI) and machine learning (ML) methodologies can yield novel understandings of CVDs, enabling improved personalized treatments through predictive analysis and deep phenotyping. In this study, we proposed and employed a novel approach combining traditional statistics and a nexus of cutting-edge AI/ML techniques to identify significant biomarkers for our predictive engine by analyzing the complete transcriptome of CVD patients. After robust gene expression data pre-processing, we utilized three statistical tests (Pearson correlation, Chi-square test, and ANOVA) to assess the differences in transcriptomic expression and clinical characteristics between healthy individuals and CVD patients. Next, the recursive feature elimination classifier assigned rankings to transcriptomic features based on their relation to the case-control variable. The top ten percent of commonly observed significant biomarkers were evaluated using four unique ML classifiers (Random Forest, Support Vector Machine, Xtreme Gradient Boosting Decision Trees, and k-Nearest Neighbors). After optimizing hyperparameters, the ensembled models, which were implemented using a soft voting classifier, accurately differentiated between patients and healthy individuals. We have uncovered 18 transcriptomic biomarkers that are highly significant in the CVD population that were used to predict disease with up to 96% accuracy. Additionally, we cross-validated our results with clinical records collected from patients in our cohort. The identified biomarkers served as potential indicators for early detection of CVDs. With its successful implementation, our newly developed predictive engine provides a valuable framework for identifying patients with CVDs based on their biomarker profiles.


Assuntos
Inteligência Artificial , Doenças Cardiovasculares , Humanos , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/genética , Medicina de Precisão , Aprendizado de Máquina , Biomarcadores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA