Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Small ; 19(25): e2300759, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36919820

RESUMO

SiOx anode has a more durable cycle life than Si, being considered competitive to replace the conventional graphite. SiOx usually serves as composites with carbon to achieve more extended cycle life. However, the carbon microstructure dependent Li-ion storage behaviors in SiOx /C anode have received insufficient attention. Herein, this work demonstrates that the disorder of carbon can determine the ratio of inter- and intragranular Li-ion diffusions. The resulted variation of platform characteristics will result in different compatibility when matching SiOx . Rational disorder induced intergranular diffusion can benefit phase transition of SiOx /C, benefiting the electrochemical performance. Through a series of quantitative calculations and in situ X-ray diffraction characterizations, this work proposes the rational strategy for the future optimization, thus achieving preferable performance of SiOx /C anode.

2.
Small ; 19(37): e2302644, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37144432

RESUMO

Silicon oxide (SiOx ), inheriting the high-capacity characteristic of silicon-based materials but possessing superior cycling stability, is a promising anode material for next-generation Li-ion batteries. SiOx is typically applied in combination with graphite (Gr), but the limited cycling durability of the SiOx /Gr composites curtails large-scale applications. In this work, this limited durability is demonstrated in part related to the presence of a bidirectional diffusion at the SiOx /Gr interface, which is driven by their intrinsic working potential differences and the concentration gradients. When Li on the Li-rich surface of SiOx is captured by Gr, the SiOx surface shrinks, hindering further lithiation. The use of soft carbon (SC) instead of Gr can prevent such instability is further demonstrated. The higher working potential of SC avoids bidirectional diffusion and surface compression thus allowing further lithiation. In this scenario, the evolution of the Li concentration gradient in SiOx conforms to its spontaneous lithiation process, benefiting the electrochemical performance. These results highlight the focus on the working potential of carbon as a strategy for rational optimization of SiOx /C composites toward improved battery performance.

3.
BMC Cancer ; 23(1): 1198, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38057830

RESUMO

BACKGROUND: Due to the high drug resistance of hepatocellular carcinoma (HCC), sorafenib has limited efficacy in the treatment of advanced HCC. Cancer-associated fibroblasts (CAFs) play an important regulatory role in the induction of chemoresistance. This study aimed to clarify the mechanism underlying CAF-mediated resistance to sorafenib in HCC. METHODS: Immunohistochemistry and immunofluorescence showed that the activation of CAFs was enhanced in HCC tissues. CAFs and paracancerous normal fibroblasts (NFs) were isolated from the cancer and paracancerous tissues of HCC, respectively. Cell cloning assays, ELISAs, and flow cytometry were used to detect whether CAFs induced sorafenib resistance in HCC cells via CXCL12. Western blotting and qPCR showed that CXCL12 induces sorafenib resistance in HCC cells by upregulating FOLR1. We investigated whether FOLR1 was the target molecule of CAFs regulating sorafenib resistance in HCC cells by querying gene expression data for human HCC specimens from the GEO database. RESULTS: High levels of activated CAFs were present in HCC tissues but not in paracancerous tissues. CAFs decreased the sensitivity of HCC cells to sorafenib. We found that CAFs secrete CXCL12, which upregulates FOLR1 in HCC cells to induce sorafenib resistance. CONCLUSIONS: CAFs induce sorafenib resistance in HCC cells through CXCL12/FOLR1.


Assuntos
Fibroblastos Associados a Câncer , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Sorafenibe/farmacologia , Sorafenibe/uso terapêutico , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Fibroblastos Associados a Câncer/metabolismo , Linhagem Celular Tumoral , Fibroblastos/metabolismo , Resistencia a Medicamentos Antineoplásicos , Proliferação de Células , Receptor 1 de Folato/metabolismo , Receptor 1 de Folato/uso terapêutico , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo
4.
Small ; 18(39): e2203459, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36026577

RESUMO

Tin chalcogenides are regarded as promising anode materials for potassium ion batteries (PIBs) due to their considerable specific capacity. However, the severe volume effect, limited electronic conductivity, and the shuttle effect of the potassiation product restrict the application prospect. Herein, based on the metal evaporation reaction, a facile structural engineering strategy for yolk-shell SnSe encapsulated in carbon shell (SnSe@C) is proposed. The internal void can accommodate the volume change of the SnSe core and the carbon shell can enhance the electronic conductivity. Combining qualitative and quantitative electrochemical analyses, the distinguished electrochemical performance of SnSe@C anode is attributed to the contribution of enhanced capacitive behavior. Additionally, first-principles calculations elucidate that the heteroatomic doped carbon exhibits a preferable affinity toward potassium ions and the potassiation product K2 Se, boosting the rate performance and capacity retention consequently. Furthermore, the phase evolution of SnSe@C electrode during the potassiation/depotassiation process is clarified by in situ X-ray diffraction characterization, and the crystal transition from the SnSe Pnma(62) to Cmcm(63) point group is discovered unpredictably. This work demonstrates a pragmatic avenue to tailor the SnSe@C anode via a facile structural engineering strategy and chemical regulation, providing substantial clarification for the phase evolution mechanism of SnSe-based anode for PIBs.

5.
Cell Tissue Bank ; 21(4): 631-641, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32809089

RESUMO

Peripheral blood mononuclear cells are widely used as source material for anticancer immunotherapies. The conventional cryopreservation method for peripheral blood mononuclear cells is time-consuming and expansive, which involves controlled rate freezing followed by storage in liquid nitrogen. Instead, the convenient uncontrolled rate freezing cryopreservation method had been reported successfully in peripheral blood hematopoietic stem cells and peripheral blood progenitor cells. Therefore, we hypothesized that uncontrolled rate freezing cooling method maybe also applied to peripheral blood mononuclear cells cryopreservation. In this study, we evaluated the performance of uncontrolled rate freezing and controlled rate freezing cooling methods through cell recovery rate, viability, differentiation potential into cytokine-induced killer cells and the cellular properties of the cultured cytokine-induced killer cells. The results showed similar post-thaw viability and recovery rate in both controlled rate freezing and uncontrolled rate freezing cryopreserved peripheral blood mononuclear cells. Importantly, the uncontrolled rate freezing cryopreserved peripheral blood mononuclear cells exhibited higher growth ratio and earlier cell clustering during ex-vivo cytokine-induced killer cell culture than the controlled rate freezing ones. These two groups of expanded cytokine-induced killer cells also exhibited similar effector cell subset ratio and tumoricidal activity. In general, the performance of cryopreserved peripheral blood mononuclear cells using uncontrolled rate freezing cooling method, with the commercial cryoprotective agent CellBanker 2, was equal or better than the controlled rate freezing method. Our study implied that the combined use of cryoprotective agent CellBanker 2 and uncontrolled rate freezing could be a convenient cryopreservation method for peripheral blood mononuclear cells.


Assuntos
Criopreservação , Congelamento , Leucócitos Mononucleares/citologia , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Crioprotetores/farmacologia , Células Matadoras Induzidas por Citocinas/efeitos dos fármacos , Humanos , Imunofenotipagem , Leucócitos Mononucleares/efeitos dos fármacos , Neoplasias/patologia
6.
Small ; 15(46): e1903214, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31583828

RESUMO

Exploring flexible lithium-ion batteries is required with the ever-increasing demand for wearable and portable electronic devices. Selecting a flexible conductive substrate accompanying with closely coupled active materials is the key point. Here, a lightweight, flexible, and freestanding MXene/liquid metal paper is fabricated by confining 3 °C GaInSnZn liquid metal in the matrix of MXene paper without any binder or conductive additive. When used as anode for lithium-ion cells, it can deliver a high discharge capacity of 638.79 mAh g-1 at 20 mA g-1 . It also exhibits satisfactory rate capacities, with discharge capacities of 507.42, 483.33, 480.22, 452.30, and 404.47 mAh g-1 at 50, 100, 200, 500, and 1000 mA g-1 , respectively. The cycling performance is obviously improved by slightly reducing the charge-discharge voltage range. The composite paper also has better electrochemical performance than liquid metal coated Cu foil. This study proposes a novel flexible anode by a clever combination of MXene paper and low-melting point liquid metal, paving the way for next-generation lithium-ion batteries.

7.
Cryobiology ; 86: 25-32, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30629948

RESUMO

In this study, we compared three commercially available and two widely used CPAs for their ability of cryopreserving PBMCs. Similar survival (81.0%) and recovery rate (73.7%) were observed among cells using these five CPAs. However, all the cryopreserved PBMCs exhibited a significantly lower survival rate when compared with the fresh samples (94.3%). We further evaluated effector cell subpopulation and tumoricidal activity of PBMC-derived cytokine-induced killing (CIK) cells and natural killing (NK) cells. Similar and high survival (CIK: 88.6%; NK: 87.5%) and recovery (CIK: 99.5%; NK: 99.7%) rates were detected in CIK and NK cells prepared from cryopreserved PBMCs using the five CPAs. The CD3+CD56+ effector percentage (27.3%) of cryopreserved PBMC-derived CIK cells using the five different CPAs and their tumoricidal activities on melanoma CHL-1 cells (45.7%) and bladder cancer cell line T-24 (44.7%) were similar but significantly lower than those of the fresh PBMC-derived controls (effector: 30.7%; CHL-1: 84.2%; T-24: 82.2%). Cryopreserved PBMC-derived NK cells also exhibited similar tumoricidal activities (CHL-1: 73.8%; T-24: 71.9%) but was significantly lower than that of the fresh control group. We were not able to identify a specific CPA that performed superior than others in PBMC cryopreservation.


Assuntos
Criopreservação/métodos , Crioprotetores/farmacologia , Células Matadoras Induzidas por Citocinas/imunologia , Células Matadoras Naturais/imunologia , Melanoma/imunologia , Neoplasias da Bexiga Urinária/imunologia , Linhagem Celular Tumoral , Humanos , Leucócitos Mononucleares/citologia , Soluções
8.
Cytotherapy ; 17(4): 403-17, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25618561

RESUMO

BACKGROUND AIMS: Acute radiation syndrome (ARS) leads to pancytopenia and multi-organ failure. Transplantation of hematopoietic stem cells provides a curative option for radiation-induced aplasia, but this therapy is limited by donor availability. METHODS: We examined an alternative therapeutic approach to ARS with the use of human extracellular superoxide dismutase (ECSOD)-modified umbilical cord mesenchymal stromal cells (UCMSCs). This treatment combines the unique regenerative role of UCMSCs with the anti-oxidative activity of ECSOD. RESULTS: We demonstrated that systemically administered ECSOD-UCMSCs are able to protect mice from sub-lethal doses of radiation and improve survival by promoting multilineage hematopoietic recovery. The therapeutic effect of this treatment is related to the decrease in radiation-induced O(2)(-) and apoptosis. CONCLUSIONS: Our data highlight the clinical potential of this two-pronged approach to the treatment of ARS, thereby serving as a rapid and effective first-line strategy to combat the hematopoietic failure resulting from a radiation accident, nuclear terrorism and other radiologic emergencies.


Assuntos
Síndrome Aguda da Radiação/terapia , Hematopoese , Transplante de Células-Tronco Mesenquimais/métodos , Protetores contra Radiação/uso terapêutico , Superóxido Dismutase/metabolismo , Animais , Apoptose , Transplante de Células-Tronco Hematopoéticas , Humanos , Masculino , Células-Tronco Mesenquimais/citologia , Camundongos , Camundongos Endogâmicos BALB C , Cordão Umbilical/citologia
9.
Adv Mater ; 36(1): e2305128, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37555532

RESUMO

Low-cost, safe, and environmental-friendly rechargeable aqueous zinc-ion batteries (ZIBs) are promising as next-generation energy storage devices for wearable electronics among other applications. However, sluggish ionic transport kinetics and the unstable electrode structure during ionic insertion/extraction hamper their deployment. Herein, a new cathode material based on a layered metal chalcogenide (LMC), bismuth telluride (Bi2 Te3 ), coated with polypyrrole (PPy) is proposed. Taking advantage of the PPy coating, the Bi2 Te3 @PPy composite presents strong ionic absorption affinity, high oxidation resistance, and high structural stability. The ZIBs based on Bi2 Te3 @PPy cathodes exhibit high capacities and ultra-long lifespans of over 5000 cycles. They also present outstanding stability even under bending. In addition, here the reaction mechanism is analyzed using in situ X-ray diffraction, X-ray photoelectron spectroscopy, and computational tools and it is demonstrated that, in the aqueous system, Zn2+ is not inserted into the cathode as previously assumed. In contrast, proton charge storage dominates the process. Overall, this work not only shows the great potential of LMCs as ZIB cathode materials and the advantages of PPy coating, but also clarifies the charge/discharge mechanism in rechargeable ZIBs based on LMCs.

10.
J Neurogastroenterol Motil ; 30(3): 322-331, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38972867

RESUMO

Background/Aims: Previous studies have shown that diet and physical activity can influence constipation. However, the combined effect of diet and physical activity on constipation remains unclear. Methods: Constipation was defined based on stool consistency and frequency, while overall diet quality was assessed using Healthy Eating Index (HEI)-2015 scores. Participants were categorized into low (metabolic equivalent [MET]-min/wk < 500) and high physical activity groups (MET-min/wk ≥ 500). The association between diet and constipation across physical activity groups was analyzed using survey logistic regression and restricted cubic splines. Results: Higher HEI-2015 scores were associated with reduced constipation risk in the high physical activity group when constipation was defined by stool consistency (odds ratio [OR], 0.98; 95% confidence interval [CI], 0.97-0.99). However, in the low physical activity group, increased HEI-2015 scores did not significantly affect constipation risk (OR, 1.01; 95% CI, 0.97-1.05). Similar results were found when constipation was defined based on stool frequency. In the high physical activity group, increased HEI-2015 scores were significantly associated with a reduced constipation risk (OR, 0.96; 95% CI, 0.94-0.98). Conversely, in the low physical activity group, increased HEI-2015 scores did not affect the risk of constipation (OR, 0.96; 95% CI, 0.90-1.03). Conclusions: Our findings suggest that a higher HEI-2015 score is negatively associated with constipation among individuals with high physical activity levels but not among those with low physical activity levels. This association was consistent when different definitions of constipation were used. These results highlight the importance of combining healthy diet with regular physical activity to alleviate constipation.

11.
J Vis Exp ; (196)2023 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-37395582

RESUMO

Laparoscopic anatomic hepatectomy (LAH) has become increasingly prevalent worldwide in recent years. However, LAH remains a challenging procedure due to the anatomical characteristics of the liver, with intraoperative hemorrhage being a primary concern. Intraoperative blood loss is the leading cause of conversion to open surgery; therefore, effective management of bleeding and hemostasis is crucial for a successful LAH. The two-surgeon technique is proposed as an alternative to the traditional single-surgeon approach, with potential benefits in reducing intraoperative bleeding during laparoscopic hepatectomy. However, there remains a lack of evidence to determine which mode of the two-surgeon technique yields superior patient outcomes. Besides, to our knowledge, the LAH technique, which involves the use of a cavitron ultrasonic surgical aspirator (CUSA) by the primary surgeon while an ultrasonic dissector by the second surgeon, has been rarely reported before. Herein, we present a modified, two-surgeon LAH technique, wherein one surgeon employs a CUSA while the other uses an ultrasonic dissector. This technique is combined with a simple extracorporeal Pringle maneuver and low central venous pressure (CVP) approach. In this modified technique, the primary and secondary surgeons utilize a laparoscopic CUSA and an ultrasonic dissectorconcurrently to achieve precise and expeditious hepatectomy. A simple extracorporeal Pringle maneuver, combined with the maintenance of low CVP, is employed to regulate the hepatic inflow and outflow in order to minimize intraoperative bleeding. This approach facilitates the attainment of a dry and clean operative field, which allows for the precise ligation and dissection of blood vessels and bile ducts. The modified LAH procedure is simpler and safer due to its effective control over bleeding as well as the seamless transition between the roles of primary and secondary surgeons. It holds great promise for future clinical applications.


Assuntos
Laparoscopia , Neoplasias Hepáticas , Cirurgiões , Humanos , Hepatectomia/métodos , Perda Sanguínea Cirúrgica/prevenção & controle , Laparoscopia/métodos
12.
ACS Nano ; 17(14): 13256-13268, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37411016

RESUMO

Aqueous zinc-ion batteries (ZIBs) are promising candidates to power flexible integrated functional systems because they are safe and environmentally friendly. Among the numerous cathode materials proposed, Mn-based compounds, particularly MnO2, have attracted special attention because of their high energy density, nontoxicity, and low cost. However, the cathode materials reported so far are characterized by sluggish Zn2+ storage kinetics and moderate stabilities. Herein, a ZIB cathode based on reduced graphene oxide (rGO)-coated MnSe nanoparticles (MnSe@rGO) is proposed. After MnSe was activated to α-MnO2, the ZIB exhibits a specific capacity of up to 290 mAh g-1. The mechanism underlying the improvement in the electrochemical performance of the MnSe@rGO based electrode is investigated using a series of electrochemical tests and first-principles calculations. Additionally, in situ Raman spectroscopy is used to track the phase transition of the MnSe@rGO cathodes during the initial activation, proving the structural evolution from the LO to MO6 mode. Because of the high mechanical stability of MnSe@rGO, flexible miniaturized energy storage devices can be successfully printed using a high-precision electrohydrodynamic (EHD) jet printer and integrated with a touch-controlled light-emitting diode array system, demonstrating the application of flexible EHD jet-printed microbatteries.

13.
Cell Death Dis ; 14(1): 66, 2023 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-36707501

RESUMO

Coronavirus disease 2019 (COVID-19) treatments are still urgently needed for critically and severely ill patients. Human umbilical cord-mesenchymal stem cells (hUC-MSCs) infusion has therapeutic benefits in COVID-19 patients; however, uncertain therapeutic efficacy has been reported in severe patients. In this study, we selected an appropriate cytokine, IL-18, based on the special cytokine expression profile in severe pneumonia of mice induced by H1N1virus to prime hUC-MSCs in vitro and improve the therapeutic effect of hUC-MSCs in vivo. In vitro, we demonstrated that IL-18-primed hUC-MSCs (IL18-hUCMSC) have higher proliferative ability than non-primed hUC-MSCs (hUCMSCcon). In addition, VCAM-1, MMP-1, TGF-ß1, and some chemokines (CCL2 and CXCL12 cytokines) are more highly expressed in IL18-hUCMSCs. We found that IL18-hUCMSC significantly enhanced the immunosuppressive effect on CD3+ T-cells. In vivo, we demonstrated that IL18-hUCMSC infusion could reduce the body weight loss caused by a viral infection and significantly improve the survival rate. Of note, IL18-hUCMSC can also significantly attenuate certain clinical symptoms, including reduced activity, ruffled fur, hunched backs, and lung injuries. Pathologically, IL18-hUCMSC transplantation significantly enhanced the inhibition of inflammation, viral load, fibrosis, and cell apoptosis in acute lung injuries. Notably, IL18-hUCMSC treatment has a superior inhibitory effect on T-cell exudation and proinflammatory cytokine secretion in bronchoalveolar lavage fluid (BALF). Altogether, IL-18 is a promising cytokine that can prime hUC-MSCs to improve the efficacy of precision therapy against viral-induced pneumonia, such as COVID-19.


Assuntos
COVID-19 , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Pneumonia Viral , Humanos , Camundongos , Animais , Interleucina-18/metabolismo , Cordão Umbilical/metabolismo , Linfócitos T/metabolismo , COVID-19/metabolismo , Citocinas/metabolismo , Pneumonia Viral/terapia , Pneumonia Viral/metabolismo , Terapia de Imunossupressão , Células-Tronco Mesenquimais/metabolismo
14.
J Invest Surg ; 35(8): 1660-1667, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35768071

RESUMO

BACKGROUND: Hypoxia-inducible factor-1α (HIF-1α) or sonic hedgehog (SHH) is associated with hepatocellular carcinoma (HCC) progression. Hypoxia inhibits ferroptosis, which induces cancer cell death. However, the correlation between the combined HIF-1α and SHH up-regulation with prognosis, and the association between SHH and ferroptosis remain unclear. This study aimed to investigate them. METHODS: We detected the expression of HIF-1α and SHH in HCC. Cox regression, clinical data, and Kaplan-Meier analyses were performed. In vitro cell experiments verified the relationship between HIF-1α and SHH, and observed the invasion of hypoxic HCC cells. The correlation between SHH and ferroptosis was also analyzed. RESULTS: HIF-1α and SHH expression levels were significantly correlated with HCC (p < 0.0001). HIF-1α and SHH expression levels were found to be associated with TNM stage (p = 0.0121, p = 0.0078, respectively), vascular invasion (p < 0.0001, p < 0.0001, respectively), and recurrence (p = 0.0212, p = 0.0392, respectively). The combined upregulation of HIF-1α and SHH was an independent factor for predicting the overall survival (OS) of patients with HCC (p = 0.003), who had the shortest OS (p = 0.0009). SHH paralleled the increase in HIF-1α expression, which promotes cancer cell invasion. The upregulation of SHH was related to the inhibition of the expression of ferroptosis-related factors (FANCD2, p < 0.0001 and FTH1, p = 0.0009) in HCC. CONCLUSION: Combined HIF-1α and SHH upregulation is a potentially poor prognosis indicator in patients with HCC because the upregulation of SHH inhibits ferroptosis in hypoxic cancer cells.


Assuntos
Carcinoma Hepatocelular , Proteínas Hedgehog , Subunidade alfa do Fator 1 Induzível por Hipóxia , Neoplasias Hepáticas , Biomarcadores , Linhagem Celular Tumoral , Proteínas Hedgehog/metabolismo , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Prognóstico , Regulação para Cima
15.
J Invest Surg ; 35(6): 1208-1216, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35078386

RESUMO

Background: More and more studies have suggested that hepatocellular carcinoma (HCC) patients with high-risk recurrence factors can benefit the most from postoperative adjuvant transarterial chemoembolization (PA-TACE) for its potential effect in delaying cancer recurrence. However, it remains unclear if solitary HCC (SHCC) patients particularly those without high-risk recurrence factors should also receive PA-TACE. This study aimed to analyze the efficacy of PA-TACE in them. Methods: Retrospectively, we enrolled 123 SHCC patients who either received radical hepatectomy alone (No TACE group, n = 39) or followed by PA-TACE (PA-TACE group, n = 84) in our institution. Prognostic risk factors, disease-free survival (DFS), and overall survival (OS) were analyzed using the Cox proportional hazard regression model, the Kaplan-Meier method, and the log-rank test. Results: Liver cirrhosis was the only independent risk factor for SHCC patients. Overall, the PA-TACE group had no improved OS (P = 0.977) but worse DFS compared with the No TACE group (P = 0.045). Consistently, in subgroup analysis, SHCC patients with negative microvascular invasion (MVI), tumor size ≤ 5 cm and preoperative alpha-fetoprotein (AFP) < 400 ng/ml had similar OS (P = 0.466, P = 0.864, P = 0.488, respectively) but even worse DFS (P = 0.035, P = 0.040, P = 0.019, respectively) than those in the No TACE group. Besides, there was no significant difference in DFS and OS between the two groups of SHCC patients with liver cirrhosis (P = 0.342, P = 0.941, respectively). Conclusions: PA-TACE may not improve the long-term survival of SHCC patients, but may even potentially promote their postoperative tumor recurrence, especially for those with MVI-negative, tumor size ≤ 5 cm, and preoperative AFP < 400 ng/ml.


Assuntos
Carcinoma Hepatocelular , Quimioembolização Terapêutica , Neoplasias Hepáticas , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/cirurgia , Quimioembolização Terapêutica/efeitos adversos , Quimioembolização Terapêutica/métodos , Hepatectomia/efeitos adversos , Humanos , Cirrose Hepática , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/cirurgia , Recidiva Local de Neoplasia/epidemiologia , Recidiva Local de Neoplasia/etiologia , Recidiva Local de Neoplasia/prevenção & controle , Prognóstico , Estudos Retrospectivos , Resultado do Tratamento , alfa-Fetoproteínas
16.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 30(6): 1730-1740, 2022 Dec.
Artigo em Zh | MEDLINE | ID: mdl-36476896

RESUMO

OBJECTIVE: To explore and design a novel bi-specific chimeric antigen receptor (CAR) structure. To obtain the corresponding CAR-T cells and verify killing effects on tumor cells in vitro and in vivo. METHODS: Five kinds of bi-specific CAR structures including humanized CD19 scFv and CD79b scFv, CD8 hinge & TM-4-1BB-CD3ζ and/or CD3ε chain intracellular regions were constructed and prepared. CAR-19-79b cells were obtained. Five kinds of CAR-T cells were co-incubated with the 3M-CD19-CD79b-Luc target cells. Luciferase assay and ELISA were used to detecte the killing ability of these five groups of CAR-T cells and the secretion of cytokines and compared. The optimal structure of CAR-T cells was used to treat the leukemia mouse model constructed by Daudi-Luc cells. And the treatment efficacy was evaluated. At the same time, other targets were used in this structure. With the same methods, the stability and effectiveness of the structure were verified. RESULTS: CAR-19-79b-T cells were cultured for 7 days, the expression rates of CAR-19 and CAR-79b were 21.6%-36.3% and 21.7%-37.8%, respectively. The killing rates of 5 kinds of CAR-19-79b-T cells prepared by T cells from 3 healthy donors on 3M-CD19-CD79b-Luc cells were significantly higher than those of the T cell control group at the effect-target ratio of 10∶1. Among them, the killing rates of CAR-19-79b-T cells with No. III and No. IV structures were the strongest. After co-incubation with 3M-CD19-CD79b-Luc target cells, the amount of IFN-γ and TNF-α secreted by CAR-T cells with CAR IV and CARV structures was the lowest. And there was no significance between the two groups (P>0.05). CAR IV cells with remarkable killing effect and low secretion factor had obvious therapeutic effect on Daudi-Luc leukemia mice, extending the survival period of mice to 64 days. And all mice in the T cell control group died at 41.0±2.4 days. The CAR-19-BCMA-T and CAR-19-22-T with the same structure showed significant killing ability and low cytokine expression levels. CONCLUSION: A novel bi-specific CAR structures was successfully designed, which could efficiently kill the corresponding tumor cells and secrete less cytokines (such as TNF-α, IFN-γ). Moreover, it shows obvious therapeutic effect on Daudi lymphoma mouse model. The bi-specific CAR structure shows good killing specificity and safety.


Assuntos
Leucemia , Receptores de Antígenos Quiméricos , Animais , Camundongos , Linfócitos T , Fator de Necrose Tumoral alfa
17.
Drug Des Devel Ther ; 16: 3197-3213, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36158238

RESUMO

Background: Epirubicin (EADM) is a common chemotherapeutic agent in hepatocellular carcinoma (HCC). The accumulation of hypoxia-inducible factor-1α (HIF-1α) is an important cause of drug resistance to EADM in HCC. Tanshinone I (Tan I) is an agent with promising anti-cancer effects alone or with other drugs. Some tanshinones mediate HIF-1α regulation via PI3K/AKT. However, the role of Tan I combined with EADM to reduce the resistance of HCC to EADM has not been investigated. Therefore, this study aimed to investigate the combined use of Tan I and EADM in HCC and the underlying mechanism of PI3K/AKT/HIF-1α. Methods: HCC cells were treated with Tan I, EADM, or the combined treatment for 48 hrs. Cell transfection was used to construct HIF-1α overexpression HCC stable cells. Cell viability, colony formation, and flow cytometric assays were used to detect the viability, proliferation, and apoptosis in HCC cells. Synergism between Tan I and EADM were tested by calculating the Bliss synergy score, positive excess over bliss additivism (EOBA), and the combination index (CI). Western blotting analyses were used to detect the levels of ß-actin, HIF-1α, PI3K p110α, p-Akt Thr308, Cleaved Caspase-3, and Cleaved Caspase-9. Toxicity parameters were used to evaluate the safety of the combination in mice. The xenograft model of mice was built by HCC stable cell lines, which was administrated with Tan I, EADM, or a combination of them for 8 weeks. Immunohistochemistry staining (IHC) was used to assess tumor apoptosis in mouse models. Results: Hypoxia could upregulate HIF-1α to induce drug resistance in HCC cancer cells. The combination of Tan I and EADM was synergistic. Although Tan I or EADM alone could inhibit HCC cancer cells, the combination of them could further enhance the cytotoxicity and growth inhibition by targeting the PI3K/AKT/HIF-1α signaling pathway. Furthermore, Tan I and EADM synergistically reversed HIF-1α-mediated drug resistance to inhibit HCC. The results of toxicity parameters showed that the combination was safe in mice. Meanwhile, animal models showed that Tan I not only improved the anti-tumor effect of EADM, but also reduced the drug reactions of EADM-induced weight loss. Conclusion: Our results suggested that Tan I could effectively improve the anti-tumor effect of EADM, and synergize EADM to reverse HIF-1α mediated resistance via targeting PI3K/AKT/HIF-1α signaling pathway.


Assuntos
Abietanos , Carcinoma Hepatocelular , Epirubicina , Neoplasias Hepáticas , Animais , Humanos , Camundongos , Abietanos/farmacologia , Actinas/metabolismo , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Caspase 3/metabolismo , Caspase 9/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Epirubicina/farmacologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
18.
Stem Cell Res Ther ; 12(1): 397, 2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34256845

RESUMO

BACKGROUND: Pulmonary fibrosis (PF) is a growing clinical problem with limited therapeutic options. Human umbilical cord mesenchymal stromal cell (hucMSC) therapy is being investigated in clinical trials for the treatment of PF patients. However, little is known about the underlying molecular and cellular mechanisms of hucMSC therapy on PF. In this study, the molecular and cellular behavior of hucMSC was investigated in a bleomycin-induced mouse PF model. METHODS: The effect of hucMSCs on mouse lung regeneration was determined by detecting Ki67 expression and EdU incorporation in alveolar type 2 (AT2) and lung fibroblast cells. hucMSCs were transfected to express the membrane localized GFP before transplant into the mouse lung. The cellular behavior of hucMSCs in mouse lung was tracked by GFP staining. Single cell RNA sequencing was performed to investigate the effects of hucMSCs on gene expression profiles of macrophages after bleomycin treatment. RESULTS: hucMSCs could alleviate collagen accumulation in lung and decrease the mortality of mouse induced by bleomycin. hucMSC transplantation promoted AT2 cell proliferation and inhibited lung fibroblast cell proliferation. By using single cell RNA sequencing, a subcluster of interferon-sensitive macrophages (IFNSMs) were identified after hucMSC infusion. These IFNSMs elevate the secretion of CXCL9 and CXCL10 following hucMSC infusion and recruit more Treg cells to the injured lung. CONCLUSIONS: Our study establishes a link between hucMSCs, macrophage, Treg, and PF. It provides new insights into how hucMSCs interact with macrophage during the repair process of bleomycin-induced PF and play its immunoregulation function.


Assuntos
Células-Tronco Mesenquimais , Fibrose Pulmonar , Animais , Humanos , Macrófagos , Camundongos , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/genética , Fibrose Pulmonar/terapia , Linfócitos T Reguladores , Cordão Umbilical
19.
Ann Transl Med ; 9(16): 1310, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34532447

RESUMO

BACKGROUND: The pathogenesis of non-cirrhotic hepatocellular carcinoma (HCC) with a high recurrence remains controversial, while microvascular invasion (MVI) is highly suggestive of tumor recurrence. This study aimed to investigate the effects of liver fibrosis on MVI and prognosis in HCC. METHODS: Based on the data of HCC in the Surveillance, Epidemiology, and End Results (SEER) database [2004-2015], multivariate logistic regression was used for correlation analysis. Survival was analyzed by Log-Rank test and Cox regression, and decision curve analysis and receiver operating characteristic curves were established to evaluate alternative diagnostic and prognostic strategies. RESULTS: The study included 1,492 patients with MVI (17.8%) or without MVI (82.2%) for HCC with a solitary nodule. Liver fibrosis was significantly correlated with the occurrence of MVI, and the risk of MVI in patients with a fibrosis score F5-6 was lower than in those with a score of F0-4 (OR =0.651, 95% CI: 0.492-0.860). Combining liver fibrosis could improve the prediction performance of MVI risk models, but liver fibrosis was less associated with survival outcomes in comparison with other tumor characteristics. CONCLUSIONS: Lower liver fibrosis correlated with a higher risk of MVI in HCC with a solitary nodule and was a good indicator for improving the performance of MVI risk models. However, it was not a prognostic sensitive indicator.

20.
Front Cell Dev Biol ; 9: 722953, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34858970

RESUMO

Mesenchymal stromal cells (MSCs) show potential for treating preclinical models of newborn bronchopulmonary dysplasia (BPD), but studies of their therapeutic effectiveness have had mixed results, in part due to the use of different media supplements for MSCs expansion in vitro. The current study sought to identify an optimal culture supplement of umbilical cord-derived MSCs (UC-MSCs) for BPD therapy. In this study, we found that UC-MSCs cultured with human platelet lysate (hPL-UCMSCs) were maintained a small size from Passage 1 (P1) to P10, while UC-MSCs cultured with fetal bovine serum (FBS-UCMSCs) became wide and flat. Furthermore, hPL was associated with lower levels of senescence in UC-MSCs during in vitro expansion compared with FBS, as indicated by the results of ß-galactosidase staining and measures of senescence-related genes (CDKN2A, CDKN1A, and mTOR). In addition, hPL enhanced the proliferation and cell viability of the UC-MSCs and reduced their doubling time in vitro. Compared with FBS-UCMSCs, hPL-UCMSCs have a greater potential to differentiate into osteocytes and chondrocytes. Moreover, using hPL resulted in greater expression of Nestin and specific paracrine factors (VEGF, TGF-ß1, FGF2, IL-8, and IL-6) in UC-MSCs compared to using FBS. Critically, we also found that hPL-UCMSCs are more effective than FBS-UCMSCs for the treatment of BPD in a rat model, with hPL leading to improvements in survival rate, lung architecture and fibrosis, and lung capillary density. Finally, qPCR of rat lung mRNA demonstrated that hPL-UCMSCs had lower expression levels of inflammatory factors (TNF-α and IL-1ß) and a key chemokine (MCP-1) at postnatal day 10, and there was significant reduction of CD68+ macrophages in lung tissue after hPL-UCMSCs transplantation. Altogether, our findings suggest that hPL is an optimal culture supplement for UC-MSCs expansion in vitro, and that hPL-UCMSCs promote lung repair in rat BPD disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA