RESUMO
Microcystis aeruginosa is a prevalent cyanobacterium linked to water eutrophication and harmful algal blooms. While bacterial control strategies are well-studied, the effects of white rot fungi on Microcystis aeruginosa are less understood. This study examines the impact of whole fungal liquid, its centrifuged supernatant, and sterilized solutions on the algae's physiological and biochemical traits. Metabolomics and multivariate analysis identified significant changes in 47 metabolic markers, including carbohydrates, amino acids, and fatty acids, across treatments. The complete fungal liquid exhibited the strongest algicidal effect, likely due to synergistic solubilization mechanisms mediated by extracellular enzymes such as manganese peroxidase, catalase, and laccase. Notably, algicidal activity persisted even after sterilization, suggesting the presence of non-proteinaceous compounds like polysaccharides or lipids. The metabolic disturbances included downregulation of the TCA cycle and reduced fatty acid synthesis, leading to inhibited photosynthesis and compromised nucleic acid integrity in the algal cells. This research enhances our understanding of how white rot fungi disrupt Microcystis aeruginosa metabolism, providing a theoretical basis for their potential use in bioremediation of eutrophic aquatic environments.
Assuntos
Microcystis , Eutrofização , Proliferação Nociva de Algas , Agentes de Controle Biológico , Metabolômica , Fotossíntese/efeitos dos fármacos , Biodegradação Ambiental , Ácidos Graxos/metabolismoRESUMO
As human society and industrialization have progressed, harmful algal blooms have contributed to global ecological pollution which makes the development of a novel and effective algal control strategy imminent. This is because existing physical and chemical methods for dealing with the problem have issues like cost and secondary pollution. Benefiting from their environmentally friendly and biocompatible properties, white-rot fungi (WRF) have been studied to control algal growth. WRF control algae by using algae for carbon or nitrogen, antagonism, and enhancing allelopathies. It can be better applied to practice by immobilization. This paper reviews the mechanism for WRF control of algae growth and its practical application. It demonstrates the limitations of WRF controlling algae growth and aids the further study of biological methods to regulate eutrophic water in algae growth research. In addition, it provides theoretical support for the fungi controlling algae growth.
Assuntos
Basidiomycota , Eutrofização , Humanos , Proliferação Nociva de Algas , FungosRESUMO
Cyanobacterial blooms caused by Microcystis aeruginosa threaten environmental safety and daily life. In this study, an activated carbon fiber-supported nano zero-valent iron composite (ACF-nZVI) was developed to remove Microcystis aeruginosa. The results showed that nZVI was evenly distributed on the activated carbon fibers, preventing aggregation and oxidation. ACF-nZVI achieved a removal efficiency of more than 90 % within a pH range of 3-7. During the reaction, H2O2, which was generated by Fe0, was activated to form ·OH and ·O-2, which dismantled antioxidant enzymes and induced lipid peroxidation. Additionally, ACF-nZVI destroyed the cell wall and membrane, resulting in protein and humus leakage and causing 92.34 % cell damage and death. In this study, an environmentally friendly and stable nanomaterial was developed, offering a novel approach for the safe, cost-effective, and efficient removal of cyanobacteria.
Assuntos
Carvão Vegetal , Ferro , Microcystis , Ferro/química , Carvão Vegetal/química , Concentração de Íons de Hidrogênio , Peróxido de Hidrogênio/química , Nanopartículas Metálicas/química , Purificação da Água/métodos , Peroxidação de LipídeosRESUMO
Studies published recently proposed that ammonia-oxidizing archaea (AOA) may be beneficial for hypersaline (salinity > 50 g NaCl L-1) industrial wastewater treatment. However, knowledge of AOA activity in hypersaline bioreactors is limited. This study investigated the effects of salinity, organic matter, and practical pickled mustard tuber wastewater (PMTW) on AOA and ammonia-oxidizing bacteria (AOB) in two sequencing batch biofilm reactors (SBBRs). Results showed that despite observed salinity inhibition (p < 0.05), both AOA and AOB contributed to high ammonia removal efficiency at a salinity of 70 g NaCl L-1 in the two SBBRs. The ammonia removal efficiency of SBBR2 did not significantly differ from that of SBBR1 in the absence of organic matter (p > 0.05). Batch tests and quantitative real-time PCR (qPCR) reveal that salinity and organic matter inhibition resulted in a sharp decline in specific ammonia oxidation rates and amoA gene copy numbers of AOA and AOB (p < 0.05). AOA demonstrated higher abundance and more active ammonia oxidation activity in hypersaline and high organic matter environments. Salinity was positively correlated with the potential ammonia oxidation contribution of AOA (p < 0.05), resulting in a potential transition from AOB dominance to AOA dominance in SBBR1 as salinity levels rose. Moreover, autochthonous AOA in PMTW promoted the abundance and ammonia oxidation activities of AOA in SBBR2, further elevating the nitrification removal efficiency after feeding the practical PMTW. AOA demonstrates greater tolerance to the challenging hypersaline environment, making it a valuable candidate for the treatment of practical industrial wastewater with high salinity and organic content.
Assuntos
Archaea , Águas Residuárias , Archaea/genética , Amônia , Salinidade , Cloreto de Sódio , Oxirredução , Bactérias/genética , Nitrificação , Filogenia , Microbiologia do SoloRESUMO
Developing efficient and sustainable pollution control technologies has become a research priority in the context of escalating global environmental pollution. Nano zero-valent iron (nZVI), with its high specific surface area and strong reducing power, demonstrates remarkable performance in pollutant removal. Still, its application is limited by issues such as oxidation, passivation, and particle aggregation. White rot fungi (WRF) possess a unique enzyme system that enables them to degrade a wide range of pollutants effectively, yet they face challenges such as long degradation cycles and low degradation efficiency. Despite the significant role of nZVI in pollutant remediation, most contaminated sites still rely on microbial remediation as a concurrent or ultimate treatment method to achieve remediation goals. The synergistic combination of nZVI and WRF can leverage their respective advantages, thereby enhancing pollution control efficiency. This paper reviews the mechanisms, advantages, and disadvantages of nZVI and WRF in pollution control, lists application examples, and discusses their synergistic application in pollution control, highlighting their potential in pollutant remediation and providing new insights for combined pollutant treatment. However, research on the combined use of nZVI and WRF for pollutant remediation is still relatively scarce, necessitating a deeper understanding of their synergistic potential and further exploration of their cooperative interactions.
RESUMO
Micro- and nanoplastics (MNPs), emerging as pervasive environmental pollutants, present multifaceted threats to diverse ecosystems. This review critically examines the ability of MNPs to traverse biological barriers in fish, leading to their accumulation in gonadal tissues and subsequent reproductive toxicity. A focal concern is the potential transgenerational harm, where offspring not directly exposed to MNPs exhibit toxic effects. Characterized by extensive specific surface areas and marked surface hydrophobicity, MNPs readily adsorb and concentrate other environmental contaminants, potentially intensifying reproductive and transgenerational toxicity. This comprehensive analysis aims to provide profound insights into the repercussions of MNPs on fish reproductive health and progeny, highlighting the intricate interplay between MNPs and other pollutants. We delve into the mechanisms of MNPs-induced reproductive toxicity, including gonadal histopathologic alterations, oxidative stress, and disruptions in the hypothalamic-pituitary-gonadal axis. The review also underscores the urgency for future research to explore the size-specific toxic dynamics of MNPs and the long-term implications of chronic exposure. Understanding these aspects is crucial for assessing the ecological risks posed by MNPs and formulating strategies to safeguard aquatic life.
Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Animais , Ecossistema , Microplásticos , Peixes , Gônadas , PlásticosRESUMO
Gliomas, the most prevalent primary brain tumors, pose considerable challenges due to their heterogeneity, intricate tumor microenvironment (TME), and blood-brain barrier (BBB), which restrict the effectiveness of traditional treatments like surgery and chemotherapy. This review provides an overview of engineered cell membrane technologies in glioma therapy, with a specific emphasis on targeted drug delivery and modulation of the immune microenvironment. This study investigates the progress in engineered cell membranes, encompassing physical, chemical, and genetic alterations, to improve drug delivery across the BBB and effectively target gliomas. The examination focuses on the interaction of engineered cell membrane-coated nanoparticles (ECM-NPs) with the TME in gliomas, emphasizing their potential to modulate glioma cell behavior and TME to enhance therapeutic efficacy. The review further explores the involvement of ECM-NPs in immunomodulation techniques, highlighting their impact on immune reactions. While facing obstacles related to membrane stability and manufacturing scalability, the review outlines forthcoming research directions focused on enhancing membrane performance. This review underscores the promise of ECM-NPs in surpassing conventional therapeutic constraints, proposing novel approaches for efficacious glioma treatment.
Assuntos
Neoplasias Encefálicas , Membrana Celular , Glioma , Nanopartículas , Microambiente Tumoral , Glioma/tratamento farmacológico , Glioma/terapia , Glioma/metabolismo , Glioma/imunologia , Glioma/patologia , Humanos , Nanopartículas/química , Membrana Celular/metabolismo , Microambiente Tumoral/efeitos dos fármacos , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/imunologia , Animais , Barreira Hematoencefálica/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Imunomodulação/efeitos dos fármacosRESUMO
Soil pollution is a global environmental problem. Nanoscale zero-valent iron (nZVI) as a kind of emerging remedial material is used for contaminated soil, which can quickly and effectively degrade and remove pollutants such as organic halides, nitrates and heavy metals in soil, respectively. However, nZVI and its composites can enter the soil environment in the application process, affect the physical and chemical properties of the soil, be absorbed by microorganisms and affect the growth and metabolism of microorganisms, thus affecting the ecological environment of the entire soil. Because of the potential risks of nZVI to the environment and ecosystems, this paper summarizes the current application of nZVI in the remediation of contaminated soil environments, summarizes the various factors affecting the toxic effects of nZVI particles and comprehensively analyzes the toxic effects of nZVI on microorganisms, toxic mechanisms and cell defense behaviors to provide a theoretical reference for subsequent biosafety research on nZVI.
RESUMO
Simultaneous partial nitrification, anammox and denitrification (SNAD) is a sustainable and cost-effective technology for nitrogen removal from low-strength wastewater. However, knowledge of the biofilm microenvironment of the SNAD system is currently unsatisfactory. The purpose of this study was to evaluate organic carbon effects on the microenvironment and microbial growth in the SNAD biofilm system. Microelectrodes were used to investigate microbial activity in-depth within biofilms. ORP distribution of the SNAD system was positively related to anammox activity(R2 = 0.9), and had some influence on microbial community structure. The synergistic effect of anammox bacteria and denitrifiers could be achieved when the abundance ratio of anammox bacteria to denitrifying bacteria is greater than 1.2.
RESUMO
As a new type of polymer, water-driven polyurethane (PU) has attracted increasing attention of researchers; however, with the popularization of its application, the following infection problems limit their applications, especially in the biomedical field. Herein, a series of novel cellulose nanocrystals (CNCs)-based PUs were first synthesized by chemical cross-linking CNCs with triblock copolymer polylactide-poly (ethylene glycol)-polylactide (CNC-PU). After covalent binding with tannic acid (TA-CNC-PU), the silver nanoparticles (Ag NPs) were further introduced into the material by a reduction reaction (Ag/TA-CNC-PU). Finally, the prepared serial CNCs-based PU nanocomposites were fully characterized, including the microstructure, water contact angle, water uptake, thermal properties as well as antibacterial activity. Compared with CNC-PU, the obtained TA-CNC-PU and Ag/TA-CNC-PU were capable of lower glass transition temperatures and improved thermal stability. In addition, we found that the introduction of tannic acid and Ag NPs clearly increased the material hydrophobicity and antibacterial activity. In particular, the Ag/TA-CNC-PU had a better antibacterial effect on E. coli, while TA-CNC-PU had better inhibitory effect on S. aureus over a 24 h time period. Therefore, these novel CNCs-based PUs may be more beneficial for thermal processing and could potentially be developed into a new class of smart biomaterial material with good antibacterial properties by adjusting the ratio of TA or Ag NPs in their structures.
RESUMO
Biogenic manganese oxides (Bio-MnOx) have attracted considerable attention for removing pharmaceutical contaminants (PhCs) due to their high oxidation capacity and environmental friendliness. Mn-oxidizing microalgae (MnOMs) generate Bio-MnOx with low energy and organic nutrients input and degrade PhCs. The combined process of MnOMs and Bio-MnOx exhibits good prospects for PhCs removal. However, the synergistic effects of MnOMs and Bio-MnOx in PhCs removal are still unclear. The performance of MnOMs/Bio-MnOx towards diclofenac (DCF) removal was evaluated, and the mechanism was revealed. Our results showed that the Bio-MnOx produced by MnOMs were amorphous nanoparticles, and these MnOMs have a good Mn2+ tolerance and oxidation efficiency (80-90%) when the Mn2+ concentration is below 1.00 mmol/L. MnOMs/Bio-MnOx significantly promotes DCF (1 mg/L) removal rate between 0.167 ± 0.008 mg/L·d (by MnOMs alone) and 0.125 ± 0.024 mg/L·d (by Bio-MnOx alone) to 0.250 ± 0.016 mg/L·d. The superior performance of MnOMs/Bio-MnOx could be attributed to the continuous Bio-MnOx regeneration and the sharing of DCF degradation intermediates between Bio-MnOx and MnOMs. Additionally, the pathways of DCF degradation by Bio-MnOx and MnOMs were proposed. This work could shed light on the synergistic effects of MnOMs and Bio-MnOx in PhCs removal and guide the development of MnOMs/Bio-MnOx processes for removing DCF or other PhCs from wastewater.
RESUMO
Using tobacco waste as raw material, the ultrasonic-assisted extraction of chlorogenic acid was optimized by response surface methodology (RSM). After repeated freezing and thawing of tobacco waste twice, the effect of pH value, ethanol volume fraction, temperature and extraction time on the extraction rate of chlorogenic acid was investigated by a single factor experiment. On the basis of this, the factors affecting the yield of chlorogenic acid were further optimized by using RSM. The optimum extraction conditions for chlorogenic acid were set at pH = 4.1, ethanol volume fraction was 49.57% and extraction time was 2.06 h. Under the above conditions, the extraction rate of chlorogenic acid could reach 0.502%, which was higher than traditional extraction and unpretreated ultrasonic extraction. All these results can be used as a reference for the extraction of effective ingredients in tobacco waste.
Assuntos
Ácido Clorogênico , Ultrassom , Etanol , Extratos Vegetais , NicotianaRESUMO
To investigate the treatment effect of algae biosorbent on heavy metal wastewater, in this paper, the adsorption effect of M. aeruginosa powder on heavy metal ions copper, cadmium and nickel was investigated using the uniform experimental method, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and TG-DSC comprehensive thermal analysis. The experimental results showed that the initial concentration of copper ion solution was 25 mg/L, the temperature was 30 °C, the pH value was 8 and the adsorption time was 5 h, which was the best condition for the removal of copper ions by algae powder adsorption, and the removal rate was 83.24%. The initial concentration of cadmium ion solution was 5 mg/L, the temperature was 35 °C, the pH value was 8 and the adsorption time was 4 h, which was the best condition for the adsorption of cadmium ion by algae powder, and the removal rate was 92.00%. The initial nickel ion solution concentration of 15 mg/L, temperature of 35 °C, pH value of 7 and adsorption time of 1 h were the best conditions for the adsorption of nickel ions by algae powder, and the removal rate was 88.67%. The spatial structure of algae powder changed obviously before and after adsorbing heavy metals. The functional groups such as amino and phosphate groups on the cell wall of M. aeruginosa enhanced the adsorption effect of heavy metal ions copper, cadmium and nickel. Additionally, M. aeruginosa adsorption of heavy metal ions copper, cadmium, nickel is an exothermic process. The above experiments show that M. aeruginosa can be used as a biological adsorbent to remove heavy metals, which lays a theoretical foundation for the subsequent treatment of heavy metal pollution by algae.
Assuntos
Metais Pesados , Microcystis , Cádmio/análise , Cobre/análise , Adsorção , Níquel/análise , Pós , Concentração de Íons de Hidrogênio , Metais Pesados/análise , Íons/análise , Águas Residuárias/análise , CinéticaRESUMO
At present, research on the influence of human activities (especially urbanization) on the microbial diversity, structural composition, and spatial distribution of rivers is limited. In this paper, to explore the prokaryotic community structure and the relationship between the community and environmental factors in the Jialing River Basin of Chongqing, so as to provide a basis for monitoring microorganisms in the watershed. The V3-V4 region of the 16 S rRNA gene was analyzed by high-throughput sequencing and the microbial community of the waters of the Jialing River was analyzed for the diversity and composition of the prokaryotic community as well as the species difference of four samples and correlations with environmental factors. The main results of this study were as follows: (1) The diversity index showed that there were significant differences in the biodiversity among the four regions. At the genus level, Limnohabitans, unclassified_f_Comamonadaceae, and Hgcl_clade were the main dominant flora with a high abundance and evenness. (2) A Kruskal-Wallis H test was used to analyze the differences of species composition among the communities and the following conclusions were drawn: each group contained a relatively high abundance of Limnohabitans; the Shapingba District had a higher abundance of Limnohabitans, the Hechuan District had a wide range of unclassified_f_Comamonadaceae, and the Beibei District had a higher Hgcl_clade. (3) Through the determination of the physical and chemical indicators of the water-namely, total nitrogen, total phosphorus, chemical oxygen demand, chlorophyll A, and an analysis by an RDA diagram, the results demonstrated that the distribution of microbial colonies was significantly affected by the environmental factors of the water. Chemical oxygen demand and ammonia nitrogen had a significant influence on the distribution of the colonies. Different biological colonies were also affected by different environmental factors.
Assuntos
Biodiversidade , Rios , China , Clorofila A/análise , Monitoramento Ambiental/métodos , Humanos , Nitrogênio/análise , Água/análiseRESUMO
Eutrophication has become a severe environmental problem. This study evaluated the algicidal efficiency and genotoxic effects of Microcystis aeruginosa co-cultured with Phanerochaete chrysosporium for 48 h under the optimum conditions of 250 mg/L of P. chrysosporium at 25 °C with dissolved oxygen content of 7.0 mg/L. The results showed that the activity of algal dehydrogenase, superoxide dismutase, and peroxidase were all decreased and the malondialdehyde content increased after co-culturing. Fourier transform infrared spectroscopy and scanning electron microscopy observations showed that the functional group and structure of algal cells were significantly changed. Compared with those of control tadpoles, blood cells of Fejervarya multistriata tadpoles had increased micronucleus frequency (from 1.05 ± 0.09 to 1.99 ± 0.05) and abnormal nuclei (from 2.45 ± 0.06 to 5.83 ± 0.07). The tail length of M. aeruginosa co-cultured with P. chrysosporium increased from 1.12 ± 0.21 to 21.68 ± 0.34, and the comet length increased from 6.45 ± 0.09 to 36.45 ± 0.67 within 48 h. Micronucleus assay and Comet assay results demonstrated that P. chrysosporium might effectively remove algae and reduce genotoxic effects and may be safe for aquatic ecosystems.
Assuntos
Microcystis , Phanerochaete , Dano ao DNA , Ecossistema , EutrofizaçãoRESUMO
Current research on the inhibition of Microcystis aeruginosa growth is primarily focused on algae-lysing bacteria, and few studies have investigated the inhibitory mechanisms by which fungi affect it at the molecular level. A comparative analysis of the effects of Phanerochaete chrysosporium on the expression of the algal cell antioxidant protease synthesis gene prx, the biological macromolecule damage and repair genes recA, grpE, and fabZ, and the photosynthesis system-related genes psaB, psbD1 and rbcL, as well as genes for algal toxin synthesis mcyB, were performed to elucidate the molecular mechanism of Phanerochaete chrysosporium against Microcystis aeruginosa cells. RT-qPCR technology was used to study the molecular mechanism of algal cell inhibition by Phanerochaete chrysosporium liquid containing metabolites of Phanerochaete chrysosporium, Phanerochaete chrysosporium supernatant and Phanerochaete chrysosporium inactivated via high temperature sterilization at the gene expression level. Compared with the control, the chlorophyll-a contents dropped, and the recA, grpE, fabZ, and prx increased, but the psaB, psbD1, rbcL and mcyB showed that they were significantly reduced, which indicated that Phanerochaete chrysosporium can not only effectively destroy algal cells, but they may also reduce the expression of the Microcystis aeruginosa toxin gene and significantly block the metabolic system underlying the growth of algal cells and the synthesis of microcystins.
Assuntos
Proteínas de Bactérias/metabolismo , Microcistinas/metabolismo , Microcystis/metabolismo , Phanerochaete/metabolismo , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Proliferação Nociva de Algas , Inativação Metabólica , Microcistinas/genética , Microcystis/genética , Phanerochaete/genéticaRESUMO
Cancer immunotherapy is a promising approach that has recently gained its importance in treating cancer. Despite various approaches of immunotherapies being used to target cancer cells, they are either not effective against all types of cancer or for all patients. Although efforts are being made to improve the cancer immunotherapy in all possible ways, one important hindrance that lowers the immune response to kill cancer cells is the infiltration of Regulatory T (Treg) cells into the tumor cells, favoring tumor progression, on one hand, and inhibiting the activation of T cells to respond to cancer cells, on the other hand. Therefore, new anti-cancer drugs and vaccines fail to show promising results against cancer. This is due to the infiltration of Treg cells into the tumor region and suppression of anti-cancer activity. Thus, regardless of various types of immunotherapies being practiced, understanding the mechanisms of how Treg cells favor tumor progression and inhibition of anti-cancer activity is worthwhile. Therefore, the review highlights the importance of Tregs cells and how depletion of Treg cells can pave the way to an effective immunotherapy by activating the immune responses against cancer.
RESUMO
Bacterial repellence by biomedical materials is a desirable property that can potentially improve the healing process. In this study, we described a simple and green method to prepare a novel piperazine polymer (PE), which was based on the raw materials piperazine (PA) and ethylenediaminetetraacetic dianhydride (EDTAD). The structure and thermal stability of the obtained material were characterized using Fourier transform infrared spectrometry (FTIR), nuclear magnetic resonance spectroscopy (NMR), elementary analysis, differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). To evaluate the antibacterial properties of PE, a strain of Gram-negative Escherichia coli (E. coli) bacteria and a strain of Gram-positive Staphylococcus aureus (S. aureus) bacteria were used. The results indicated that PE exhibited good antibacterial activity against both strains of bacteria in a short time frame. The initial cytotoxicity test of the obtained material was based on the changes in the morphology and proliferation of osteoblasts, and the results demonstrated that the cytotoxicity of PE was concentration-dependent. Combining the experimental results of these two parts, it was shown that bacteria could be inhibited by a certain concentration of PE, while its toxicity toward osteoblasts was very low. In summary, these results revealed the potential usefulness of PE in biomedical applications.
RESUMO
Algal blooms and toxins have become serious ecological problems. White-rot fungi have been demonstrated to be a feasible means of control, but the genotoxicity mechanisms involved have not been reported. In this study, Cryptomonas obovata FACHB-1301, Oscillatoria sp. FACHB-1083, and Scenedesmus quadricauda FACHB-507 were co-cultured with Phanerochaete chrysosporium under optimal conditions of 250 mg-l at 25 °C with DO 7.0 mg-l for 1, 3, 5 and 7 d. Compared to the control groups, the values for tadpoles exposed to algae treated with Phanerochaete chrysosporium were only increased from 1.95 ± 0.09, 2.78 ± 0.08 and 2.37 ± 0.13 to 2.45 ± 0.07, 3.56 ± 0.08 and 2.54 ± 0.10, and the frequency of nuclear anomalies reached 6.45 ± 0.06, 11.14 ± 0.05 and 7.85 ± 0.10 to 7.68 ± 0.08, 13.12 ± 0.06 and 8.57 ± 0.12 in the experimental groups after 7 d. What's more, the tail lengths were only increased to 36.77 ± 0.54, 41.58 ± 0.78 and 35.38 ± 0.66, and the comet length reached 55.67 ± 0.68, 68.56 ± 0.85 and 51.43 ± 0.82. The results demonstrated that Phanerochaete chrysosporium effectively decreased genotoxicity effects in Fejervarya multistriat tadpoles. These results could provide new ideas for inhibiting water blooms, and lay a theoretical foundation for promoting the deepening of water eutrophication.
Assuntos
Biodegradação Ambiental/efeitos dos fármacos , Ensaio Cometa/métodos , Proliferação Nociva de Algas/efeitos dos fármacos , Testes para Micronúcleos/métodos , Phanerochaete/efeitos dos fármacosRESUMO
Poly(lactic acid) has been extensively investigated in the biomedical field because of its good biocompatibility and biodegradability. As an important method of poly(lactic acid) synthesis, metal complex-catalyzed ring-opening polymerization (ROP) of lactide can achieve a controllable lactide polymerization through the selection of appropriate ligands and metals. In this study, a novel metal (LTi-O)2 complex was synthesized and structurally characterized. (LTi-O)2 showed a relatively high catalytic activity and controllability of Poly(D, L-lactide) (PDLLA) molecular weights (polydispersity index of 1.02-1.22) in the ROP of D,L-lactide. The kinetic equation of D,L-LA ROP catalyzed by (LTi-O)2 could be expressed as-d[M]/dt = k[M]2[(LTi-O)2]1, and the reaction activation energy was 95.67 kJ·mol-1. Physical/chemical properties and biocompatibility evaluation results showed that PDLLA obtained through the (LTi-O)2-catalyzed ROP of D,L- lactide exhibited a good degradation performance and excellent biocompatibility.