Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 318
Filtrar
1.
J Virol ; 98(5): e0157323, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38572974

RESUMO

Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and characterized by dysregulated immune response. Studies have shown that the SARS-CoV-2 accessory protein ORF7b induces host cell apoptosis through the tumor necrosis factor alpha (TNF-α) pathway and blocks the production of interferon beta (IFN-ß). The underlying mechanism remains to be investigated. In this study, we found that ORF7b facilitated viral infection and production, and inhibited the RIG-I-like receptor (RLR) signaling pathway through selectively interacting with mitochondrial antiviral-signaling protein (MAVS). MAVS439-466 region and MAVS Lys461 were essential for the physical association between MAVS and ORF7b, and the inhibition of the RLR signaling pathway by ORF7b. MAVSK461/K63 ubiquitination was essential for the RLR signaling regulated by the MAVS-ORF7b complex. ORF7b interfered with the recruitment of tumor necrosis factor receptor-related factor 6 (TRAF6) and the activation of the RLR signaling pathway by MAVS. Furthermore, interfering peptides targeting the ORF7b complex reversed the ORF7b-suppressed MAVS-RLR signaling pathway. The most potent interfering peptide V disrupts the formation of ORF7b tetramers, reverses the levels of the ORF7b-inhibited physical association between MAVS and TRAF6, leading to the suppression of viral growth and infection. Overall, this study provides a mechanism for the suppression of innate immunity by SARS-CoV-2 infection and the mechanism-based approach via interfering peptides to potentially prevent SARS-CoV-2 infection.IMPORTANCEThe pandemic coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and continues to be a threat to public health. It is imperative to understand the biology of SARS-CoV-2 infection and find approaches to prevent SARS-CoV-2 infection and ameliorate COVID-19. Multiple SARS-CoV-2 proteins are known to function on the innate immune response, but the underlying mechanism remains unknown. This study shows that ORF7b inhibits the RIG-I-like receptor (RLR) signaling pathway through the physical association between ORF7b and mitochondrial antiviral-signaling protein (MAVS), impairing the K63-linked MAVS polyubiquitination and its recruitment of tumor necrosis factor receptor-related factor 6 (TRAF6) to MAVS. The most potent interfering peptide V targeting the ORF7b-MAVS complex may reverse the suppression of the MAVS-mediated RLR signaling pathway by ORF7b and prevent viral infection and production. This study may provide new insights into the pathogenic mechanism of SARS-CoV-2 and a strategy to develop new drugs to prevent SARS-CoV-2 infection.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , COVID-19 , SARS-CoV-2 , Transdução de Sinais , Animais , Humanos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Apoptose , COVID-19/virologia , COVID-19/imunologia , COVID-19/metabolismo , Proteína DEAD-box 58/metabolismo , Células HEK293 , Imunidade Inata , Interferon beta/metabolismo , Receptores Imunológicos/metabolismo , SARS-CoV-2/imunologia , SARS-CoV-2/metabolismo , Fator 6 Associado a Receptor de TNF/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Ubiquitinação , Proteínas Virais Reguladoras e Acessórias/metabolismo , Proteínas Virais Reguladoras e Acessórias/genética
2.
Nano Lett ; 24(17): 5214-5223, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38649327

RESUMO

Stroke is a leading cause of global mortality and severe disability. However, current strategies used for treating ischemic stroke lack specific targeting capabilities, exhibit poor immune escape ability, and have limited drug release control. Herein, we developed an ROS-responsive nanocarrier for targeted delivery of the neuroprotective agent rapamycin (RAPA) to mitigate ischemic brain damage. The nanocarrier consisted of a sulfated chitosan (SCS) polymer core modified with a ROS-responsive boronic ester enveloped by a red blood cell membrane shell incorporating a stroke homing peptide. When encountering high levels of intracellular ROS in ischemic brain tissues, the release of SCS combined with RAPA from nanoparticle disintegration facilitates effective microglia polarization and, in turn, maintains blood-brain barrier integrity, reduces cerebral infarction, and promotes cerebral neurovascular remodeling in a mouse stroke model involving transient middle cerebral artery occlusion (tMCAO). This work offers a promising strategy to treat ischemic stroke therapy.


Assuntos
Barreira Hematoencefálica , Quitosana , Portadores de Fármacos , AVC Isquêmico , Nanopartículas , Sirolimo , Animais , AVC Isquêmico/tratamento farmacológico , AVC Isquêmico/patologia , Camundongos , Quitosana/química , Portadores de Fármacos/química , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Sirolimo/farmacologia , Sirolimo/química , Sirolimo/uso terapêutico , Nanopartículas/química , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/uso terapêutico , Infarto da Artéria Cerebral Média/tratamento farmacológico , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/patologia , Modelos Animais de Doenças , Polissacarídeos/química , Polissacarídeos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Sulfatos/química , Sulfatos/farmacologia , Microglia/efeitos dos fármacos , Microglia/metabolismo
3.
Bioinformatics ; 39(6)2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37220900

RESUMO

MOTIVATION: Single-cell multiomics technologies are emerging to characterize different molecular features of cells. This gives rise to an issue of combining various kinds of molecular features to dissect cell heterogeneity. Most single-cell multiomics integration methods focus on shared information among modalities while complementary information specific to each modality is often discarded. RESULTS: To disentangle and combine shared and complementary information across modalities, we develop a dual-modality factor model named scME by using deep factor modeling. Our results demonstrate that scME can generate a better joint representation of multiple modalities than those generated by other single-cell multiomics integration algorithms, which gives a clear elucidation of nuanced differences among cells. We also demonstrate that the joint representation of multiple modalities yielded by scME can provide salient information to improve both single-cell clustering and cell-type classification. Overall, scME will be an efficient method for combining various kinds of molecular features to facilitate the dissection of cell heterogeneity. AVAILABILITY AND IMPLEMENTATION: The code is public for academic use and available on the GitHub site (https://github.com/bucky527/scME).


Assuntos
Algoritmos , Multiômica , Análise por Conglomerados , Análise de Célula Única
4.
J Sci Food Agric ; 104(7): 4453-4464, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38323723

RESUMO

BACKGROUND: It is reported that anti-enterovirus 71 (EV71) drugs have some side effects on human health. Notably, fungi plays a crucial role in promoting human health and anti-virus. Grifola frondosa is a type of large medicinal and edible fungi, rich in active substances. The present study aimed to investigate the anti-EV71 effect of G. frondosa and the potential active substances. RESULTS: In the present study, the water extract of G. frondosa was subjected to ethanol precipitation to obtain the water-extracted supernatant of G. frondosa (GFWS) and water-extracted precipitation of G. frondosa. Their inhibitory effects on EV71 virus were studied based on a cell model. The results showed that GFWS had stronger security and anti-EV71 effects. In addition, the chemical constituents of GFWS were identified by ultra-high performance liquid chromatography-tandem mass spectrometry, which were selected for further separation and purification. Three compounds, N-butylaniline, succinic acid and l-tryptophan, were isolated from GFWS by NMR spectroscopy. It is noteworthy that N-butylaniline and l-tryptophan were isolated and identified from the G. frondosa fruiting bodies for the first time. Our study found that l-tryptophan has anti-EV71 virus activity, which reduced EV71-induced apoptosis and significantly inhibited the replication process after virus adsorption. Furthermore, it could also bind to capsid protein VP1 to prevent the virus from attaching to the cells. CONCLUSION: l-tryptophan was an inhibitor of the EV71 virus, which could be used in infant nutrition and possibly provide a new drug to treat hand, foot and mouth disease. © 2024 Society of Chemical Industry.


Assuntos
Grifola , Humanos , Grifola/química , Triptofano , Água/química , Cromatografia Líquida de Alta Pressão
5.
Mol Med ; 29(1): 20, 2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36747131

RESUMO

Fibroblasts are highly heterogeneous mesenchymal stromal cells, and different fibroblast subpopulations play different roles. A subpopulation of fibroblasts expressing CD90, a 25-37 kDa glycosylphosphatidylinositol anchored protein, plays a dominant role in the fibrotic and pro-inflammatory state. In this review, we focused on CD90+ fibroblasts, and their roles and possible mechanisms in disease processes. First, the main biological functions of CD90+ fibroblasts in inducing angiogenesis and maintaining tissue homeostasis are described. Second, the role and possible mechanism of CD90+ fibroblasts in inducing pulmonary fibrosis, inflammatory arthritis, inflammatory skin diseases, and scar formation are introduced, and we discuss how CD90+ cancer-associated fibroblasts might serve as promising cancer biomarkers. Finally, we propose future research directions related to CD90+ fibroblasts. This review will provide a theoretical basis for the diagnosis and treatment CD90+ fibroblast-related disease.


Assuntos
Células-Tronco Mesenquimais , Neoplasias , Humanos , Neoplasias/metabolismo , Fibroblastos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Biomarcadores Tumorais/metabolismo
6.
Nutr Metab Cardiovasc Dis ; 33(1): 38-46, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36428186

RESUMO

Over-nourishment or an unbalanced diet has been linked to an increase in the prevalence of metabolic syndrome. An imbalance in glucolipid metabolism is a major cause of metabolic syndrome, which has consequences for human health. Toll-like receptor 4 (TLR4), a member of the innate immune pattern recognition receptor family, is involved in inflammation-related disorders, autoimmune diseases, and tumors. Recent research has shown that TLR4 plays a key role in glucolipid metabolism, which is linked to insulin resistance, intestinal flora, and the development of chronic inflammation. TLR4 activation regulates glucolipid metabolism and contributes to the dynamic relationship between innate immunity and nutrition-related disorders. Further, TLR4 regulates glucolipid metabolism by controlling glycolysis and pyruvate oxidative decarboxylation, interfering with insulin signaling, regulating adipogenic gene expression levels, influencing preadipocyte differentiation and lipid accumulation, and altering the intestinal microbiota and permeability. TLR4 functions may provide new therapeutic applications for the prevention and treatment of metabolic syndrome. The purpose of this review is to enrich mechanistic research of diabetes, atherosclerosis, and other nutrition-related disorders by summarizing the role of TLR4 in the regulation of glucolipid metabolism as well as its physiological mechanisms.


Assuntos
Resistência à Insulina , Síndrome Metabólica , Humanos , Síndrome Metabólica/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Resistência à Insulina/genética , Inflamação/patologia , Transdução de Sinais
7.
J Nanobiotechnology ; 21(1): 15, 2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36647056

RESUMO

BACKGROUND: Malaria remains a serious threat to global public health. With poor efficacies of vaccines and the emergence of drug resistance, novel strategies to control malaria are urgently needed. RESULTS: We developed erythrocyte membrane-camouflaged nanoparticles loaded with artemether based on the growth characteristics of Plasmodium. The nanoparticles could capture the merozoites to inhibit them from repeatedly infecting normal erythrocytes, owing to the interactions between merozoites and heparin-like molecules on the erythrocyte membrane. Modification with a phosphatidylserine-targeting peptide (CLIPPKF) improved the drug accumulation in infected red blood cells (iRBCs) from the externalized phosphatidylserine induced by Plasmodium infection. In Plasmodium berghei ANKA strain (pbANKA)-infected C57BL/6 mice, the nanoparticles significantly attenuated Plasmodium-induced inflammation, apoptosis, and anemia. We observed reduced weight variation and prolonged survival time in pbANKA-challenged mice, and the nanoparticles showed good biocompatibility and negligible cytotoxicity. CONCLUSION: Erythrocyte membrane-camouflaged nanoparticles loaded with artemether were shown to provide safe and effective protection against Plasmodium infection.


Assuntos
Malária , Merozoítos , Animais , Camundongos , Membrana Eritrocítica , Fosfatidilserinas , Biomimética , Camundongos Endogâmicos C57BL , Malária/tratamento farmacológico , Malária/prevenção & controle , Eritrócitos , Artemeter/farmacologia , Plasmodium berghei , Plasmodium falciparum
8.
Int J Mol Sci ; 24(2)2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36674921

RESUMO

Alcoholic liver damage is caused by long-term drinking, and it further develops into alcoholic liver diseases. In this study, we prepared a probiotic fermentation product of Grifola frondosa total active components (PFGF) by fermentation with Lactobacillus acidophilus, Lactobacillus rhamnosus, and Pediococcus acidilactici. After fermentation, the total sugar and protein content in the PFGF significantly decreased, while the lactic acid level and antioxidant activity of the PFGF increased. Afterward, we investigated the alleviating effect of PFGF on alcoholic liver injury in alcohol-fed mice. The results showed that the PFGF intervention reduced the necrosis of the liver cells, attenuated the inflammation of the liver and intestines, restored the liver function, increased the antioxidant factors of the liver, and maintained the cecum tissue barrier. Additionally, the results of the 16S rRNA sequencing analysis indicated that the PFGF intervention increased the relative abundance of beneficial bacteria, such as Lactobacillus, Ruminococcaceae, Parabacteroids, Parasutterella, and Alistipes, to attenuate intestinal inflammation. These results demonstrate that PFGF can potentially alleviate alcoholic liver damage by restoring the intestinal barrier and regulating the intestinal microflora.


Assuntos
Grifola , Hepatopatias Alcoólicas , Probióticos , Camundongos , Animais , Antioxidantes , RNA Ribossômico 16S/genética , Probióticos/uso terapêutico , Inflamação
9.
J Sci Food Agric ; 103(2): 846-855, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36071690

RESUMO

BACKGROUND: The achenes/seeds of endemic jelly fig (Ficus pumila var. awkeotsang) fruit have been applied to prepare a traditional beverage in Taiwan. Upon fruit harvest, jelly fig latex exuded from stalks was discarded. Protease activity was monitored in its latex. Proteases capable of hydrolyzing proteins have many application aspects based on diverse characteristics. Commercial plant proteases are frequently from latex. RESULTS: The latex protease of jelly fig, termed FaFicin, was purified to homogeneity with a molecular mass of ~32 kDa on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. According to liquid chromatographic-tandem mass spectrometric analyses, the expected protein band of protease was matched to ficin A, ficin B or chymopapain from common fig or papaya. Iodoacetamide, an inhibitor of cysteine protease, inhibited its protease activity completely. Hence FaFicin was identified as a papain-like cysteine protease (PLCP), exhibiting more than 80% and 70% activity as assayed at pH 5-8 and 40-70 °C, respectively. It maintained ~89% of initial activity after 120 min at 55 °C and pH 7. Moreover, FaFicin could degrade the myosin and actin of meat, and clot milk. CONCLUSION: The ficin FaFicin was obtained, purified and identified as a PLCP member from agricultural waste: jelly fig latex. It possessed activity under a wide range of pH values and temperature, and exhibited excellent thermostability. Based on its initial evaluation as a meat tenderizer and milk clotting reagent, the application of FaFicin was possible, which may extend utilization of jelly fig. © 2022 Society of Chemical Industry.


Assuntos
Cisteína Proteases , Ficus , Ficina/química , Ficina/metabolismo , Ficus/química , Látex/química , Alérgenos , Peptídeo Hidrolases
10.
Plant Foods Hum Nutr ; 78(2): 320-328, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36947370

RESUMO

Antioxidative and antiaging abilities of probiotic fermented ginseng (PG) were evaluated in Caenorhabditis elegans (C. elegans). Lifespan and effect on heat stress and acute oxidative stress in C. elegans were significantly enhanced by PG. Antioxidative enzymes such as T-SOD, GSH-PX, CAT were significantly up-regulated, and MDA, ROS and apoptosis levels were significantly down-regulated. At the same time, PG exerted antioxidant and anti-aging activities by reducing the expression of DAF-2 mRNA and increasing the expression of SKN-1 and SOD-3 mRNA in C. elegans. In addition, the mechanism of antioxidative and antiaging activities of PG was explored through gut microbiota sequencing and untargeted metabolomics. The results of gut microbiota indicated that PG could significantly improve the composition and structure of microbes in the gut of C. elegans, and the relative abundance of beneficial bacteria was up-regulated. Untargeted metabolomic results elucidated that PG modulated antioxidant and antiaging activities through neuroactive ligand-receptor interaction, Citrate cycle (TCA cycle), pyruvate metabolism, ascorbate and aldarate metabolism and D-Arginine and D-ornithine metabolism of C. elegans. These results indicated that PG had excellent antioxidant and anti-aging activities, providing research value for the development of functional foods and improvement of aging-related diseases.


Assuntos
Proteínas de Caenorhabditis elegans , Microbioma Gastrointestinal , Panax , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/farmacologia , Envelhecimento , Estresse Oxidativo , Longevidade/fisiologia , Superóxido Dismutase/metabolismo , RNA Mensageiro , Espécies Reativas de Oxigênio/metabolismo
11.
Angew Chem Int Ed Engl ; 62(27): e202219188, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-36799125

RESUMO

Metal/nitrogen-doped carbons (M-N-C) are promising candidates as oxygen electrocatalysts due to their low cost, tunable catalytic activity and selectivity, and well-dispersed morphologies. To improve the electrocatalytic performance of such systems, it is critical to gain a detailed understanding of their structure and properties through advanced characterization. In situ X-ray absorption spectroscopy (XAS) serves as a powerful tool to probe both the active sites and structural evolution of catalytic materials under reaction conditions. In this review, we firstly provide an overview of the fundamental concepts of XAS and then comprehensively review the setup and application of in situ XAS, introducing electrochemical XAS cells, experimental methods, as well as primary functions on catalytic applications. The active sites and the structural evolution of M-N-C catalysts caused by the interplay with electric fields, electrolytes and reactants/intermediates during the oxygen evolution reaction and the oxygen reduction reaction are subsequently discussed in detail. Finally, major challenges and future opportunities in this exciting field are highlighted.

12.
J Cell Physiol ; 237(4): 2064-2077, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35098541

RESUMO

Adenosine diphosphate ribose cyclase (ADPRC) exists widely in eukaryotes and lower metazoans cells. It can degrade nicotinamide adenine dinucleotide (NAD) into cyclic ADP ribose (cADPR) and nicotinamide, and subsequently hydrolyses cADPR to ADP ribose (ADPR). In this paper, we have summarized the relative subcellular localization of ADPRC and enzymes with ADPRC activity in organisms, related enzyme family members of ADPRC are also described. In addition, we discussed the main biological functions of ADPRC, the regulation of Ca2+ signal, the regulation of insulin and glucagon secretion, oxytocin secretion, and the effects of renal and pulmonary vasomotor tension. Finally, we expounded the relationship between ADPRC and human health and disease occurrence. It provides a theoretical basis for the targeted treatment of ADPRC as a pharmacological tool for related diseases, and has important significance in clinical diagnosis and disease intervention.


Assuntos
ADP-Ribosil Ciclase/metabolismo , Sinalização do Cálcio , ADP-Ribosil Ciclase/análise , ADP-Ribosil Ciclase 1 , ADP-Ribose Cíclica/metabolismo , Humanos , NAD/metabolismo , Fenômenos Fisiológicos
13.
J Cell Physiol ; 237(7): 2796-2807, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35486480

RESUMO

CD38 is a multifunctional receptor and enzyme present on the surface of B lymphocytes, which can induce B lymphocytes proliferation and apoptosis by crosslinking related cytokines to affect the function of B cells, thus affecting immune regulation in humans and promoting tumorigenesis. The level of CD38 expression in B cells has become an important factor in the clinical diagnosis, treatment, and prognosis of malignant tumors and other related diseases. Therefore, studying the relationship between CD38 expression on the surface of B cells and the occurrence of the disease is of great significance for elucidating its association with disease pathogenesis and the clinical targeted therapy. In this paper, we review the effects of CD38 on B-cell activation, proliferation, and differentiation, and elaborate the functional role and mechanism of CD38 expression on B cells. We also summarize the relationship between the level of CD38 expression on the surface of B cells and the diagnosis, treatment, and prognosis of various diseases, as well as the potential use of targeted CD38 treatment for related diseases. This will provide an important theoretical basis for the scientific research and clinical diagnosis and treatment of B-cell-related diseases.


Assuntos
ADP-Ribosil Ciclase 1/metabolismo , Linfócitos B/metabolismo , Glicoproteínas de Membrana/metabolismo , ADP-Ribosil Ciclase 1/genética , Linfócitos B/patologia , Humanos , Leucemia Linfocítica Crônica de Células B/metabolismo , Transdução de Sinais
14.
Mol Med ; 28(1): 162, 2022 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-36581839

RESUMO

BACKGROUND: Randall's plaques (RP) are identified as anchored sites for kidney calcium oxalate stones, but the mechanism remains unclear. Given the importance of osteogenic-like cells in RP formation and OCT4 in reprogramming differentiated cells to osteoblasts, the current study explored the potential role of OCT4 in RP formation. METHODS: OCT4 and biomineralization were evaluated in RP, and immunofluorescence co-staining was performed to identify these cells with alteration of OCT4 and osteogenic markers. Based on the analysis of tissue, we further investigated the mechanism of OCT4 in regulating osteogenic-like differentiation of primary human renal interstitial fibroblasts (hRIFs) in vitro and vivo. RESULTS: We identified the upregulated OCT4 in RP, with a positive correlation to osteogenic markers. Interestingly, fibroblast marker Vimentin was partially co-localized with upregulated OCT4 and osteogenic markers in RP. Further investigations revealed that OCT4 significantly enhanced the osteogenic-like phenotype of hRIFs in vitro and in vivo. Mechanically, OCT4 directly bound to BMP2 promoter and facilitated its CpG island demethylation to transcriptionally promote BMP2 expression. Furthermore, combination of RIP and RNA profiling uncovered that lncRNA OLMALINC physically interacted with OCT4 to promote its stabilization via disrupting the ubiquitination. Additionally, OLMALINC was upregulated in fibroblasts in RP visualized by FISH, and a positive correlation was revealed between OLMALINC and OCT4 in RP. CONCLUSIONS: The upregulation of OCT4 in hRIFs was a pathological feature of RP formation, and OLMALINC/OCT4/BMP2 axis facilitated hRIFs to acquire osteogenic-like phenotype under osteogenic conditions, through which the pathway might participate in RP formation. Our findings opened up a new avenue to better understand RP formation in which osteogenic-like process was partially triggered by lncRNAs and pluripotency maintenance related genes.


Assuntos
Proteína Morfogenética Óssea 2 , Cálculos Renais , Fator 3 de Transcrição de Octâmero , RNA Longo não Codificante , Humanos , Proteína Morfogenética Óssea 2/genética , Oxalato de Cálcio/metabolismo , Fibroblastos/metabolismo , Rim/metabolismo , Cálculos Renais/metabolismo , Medula Renal/patologia , Fenótipo , RNA Longo não Codificante/genética , Fator 3 de Transcrição de Octâmero/genética
15.
Bioinformatics ; 37(19): 3263-3269, 2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-33974010

RESUMO

MOTIVATION: Aligning single-cell transcriptomes is important for the joint analysis of multiple single-cell RNA sequencing datasets, which in turn is vital to establishing a holistic cellular landscape of certain biological processes. Although numbers of approaches have been proposed for this problem, most of which only consider mutual neighbors when aligning the cells without taking into account known cell type annotations. RESULTS: In this work, we present MAT2 that aligns cells in the manifold space with a deep neural network employing contrastive learning strategy. Compared with other manifold-based approaches, MAT2 has two-fold advantages. Firstly, with cell triplets defined based on known cell type annotations, the consensus manifold yielded by the alignment procedure is more robust especially for datasets with limited common cell types. Secondly, the batch-effect-free gene expression reconstructed by MAT2 can better help annotate cell types. Benchmarking results on real scRNA-seq datasets demonstrate that MAT2 outperforms existing popular methods. Moreover, with MAT2, the hematopoietic stem cells are found to differentiate at different paces between human and mouse. AVAILABILITY AND IMPLEMENTATION: MAT2 is publicly available at https://github.com/Zhang-Jinglong/MAT2. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

16.
Anal Biochem ; 654: 114794, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35777456

RESUMO

Gastric cancer seriously affects the health of modern people. The immune microenvironment of gastric cancer tissue is key to gastric cancer progression. We downloaded training and validation sets data from The Cancer Genome Atlas and Gene Expression Omnibus. Single-sample gene set enrichment analysis was used to sort patients into high, middle, and low immunity groups, of which immune infiltration in the high immunity group was substantially higher than of other two groups. Genes in high and low immunity groups expressed prominent differences. Further, the enrichment of differentially expressed genes was found mainly in immune-related pathways. Subsequently, an immune-related prognostic model was established, composed of ten prognosis-related genes identified by univariate risk regression, least absolute shrinkage and selection operator Cox, and multivariate risk regression. Survival analysis and receiver operating characteristic curves suggested good diagnostic efficacy of this model, and feature genes were linked to the degree of immune infiltration. An independent test suggested that the risk score could independently determine patient outcomes. We combined all clinical information and risk scores to establish a nomogram that could predict patient's prognosis. A prognostic model composed of 10 prognosis-related genes was generated with good diagnostic efficacy in predicting prognoses of gastric cancer patients.


Assuntos
Neoplasias Gástricas , Biomarcadores Tumorais/análise , Humanos , Nomogramas , Prognóstico , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/genética , Microambiente Tumoral/genética
17.
World J Urol ; 40(2): 529-535, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34613449

RESUMO

PURPOSE: To assess the value of procalcitonin (PCT) as an early biomarker for predicting urosepsis caused by Gram-negative (GN) bacteria, Gram-positive (GP) bacteria and fungi following mini-percutaneous nephrolithotomy (mPCNL) and flexible ureteroscopy (FURS). METHODS: A total number of 356 patients with positive preoperative UC (urine cultures) who underwent mPCNL and FURS between June 2017 and January 2021 were retrospectively analyzed. Univariable analysis and multivariable logistic regression analysis were conducted to compare the predictors for urosepsis caused by different organisms. Furthermore, the nomogram was established as a predicted model for urosepsis. RESULTS: Among 356 positive UC, 265 (74.4%) were positive for GN bacteria, 77 (21.4%) for GP bacteria and 14 (3.9%) for fungal pathogens. Escherichia coli (48.9%) were the predominant pathogens and Enterococcus (54/77) were the most common GP bacteria. Multivariate logistic regression analysis showed that positive nitrite (OR 3.31, 95% CI 1.20-9.14; P = 0.021), operative time > 90 min (OR 3.10, 95% CI 1.10-8.75, P = 0.033) and postoperative PCT > 0.1 ng/mL (OR 56.18, 95% CI 15.20-207.64, P < 0.001) were associated with postoperative urosepsis originated in GN infections, while urosepsis caused by GP bacteria and fungi was not associated with PCT > 0.1 ng/mL (P = 0.198), only stone burden > 800 mm2 (OR 3.69, 95% CI 1.01-13.53, P = 0.049) was an independent risk factor. CONCLUSIONS: For patients with positive preoperative UC, postoperative PCT > 0.1 ng/mL was an independent risk factor of post-PCNL and post-FURS urosepsis caused by GN bacteria rather than GP bacteria and fungi.


Assuntos
Cálculos Renais , Nefrolitotomia Percutânea , Humanos , Cálculos Renais/cirurgia , Nefrolitotomia Percutânea/efeitos adversos , Pró-Calcitonina , Estudos Retrospectivos , Ureteroscópios , Ureteroscopia/efeitos adversos
18.
Inflamm Res ; 71(10-11): 1213-1227, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35802146

RESUMO

BACKGROUND: Acute liver injury is liver cell injury that occurs rapidly in a short period of time. Caffeine has been shown to maintain hepatoprotective effect with an unclear mechanism. Endoplasmic reticulum stress (ERS) has significant effects in acute liver injury. Induction of GRP78 is a hallmark of ERS. Whether or not caffeine's function is related to GRP78 remains to be explored. METHODS: Acute liver injury model was established by LPS-treated L02 cells and in vivo administration of LPS/D-Gal in mice. Caffeine was pre-treated in L02 cells or mice. Gene levels was determined by real-time PCR and western blot. Cell viability was tested by CCK-8 assay and cell apoptosis was tested by flow cytometry. The interaction of GRP78 and NEDD4L was determined by Pull-down and co-immunoprecipitation (Co-IP) assay. The ubiquitination by NEDD4L on GRP78 was validated by in vitro ubiquitination assay. RESULTS: Caffeine protected liver cells against acute injury induced cell apoptosis and ERS both in vitro and in vivo. Suppression of GRP78 could block the LPS-induced cell apoptosis and ERS. NEDD4L was found to interact with GRP78 and ubiquitinate its lysine of 324 site directly. Caffeine treatment induced the expression of NEDD4L, resulting in the ubiquitination and inhibition of GRP78. CONCLUSION: Caffeine mitigated the acute liver injury by stimulating NEDD4L expression, which inhibited GRP78 expression via ubiquitination at its K324 site. Low dose of caffeine could be a promising therapeutic treatment for acute liver injury.


Assuntos
Cafeína , Doença Hepática Induzida por Substâncias e Drogas , Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático , Ubiquitina-Proteína Ligases Nedd4 , Animais , Camundongos , Apoptose , Cafeína/farmacologia , Cafeína/uso terapêutico , Chaperona BiP do Retículo Endoplasmático/metabolismo , Lipopolissacarídeos/farmacologia , Fígado/efeitos dos fármacos , Ubiquitinação , Ubiquitina-Proteína Ligases Nedd4/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico
19.
Arch Virol ; 167(12): 2677-2688, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36166106

RESUMO

SARS-CoV-2 infection, which is the cause of the COVID-19 pandemic, has expanded across various animal hosts, and the virus can be transmitted particularly efficiently in minks. It is still not clear how SARS-CoV-2 is selected and evolves in its hosts, or how mutations affect viral fitness. In this report, sequences of SARS-CoV-2 isolated from human and animal hosts were analyzed, and the binding energy and capacity of the spike protein to bind human ACE2 and the mink receptor were compared. Codon adaptation index (CAI) analysis indicated the optimization of viral codons in some animals such as bats and minks, and a neutrality plot demonstrated that natural selection had a greater influence on some SARS-CoV-2 sequences than mutational pressure. Molecular dynamics simulation results showed that the mutations Y453F and N501T in mink SARS-CoV-2 could enhance the binding of the viral spike to the mink receptor, indicating the involvement of these mutations in natural selection and viral fitness. Receptor binding analysis revealed that the mink SARS-CoV-2 spike interacted more strongly with the mink receptor than the human receptor. Tracking the variations and codon bias of SARS-CoV-2 is helpful for understanding the fitness of the virus in virus transmission, pathogenesis, and immune evasion.


Assuntos
Uso do Códon , Adaptação ao Hospedeiro , SARS-CoV-2 , Animais , Humanos , Quirópteros/genética , COVID-19/virologia , Adaptação ao Hospedeiro/genética , Vison/genética , Pandemias , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Seleção Genética/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Uso do Códon/genética
20.
J Appl Microbiol ; 133(3): 1434-1445, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35652720

RESUMO

AIMS: This study aimed to characterize the chromosome and plasmid sequences, and determine the transferability of plasmids in carbapenem-resistance Acinetobacter baumannii DD520 and Klebsiella pneumoniae DD521 isolates from the same patient who was co-infected in a hospital in China. METHODS AND RESULTS: Both isolates DD520 and DD521 exhibited multidrug resistance phenotype, especially the former isolate which was resistant to nine classes of antimicrobials including carbapenems, quinolones, penicillins, cephalosporins, tetracyclines, phenicols, fosfomycins, sulfanilamides and aminoglycosides. Carbapenem resistance genes of blaOXA-23 and blaOXA-66 were identified on the chromosome of A. baumannii DD520, and blaKPC-2 was found in the plasmid pDD521.2 from K. pneumoniae DD521. Phylogenetic analysis revealed that A. baumannii DD520 belonged to the ST540 clone, and K. pneumoniae DD521 belonged to the ST2237 clone. Plasmid analysis suggested that blaKPC-2 was embedded into plasmid pDD521.2, which might be resulted from IS26- and Tn1721-mediated transposition. Plasmid pDD521.2 carrying blaKPC-2 successfully transferred from K. pneumoniae DD521 into Escherichia coli C600, and carbapenems resistance also transferred in the conjugation. CONCLUSIONS: To our knowledge, it was the first report of A. baumannii ST540 and K. pneumoniae ST2237 in the same patient in China. Both these two isolates exhibited resistance to carbapenem, which was likely to have resulted from carbapenem-resistance genes blaOXA-23 -blaOXA-66 on the chromosome of A. baumannii ST540, and blaKPC-2 in the plasmid of K. pneumoniae ST2237. SIGNIFICANCE AND IMPACT OF THE STUDY: Our study highlighted that effective measures were urgent to prevent and control the co-infection caused by two or more carbapenem-resistance pathogens in the same patient.


Assuntos
Acinetobacter baumannii , Pneumonia , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/farmacologia , Carbapenêmicos/farmacologia , Humanos , Klebsiella pneumoniae , Testes de Sensibilidade Microbiana , Filogenia , Plasmídeos/genética , beta-Lactamases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA