Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Inorg Chem ; 63(9): 4419-4428, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38364266

RESUMO

The combination of photodynamic therapy and radiotherapy has given rise to a modality called radiodynamic therapy (RDT), based on reactive oxygen species-producing radiosensitizers. The production of singlet oxygen, O2(1Δg), by octahedral molybdenum (Mo6) clusters upon X-ray irradiation allows for simplification of the architecture of radiosensitizing systems. In this context, we prepared a radiosensitizing system using copper-free click chemistry between a Mo6 cluster bearing azido ligands and the homo-bifunctional linker bis-dPEG11-DBCO. The resulting compound formed nanoparticles, which featured production of O2(1Δg) and efficient cellular uptake, leading to remarkable photo- and radiotoxic effects against the prostatic adenocarcinoma TRAMP-C2 cell line. Spheroids of TRAMP-C2 cells were also used for evaluation of toxicity and phototoxicity. In vivo experiments on a mouse model demonstrated that subcutaneous injection of the nanoparticles is a safe administration mode at a dose of up to 0.08 g kg-1. The reported results confirm the relevancy of Mo6-based radiosensitizing nanosystems for RDT.


Assuntos
Adenocarcinoma , Iodo , Fotoquimioterapia , Animais , Camundongos , Molibdênio/química , Fotoquimioterapia/métodos , Polietilenoglicóis
2.
Small ; 19(6): e2205047, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36475385

RESUMO

Bovine mastitis produced by Staphylococcus aureus (S. aureus) causes major problems in milk production due to the staphylococcal enterotoxins produced by this bacterium. These enterotoxins are stable and cannot be eradicated easily by common hygienic procedures once they are formed in dairy products. Here, magnetic microrobots (MagRobots) are developed based on paramagnetic hybrid microstructures loaded with IgG from rabbit serum that can bind and isolate S. aureus from milk in a concentration of 3.42 104 CFU g-1 (allowable minimum level established by the United States Food and Drug Administration, FDA). Protein A, which is present on the cell wall of S. aureus, selectively binds IgG from rabbit serum and loads the bacteria onto the surface of the MagRobots. The selective isolation of S. aureus is confirmed using a mixed suspension of S. aureus and Escherichia coli (E. coli). Moreover, this fuel-free system based on magnetic robots does not affect the natural milk microbiota or add any toxic compound resulting from fuel catalysis. This system can be used to isolate and transport efficiently S. aureus and discriminate it from nontarget bacteria for subsequent identification. Finally, this system can be scaled up for industrial use in food production.


Assuntos
Infecções Estafilocócicas , Staphylococcus aureus , Animais , Bovinos , Feminino , Coelhos , Staphylococcus aureus/metabolismo , Leite , Escherichia coli , Enterotoxinas/metabolismo , Fenômenos Magnéticos , Imunoglobulina G
3.
Inorg Chem ; 62(35): 14243-14251, 2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37608779

RESUMO

The emergence of multidrug-resistant microbial pathogens poses a significant threat, severely limiting the options for effective antibiotic therapy. This challenge can be overcome through the photoinactivation of pathogenic bacteria using materials generating reactive oxygen species upon exposure to visible light. These species target vital components of living cells, significantly reducing the likelihood of resistance development by the targeted pathogens. In our research, we have developed a nanocomposite material consisting of an aqueous colloidal suspension of graphene oxide sheets adorned with nanoaggregates of octahedral molybdenum cluster complexes. The negative charge of the graphene oxide and the positive charge of the nanoaggregates promoted their electrostatic interaction in aqueous medium and close cohesion between the colloids. Upon illumination with blue light, the colloidal system exerted a potent antibacterial effect against planktonic cultures of Staphylococcus aureus largely surpassing the individual contributions of the components. The underlying mechanism behind this phenomenon lies in the photoinduced electron transfer from the nanoaggregates of the cluster complexes to the graphene oxide sheets, which triggers the generation of reactive oxygen species. Thus, leveraging the unique properties of graphene oxide and light-harvesting octahedral molybdenum cluster complexes can open more effective and resilient antibacterial strategies.


Assuntos
Infecções Estafilocócicas , Staphylococcus aureus , Humanos , Molibdênio/farmacologia , Espécies Reativas de Oxigênio , Antibacterianos/farmacologia
4.
Small ; 18(36): e2106612, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35122470

RESUMO

Urinary-based infections affect millions of people worldwide. Such bacterial infections are mainly caused by Escherichia coli (E. coli) biofilm formation in the bladder and/or urinary catheters. Herein, the authors present a hybrid enzyme/photocatalytic microrobot, based on urease-immobilized TiO2 /CdS nanotube bundles, that can swim in urea as a biocompatible fuel and respond to visible light. Upon illumination for 2 h, these microrobots are able to remove almost 90% of bacterial biofilm, due to the generation of reactive radicals, while bare TiO2 /CdS photocatalysts (non-motile) or urease-coated microrobots in the dark do not show any toxic effect. These results indicate a synergistic effect between the self-propulsion provided by the enzyme and the photocatalytic activity induced under light stimuli. This work provides a photo-biocatalytic approach for the design of efficient light-driven microrobots with promising applications in microbiology and biomedicine.


Assuntos
Biofilmes , Escherichia coli , Robótica , Titânio , Catálise , Humanos , Titânio/farmacologia , Ureia/farmacologia , Urease/farmacologia
5.
Inorg Chem ; 61(12): 5076-5083, 2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35293732

RESUMO

The development of singlet oxygen photosensitizers, which target specific cellular organelles, constitutes a pertinent endeavor to optimize the efficiency of photodynamic therapy. Targeting of the cell membrane eliminates the need for endocytosis of drugs that can lead to toxicity, intracellular degradation, or drug resistance. In this context, we utilized copper-free click chemistry to prepare a singlet oxygen photosensitizing complex, made of a molybdenum-iodine nanocluster stabilized by triazolate apical ligands. In phosphate-buffered saline, the complex formed nanoaggregates with a positive surface charge due to the protonatable amine function of the apical ligands. These nanoaggregates targeted cell membranes and caused an eminent blue-light phototoxic effect against HeLa cells at nanomolar concentrations, inducing apoptotic cell death, while having no dark toxicity at physiologically relevant concentrations. The properties of this complex were compared to those of a negatively charged parent complex to highlight the dominant effect of the nature of apical ligands on biological properties of the nanocluster. These two complexes also exerted (photo)antibacterial effects on several pathogenic strains in the form of planktonic cultures and biofilms. Overall, we demonstrated that the rational design of apical ligands toward cell membrane targeting leads to enhanced photodynamic efficiency.


Assuntos
Iodo , Molibdênio , Membrana Celular , Células HeLa , Humanos , Iodo/farmacologia , Ligantes , Molibdênio/farmacologia
6.
Int J Mol Sci ; 22(19)2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34639130

RESUMO

Metabolic transformation of cancer cells leads to the accumulation of lactate and significant acidification in the tumor microenvironment. Both lactate and acidosis have a well-documented impact on cancer progression and negative patient prognosis. Here, we report that cancer cells adapted to acidosis are significantly more sensitive to oxidative damage induced by hydrogen peroxide, high-dose ascorbate, and photodynamic therapy. Higher lactate concentrations abrogate the sensitization. Mechanistically, acidosis leads to a drop in antioxidant capacity caused by a compromised supply of nicotinamide adenine dinucleotide phosphate (NADPH) derived from glucose metabolism. However, lactate metabolism in the Krebs cycle restores NADPH supply and antioxidant capacity. CPI-613 (devimistat), an anticancer drug candidate, selectively eradicates the cells adapted to acidosis through inhibition of the Krebs cycle and induction of oxidative stress while completely abrogating the protective effect of lactate. Simultaneous cell treatment with tetracycline, an inhibitor of the mitochondrial proteosynthesis, further enhances the cytotoxic effect of CPI-613 under acidosis and in tumor spheroids. While there have been numerous attempts to treat cancer by neutralizing the pH of the tumor microenvironment, we alternatively suggest considering tumor acidosis as the Achilles' heel of cancer as it enables selective therapeutic induction of lethal oxidative stress.


Assuntos
Acidose/fisiopatologia , Caprilatos/farmacologia , Ciclo do Ácido Cítrico/efeitos dos fármacos , Glucose/metabolismo , Mitocôndrias/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Sulfetos/farmacologia , Microambiente Tumoral , Adaptação Fisiológica , Antineoplásicos/farmacologia , Metabolismo Energético , Glicólise , Humanos , Concentração de Íons de Hidrogênio , Ácido Láctico/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Neoplasias/metabolismo , Neoplasias/patologia , Estresse Oxidativo , Células Tumorais Cultivadas
7.
Molecules ; 26(6)2021 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-33799580

RESUMO

Postbiotics are health-promoting microbial metabolites delivered as a functional food or a food supplement. They either directly influence signaling pathways of the body or indirectly manipulate metabolism and the composition of intestinal microflora. Cancer is the second leading cause of death worldwide and even though the prognosis of patients is improving, it is still poor in the substantial part of the cases. The preventable nature of cancer and the importance of a complex multi-level approach in anticancer therapy motivate the search for novel avenues of establishing the anticancer environment in the human body. This review summarizes the principal findings demonstrating the usefulness of both natural and synthetic sources of postbotics in the prevention and therapy of cancer. Specifically, the effects of crude cell-free supernatants, the short-chain fatty acid butyrate, lactic acid, hydrogen sulfide, and ß-glucans are described. Contradictory roles of postbiotics in healthy and tumor tissues are highlighted. In conclusion, the application of postbiotics is an efficient complementary strategy to combat cancer.


Assuntos
Microbioma Gastrointestinal/efeitos dos fármacos , Neoplasias/dietoterapia , Probióticos/farmacologia , Butiratos/farmacologia , Suplementos Nutricionais/microbiologia , Ácidos Graxos Voláteis/metabolismo , Ácidos Graxos Voláteis/farmacologia , Humanos , Sulfeto de Hidrogênio/farmacologia , Ácido Láctico/farmacologia , Metaboloma , Neoplasias/metabolismo , Prebióticos/microbiologia , Probióticos/metabolismo , beta-Glucanas/farmacologia
8.
Chemistry ; 26(14): 3039-3043, 2020 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-31943446

RESUMO

Yeasts play a key role in the production of alcoholic beverages by fermentation processes. However, because of their continuous growth, they commonly cause spoilage of the final product. Herein, we introduce dual magnetic/light-responsive self-propelled microrobots that can actively move in a beer sample and capture yeast cells. The presence of magnetic nanoparticles on the surface of the microrobots enables their magnetic actuation under fuel-free conditions. In addition, their photoactivity under visible-light irradiation leads to an overall enhancement of their swimming and yeast removal capabilities. It was found that after the application of the microrobots into a real unfiltered beer sample, these micromachines were able to remove almost 100 % of residual yeasts. In addition, these microrobots could also be added at the initial step of the fermentation process without altering the final beer properties, such as alcohol level, color, and pH. This work demonstrates the potential of using externally actuated microrobots as an innovative and low-cost solution for avoiding yeast spoilage in complex liquid environments, such as alcoholic beverages. Therefore, these autonomous self-propelled microrobots open new avenues for future applications in the food industry.


Assuntos
Antibacterianos/química , Cerveja/microbiologia , Bismuto/química , Fermentação , Contaminação de Alimentos/prevenção & controle , Nanopartículas de Magnetita/química , Saccharomyces cerevisiae/metabolismo , Vanadatos/química , Peróxido de Hidrogênio/química , Luz , Campos Magnéticos , Microesferas , Processos Fotoquímicos
9.
Inorg Chem ; 59(13): 9287-9293, 2020 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-32516524

RESUMO

Two new octahedral molybdenum cluster complexes act as an efficient singlet oxygen supplier in the context of the photodynamic therapy of cancer cells under blue-light irradiation. These complexes integrate the {Mo6I8}4+ core with 4'-carboxybenzo-15-crown-5 or cholate apical ligands and were characterized by 1H NMR, HR ESI-MS, and CHN elemental analysis. Both complexes display high quantum yields of luminescence and singlet oxygen formation in aqueous media associated with a suitable stability against hydrolysis. They are internalized into lysosomes of HeLa cells with no dark toxicity at pharmacologically relevant concentrations and have a strong phototoxic effect under blue-light irradiation, even in the presence of fetal bovine serum. The last feature is essential for further translation to in vivo experiments. Overall, these complexes are attractive molecular photosensitizers toward photodynamic applications.


Assuntos
Antineoplásicos/farmacologia , Complexos de Coordenação/farmacologia , Fármacos Fotossensibilizantes/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/efeitos da radiação , Apoptose/efeitos dos fármacos , Complexos de Coordenação/síntese química , Complexos de Coordenação/efeitos da radiação , Ensaios de Seleção de Medicamentos Antitumorais , Células HeLa , Humanos , Ligantes , Luz , Lisossomos/metabolismo , Molibdênio/química , Molibdênio/efeitos da radiação , Fármacos Fotossensibilizantes/síntese química , Fármacos Fotossensibilizantes/efeitos da radiação , Oxigênio Singlete/metabolismo
10.
Hum Mol Genet ; 26(1): 145-157, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28025333

RESUMO

Moderate neonatal jaundice is the most common clinical condition during newborn life. However, a combination of factors may result in acute hyperbilirubinemia, placing infants at risk of developing bilirubin encephalopathy and death by kernicterus. While most risk factors are known, the mechanisms acting to reduce susceptibility to bilirubin neurotoxicity remain unclear. The presence of modifier genes modulating the risk of developing bilirubin-induced brain damage is increasingly being recognised. The Abcb1 and Abcc1 members of the ABC family of transporters have been suggested to have an active role in exporting unconjugated bilirubin from the central nervous system into plasma. However, their role in reducing the risk of developing neurological damage and death during neonatal development is still unknown.To this end, we mated Abcb1a/b-/- and Abcc1-/- strains with Ugt1-/- mice, which develop severe neonatal hyperbilirubinemia. While about 60% of Ugt1-/- mice survived after temporary phototherapy, all Abcb1a/b-/-/Ugt1-/- mice died before postnatal day 21, showing higher cerebellar levels of unconjugated bilirubin. Interestingly, Abcc1 role appeared to be less important.In the cerebellum of Ugt1-/- mice, hyperbilirubinemia induced the expression of Car and Pxr nuclear receptors, known regulators of genes involved in the genotoxic response.We demonstrated a critical role of Abcb1 in protecting the cerebellum from bilirubin toxicity during neonatal development, the most clinically relevant phase for human babies, providing further understanding of the mechanisms regulating bilirubin neurotoxicity in vivo. Pharmacological treatments aimed to increase Abcb1 and Abcc1 expression, could represent a therapeutic option to reduce the risk of bilirubin neurotoxicity.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Bilirrubina/toxicidade , Cerebelo/patologia , Modelos Animais de Doenças , Glucuronosiltransferase/fisiologia , Hiperbilirrubinemia Neonatal/complicações , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Síndromes Neurotóxicas/etiologia , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Animais , Animais Recém-Nascidos , Sobrevivência Celular , Cerebelo/efeitos dos fármacos , Feminino , Humanos , Hiperbilirrubinemia Neonatal/metabolismo , Hiperbilirrubinemia Neonatal/patologia , Masculino , Camundongos , Camundongos Knockout , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Síndromes Neurotóxicas/metabolismo , Síndromes Neurotóxicas/patologia
11.
Inorg Chem ; 58(24): 16546-16552, 2019 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-31794199

RESUMO

Recent studies have unraveled the potential of octahedral molybdenum cluster complexes (Mo6) as relevant red phosphors and photosensitizers of singlet oxygen, O2(1Δg), for photobiological applications. However, these complexes tend to hydrolyze in an aqueous environment, which deteriorates their properties and limits their applications. To address this issue, we show that phenylphosphinates are extraordinary apical ligands for the construction of Mo6 complexes. These new complexes display unmatched luminescence quantum yields and singlet oxygen production in aqueous solutions. More importantly, the complex with diphenylphosphinate ligands is the only stable complex of these types in aqueous media. These complexes internalize in lysosomes of HeLa cells, have no dark toxicity, and yet are phototoxic in the submicromolar concentration range. The superior hydrolytic stability of the diphenylphosphinate complex allows for conservation of its photophysical properties and biological activity over a long period, making it a promising compound for photobiological applications.

12.
Int J Mol Sci ; 20(9)2019 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-31075981

RESUMO

Decreased inflammatory status has been reported in subjects with mild unconjugated hyperbilirubinemia. However, mechanisms of the anti-inflammatory actions of bilirubin (BR) are not fully understood. The aim of this study is to assess the role of BR in systemic inflammation using hyperbilirubinemic Gunn rats as well as their normobilirubinemic littermates and further in primary hepatocytes. The rats were treated with lipopolysaccharide (LPS, 6 mg/kg intraperitoneally) for 12 h, their blood and liver were collected for analyses of inflammatory and hepatic injury markers. Primary hepatocytes were treated with BR and TNF-α. LPS-treated Gunn rats had a significantly decreased inflammatory response, as evidenced by the anti-inflammatory profile of white blood cell subsets, and lower hepatic and systemic expressions of IL-6, TNF-α, IL-1ß, and IL-10. Hepatic mRNA expression of LPS-binding protein was upregulated in Gunn rats before and after LPS treatment. In addition, liver injury markers were lower in Gunn rats as compared to in LPS-treated controls. The exposure of primary hepatocytes to TNF-α with BR led to a milder decrease in phosphorylation of the NF-κB p65 subunit compared to in cells without BR. In conclusion, hyperbilirubinemia in Gunn rats is associated with an attenuated systemic inflammatory response and decreased liver damage upon exposure to LPS.


Assuntos
Hiperbilirrubinemia/complicações , Inflamação/complicações , Animais , Apoptose/efeitos dos fármacos , Bilirrubina/farmacologia , Biomarcadores/sangue , Células Cultivadas , Citocinas/sangue , Citocinas/genética , Citocinas/metabolismo , Citoproteção/efeitos dos fármacos , Feminino , Hepatócitos/metabolismo , Hiperbilirrubinemia/sangue , Leucócitos/metabolismo , Lipopolissacarídeos , Fígado/metabolismo , NF-kappa B/metabolismo , Fosforilação/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Gunn , Transdução de Sinais
13.
Org Biomol Chem ; 16(39): 7274-7281, 2018 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-30259016

RESUMO

The development of effective photosensitizers is particularly attractive for photodynamic therapy of cancer. Three novel porphyrin photosensitizers functionalized with phosphinic groups were synthesized and their physicochemical, photophysical, and photobiological properties were collected. Phosphinic acid groups (R1R2POOH) attached to the porphyrin moiety (R1) contain different R2 substituents (methyl, isopropyl, phenyl in this study). The presence of phosphinic groups does not influence absorption and photophysical properties of the porphyrin units, including the O2(1Δg) productivity. In vitro studies show that these porphyrins accumulate in cancer cells, are inherently nontoxic, however, exhibit high phototoxicity upon irradiation with visible light with their phototoxic efficacy tuned by R2 substituents on the phosphorus centre. Thus, phosphinatophenylporphyrin with isopropyl substituents has the strongest photodynamic efficacy due to the most efficient cellular uptake. We demonstrate that these porphyrins are attractive candidates for photodynamic applications since their photodynamic efficacy can be easily tuned by the R2 substituent.


Assuntos
Fotoquimioterapia , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Porfirinas/química , Porfirinas/farmacologia , Células HeLa , Humanos , Fármacos Fotossensibilizantes/metabolismo , Porfirinas/metabolismo , Albumina Sérica Humana/metabolismo
14.
J Bioenerg Biomembr ; 46(2): 147-56, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24562889

RESUMO

Based on the matrix-addressing sequence of mitochondrial ribosomal 5S-rRNA (termed MAM), which is naturally imported into mitochondria, we have constructed an import system for in vivo targeting of mitochondrial DNA (mtDNA) or mt-mRNA, in order to provide fluorescence hybridization of the desired sequences. Thus DNA oligonucleotides were constructed, containing the 5'-flanked T7 RNA polymerase promoter. After in vitro transcription and fluorescent labeling with Alexa Fluor(®) 488 or 647 dye, we obtained the fluorescent "L-ND5 probe" containing MAM and exemplar cargo, i.e., annealing sequence to a short portion of ND5 mRNA and to the light-strand mtDNA complementary to the heavy strand nd5 mt gene (5'-end 21 base pair sequence). For mitochondrial in vivo fluorescent hybridization, HepG2 cells were treated with dequalinium micelles, containing the fluorescent probes, bringing the probes proximally to the mitochondrial outer membrane and to the natural import system. A verification of import into the mitochondrial matrix of cultured HepG2 cells was provided by confocal microscopy colocalizations. Transfections using lipofectamine or probes without 5S-rRNA addressing MAM sequence or with MAM only were ineffective. Alternatively, the same DNA oligonucleotides with 5'-CACC overhang (substituting T7 promoter) were transcribed from the tetracycline-inducible pENTRH1/TO vector in human embryonic kidney T-REx®-293 cells, while mitochondrial matrix localization after import of the resulting unlabeled RNA was detected by PCR. The MAM-containing probe was then enriched by three-order of magnitude over the natural ND5 mRNA in the mitochondrial matrix. In conclusion, we present a proof-of-principle for mitochondrial in vivo hybridization and mitochondrial nucleic acid import.


Assuntos
DNA Mitocondrial/genética , Ácidos Nucleicos/genética , Oligonucleotídeos/genética , RNA Ribossômico/genética , RNA/genética , DNA Mitocondrial/química , Humanos , Ácidos Nucleicos/química , Oligonucleotídeos/química , RNA/química , RNA Ribossômico/química , Homologia de Sequência do Ácido Nucleico , Transcrição Gênica
15.
Ann Hepatol ; 13(2): 273-83, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24552870

RESUMO

Spirulina platensis is a blue-green alga used as a dietary supplement because of its hypocholesterolemic properties. Among other bioactive substances, it is also rich in tetrapyrrolic compounds closely related to bilirubin molecule, a potent antioxidant and anti-proliferative agent. The aim of our study was to evaluate possible anticancer effects of S. platensis and S. platensis-derived tetrapyrroles using an experimental model of pancreatic cancer. The anti-proliferative effects of S. platensis and its tetrapyrrolic components [phycocyanobilin (PCB) and chlorophyllin, a surrogate molecule for chlorophyll A] were tested on several human pancreatic cancer cell lines and xenotransplanted nude mice. The effects of experimental therapeutics on mitochondrial reactive oxygen species (ROS) production and glutathione redox status were also evaluated. Compared to untreated cells, experimental therapeutics significantly decreased proliferation of human pancreatic cancer cell lines in vitro in a dose-dependent manner (from 0.16 g•L-1 [S. platensis], 60 µM [PCB], and 125 µM [chlorophyllin], p<0.05). The anti-proliferative effects of S. platensis were also shown in vivo, where inhibition of pancreatic cancer growth was evidenced since the third day of treatment (p < 0.05). All tested compounds decreased generation of mitochondrial ROS and glutathione redox status (p = 0.0006; 0.016; and 0.006 for S. platensis, PCB, and chlorophyllin, respectively). In conclusion, S. platensis and its tetrapyrrolic components substantially decreased the proliferation of experimental pancreatic cancer. These data support a chemopreventive role of this edible alga. Furthermore, it seems that dietary supplementation with this alga might enhance systemic pool of tetrapyrroles, known to be higher in subjects with Gilbert syndrome.


Assuntos
Antineoplásicos/farmacologia , Bilirrubina/farmacologia , Proliferação de Células/efeitos dos fármacos , Neoplasias Pancreáticas/patologia , Extratos Vegetais/farmacologia , Spirulina , Tetrapirróis/farmacologia , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Glutationa/metabolismo , Humanos , Técnicas In Vitro , Camundongos , Camundongos Nus , Oxirredução , Neoplasias Pancreáticas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transplante Heterólogo , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Lipids Health Dis ; 12: 126, 2013 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-23961716

RESUMO

BACKGROUND: Statins (HMG-CoA reductase inhibitors) represent a major class of compounds for the treatment of hypercholesterolemia due to their ability to inhibit de novo cholesterol synthesis. In addition to their hypolipidemic effects, chemoprotective properties have been attributed to statins as well. These effects involve multiple mechanisms, which, however, are not known in detail. The aim of our study was to assess in non-malignant as well as cancer cells the impact of simvastatin on the amount of cytosolic lipid droplets (LDs) implicated in many biological processes including proliferation, inflammation, carcinogenesis, apoptosis, necrosis or growth arrest. METHODS: Human embryonic kidney cells HEK-293T and human pancreatic cancer cells MiaPaCa-2 were treated with simvastatin (6 and 12 µM) for 24 and 48 hours respectively. Neutral lipid probe Nile Red was used for detection of LDs by fluorescence microscopy. Cellular cholesterol content was determined by HPLC. Changes in expression of genes related to lipid metabolism in simvastatin-treated MiaPaCa-2 cells were examined by DNA microarray analysis. Validation of gene expression changes was performed using quantitative RT-PCR. RESULTS: The treatment of the cells with simvastatin increased their intracellular content of LDs in both non-malignant as well as cancer cells, partially due to the uptake of cholesterol and triacylglyceroles from medium; but in particular, due to enhanced synthesis of triacylglyceroles as proved by significant overexpression of genes related to de novo synthesis of triacylglyceroles and phospholipids. In addition, simvastatin also markedly influenced expression of genes directly affecting cell proliferation and signaling. CONCLUSIONS: Simvastatin treatment led to accumulation of cytosolic LDs within the examined cells, a phenomenon which might contribute to the antiproliferative effects of statins.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Gotículas Lipídicas/efeitos dos fármacos , Neoplasias Pancreáticas/tratamento farmacológico , Sinvastatina/farmacologia , Linhagem Celular Tumoral/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Colesterol/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Células HEK293/efeitos dos fármacos , Humanos , Gotículas Lipídicas/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Metabolismo dos Lipídeos/genética , Neoplasias Pancreáticas/metabolismo
17.
J Microbiol Methods ; 205: 106676, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36693497

RESUMO

Microscopic filamentous fungi are ubiquitous microorganisms that adapt very easily to a variety of environmental conditions. Due to this adaptability, they can colonize a number of various surfaces where they are able to start forming biofilms. Life in the form of biofilms provides them with many benefits (increased resistance to desiccation, UV radiation, antimicrobial compounds, and host immune response). The aim of this study is to find a reliable and reproducible methodology to determine biofilm growth of selected microscopic filamentous fungi strains. Several methods (crystal violet staining, MTT assay, XTT assay, resazurin assay) for the determination of total biofilm biomass and its metabolic activity were tested on four fungi - Alternaria alternata, Aspergillus niger, Fusarium culmorum and Fusarium graminearum, and their biofilm was also imaged by spinning disc confocal microscopy using fluorescent dyes. A reproducible biofilm quantification method is essential for the subsequent testing of the biofilm growth suppression using antifungal agents or physical methods. Crystal violet staining was found to be a suitable method for the determination of total biofilm biomass of selected strains, and the MTT assay for the determination of metabolic activity of the biofilms. Calcofluor white and Nile red fluorescent stains successfully dyed the hyphae of microscopic fungi.


Assuntos
Fungos , Violeta Genciana , Violeta Genciana/metabolismo , Fungos/metabolismo , Biofilmes , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Hifas , Corantes/metabolismo
18.
Adv Mater ; 35(23): e2300191, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36995927

RESUMO

Modern micro/nanorobots can perform multiple tasks for biomedical and environmental applications. Particularly, magnetic microrobots can be completely controlled by a rotating magnetic field and their motion powered and controlled without the use of toxic fuels, which makes them most promising for biomedical application. Moreover, they are able to form swarms, allowing them to perform specific tasks at a larger scale than a single microrobot. In this work, they developed magnetic microrobots composed of halloysite nanotubes as backbone and iron oxide (Fe3 O4 ) nanoparticles as magnetic material allowing magnetic propulsion and covered these with polyethylenimine to load ampicillin and prevent the microrobots from disassembling. These microrobots exhibit multimodal motion as single robots as well as in swarms. In addition, they can transform from tumbling to spinning motion and vice-versa, and when in swarm mode they can change their motion from vortex to ribbon and back again. Finally, the vortex motion mode is used to penetrate and disrupt the extracellular matrix of Staphylococcus aureus biofilm colonized on titanium mesh used for bone restoration, which improves the effect of the antibiotic's activity. Such magnetic microrobots for biofilm removal from medical implants could reduce implant rejection and improve patients' well-being.


Assuntos
Biofilmes , Titânio , Humanos , Fenômenos Físicos , Movimento (Física) , Campos Magnéticos
19.
Pediatr Res ; 71(6): 653-60, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22337225

RESUMO

INTRODUCTION: Few data exist on regional brain bilirubin content in the neonatal period when acute bilirubin-induced neurologic damage (BIND) may occur, and no information is available on regional brain expression of cytochrome P450 monooxygenases (Cyps) that oxidize bilirubin. METHODS: Bilirubin content was analyzed by high-performance liquid chromatography and Cyp1a1, 1a2, and 2a3 mRNA expression was analyzed by quantitative PCR (qPCR) in cortex (Cx), cerebellum (Cll), superior colliculi (SC), and inferior colliculi (IC) of 17-d-old hyperbilirubinemic (jj) Gunn rat pups before and after administration of sulphadimethoxine to acutely displace bilirubin from plasma albumin. RESULTS: There was no difference in bilirubin content among brain regions in untreated rats. After intraperitoneal sulphadimethoxine, bilirubin content peaked at fourfold in Cx and SC at 1 h; but at 11- to 13-fold in Cll and IC at 24 h; returning to control levels at 72 h. The Cyp mRNA peaked at 30-70 times control at 1 h in Cx and SC, but at 3-9 times control at 24 h in Cll and IC. DISCUSSION: The close relationship in distinct brain regions between the extent of bilirubin accumulation and induction of mRNA of Cyps suggests Cyps may have a role in protecting selected brain areas from bilirubin neurotoxicity.


Assuntos
Animais Recém-Nascidos/metabolismo , Bilirrubina/metabolismo , Cerebelo/metabolismo , Córtex Cerebral/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Icterícia/metabolismo , RNA Mensageiro/metabolismo , Colículos Superiores/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Albuminas/metabolismo , Animais , Hidrocarboneto de Aril Hidroxilases/metabolismo , Citocromo P-450 CYP1A1/metabolismo , Citocromo P-450 CYP1A2/metabolismo , Citocromo P-450 CYP2A6 , Modelos Animais de Doenças , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Ratos , Ratos Gunn , Sulfadimetoxina/farmacologia
20.
J Mater Chem B ; 10(17): 3303-3310, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35380154

RESUMO

X-Ray-induced photodynamic therapy represents a suitable modality for the treatment of various malignancies. It is based on the production of reactive oxygen species by radiosensitizing nanoparticles activated by X-rays. Hence, it allows overcoming the depth-penetration limitations of conventional photodynamic therapy and, at the same time, reducing the dose needed to eradicate cancer in the frame of radiotherapy treatment. The direct production of singlet oxygen by octahedral molybdenum cluster complexes upon X-ray irradiation is a promising avenue in order to simplify the architecture of radiosensitizing systems. One such complex was utilized to prepare water-stable nanoparticles using the solvent displacement method. The nanoparticles displayed intense red luminescence in aqueous media, efficiently quenched by oxygen to produce singlet oxygen, resulting in a substantial photodynamic effect under blue light irradiation. A robust radiosensitizing effect of the nanoparticles was demonstrated in vitro against TRAMP-C2 murine prostatic carcinoma cells at typical therapeutic X-ray doses. Injection of a suspension of the nanoparticles to a mouse model revealed the absence of acute toxicity as evidenced by the invariance of key physiological parameters. This study paves the way for the application of octahedral molybdenum cluster-based radiosensitizers in X-ray-induced photodynamic therapy and its translation to in vivo experiments.


Assuntos
Carcinoma , Nanopartículas , Fotoquimioterapia , Neoplasias da Próstata , Radiossensibilizantes , Animais , Humanos , Masculino , Camundongos , Molibdênio/farmacologia , Fotoquimioterapia/métodos , Neoplasias da Próstata/tratamento farmacológico , Oxigênio Singlete , Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA