RESUMO
BACKGROUND: Acid phosphatase type 6 (ACP6) is a mitochondrial lipid phosphate phosphatase that played a role in regulating lipid metabolism and there is still blank in the clinico-pathological significance and functional roles of ACP6 in human cancers. No investigations have been conducted on ACP6 in hepatocellular carcinoma (HCC) up to date. METHODS: Herein, we appraised the clinico-pathological significance of ACP6 in HCC via organizing expression profiles from globally multi-center microarrays and RNA-seq datasets. The molecular basis of ACP6 in HCC was explored through multidimensional analysis. We also carried out in vitro and in vivo experiment on nude mice to investigate the effect of knocking down ACP6 expression on biological functions of HCC cells, and to evaluate the expression variance of ACP6 in xenograft of HCC tissues before and after the treatment of NC. RESULTS: ACP6 displayed significant overexpression in HCC samples (standard mean difference (SMD) = 0.69, 95% confidence interval (CI) = 0.56-0.83) and up-regulated ACP6 performed well in screening HCC samples from non-cancer liver samples. ACP6 expression was also remarkably correlated with clinical progression and worse overall survival of HCC patients. There were close links between ACP6 expression and immune cells including B cells, CD8 + T cells and naive CD4 + T cells. Co-expressed genes of ACP6 mainly participated in pathways including cytokine-cytokine receptor interaction, glucocorticoid receptor pathway and NABA proteoglycans. The proliferation and migration rate of HCC cells transfected with ACP6 siRNA was significantly suppressed compared with those transfected with negative control siRNA. ACP6 expression was significantly inhibited by nitidine chloride (NC) in xenograft HCC tissues. CONCLUSIONS: ACP6 expression may serve as novel clinical biomarker indicating the clinical development of HCC and ACP6 might be potential target of anti-cancer effect by NC in HCC.
Assuntos
Fosfatase Ácida , Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Humanos , Camundongos , Fosfatase Ácida/genética , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Camundongos Nus , RNA Interferente PequenoRESUMO
BACKGROUND: The role of HOXA family genes in the occurrence and progression of a variety of human cancers has been scatteredly reported. However, there is no systematic study on the differential expression, prognostic significance and potential molecular mechanism of HOXA4 and HOXA5 in LUAD. METHODS: In-house immunohistochemistry (IHC), multi-center microarrays, RT-qPCR and RNA-seq data were incorporated for comprehensively evaluating the expression and prognostic value of HOXA4 and HOXA5 in LUAD. The mechanism of HOXA4 and HOXA5 in the formation and development of LUAD was analyzed from multiple aspects of immune correlations, upstream transcriptional regulation, functional states of single cells and co-expressed gene network. The functional roles of HOXA4 and HOXA5 in LUAD were validated by in vitro experiments. RESULTS: As a result, in 3201 LUAD samples and 2494 non-cancer lung samples, HOXA4 and HOXA5 were significantly downexpressed (P < 0.05). The aberrant expression of HOXA5 was significantly correlated with the clinical progression of LUAD (P < 0.05). HOXA5 showed remarkable prognostic value for LUAD patients (P < 0.05). The expression of HOXA4 and HOXA5 in LUAD were negatively correlated with tumor purity and positively correlated with the infiltration of various immune cells such as B cells, T cells and macrophages. HOXA4 and HOXA5 overexpression had notable inhibitory effect on the proliferation, migration and invasion of LUAD cells. CONCLUSIONS: In conclusion, the identified downexpressed HOXA4 and HOXA5 had significant distinguishing ability for LUAD samples and affected the cellular functions of LUAD cells. The low expression of HOXA5 indicated worse overall survival of LUAD patients. Therefore, the two HOXA family genes especially HOXA5 may serve as potential biomarkers for LUAD.
Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Adenocarcinoma de Pulmão/genética , Redes Reguladoras de Genes , Proteínas de Homeodomínio/genética , Humanos , Imuno-Histoquímica , Neoplasias Pulmonares/patologia , Prognóstico , Fatores de Transcrição/genéticaRESUMO
BACKGROUND: The scientific understanding of long non-coding RNAs (lncRNAs) has improved in recent decades. Nevertheless, there has been little research into the role that lncRNAs play in clear cell renal cell carcinoma (ccRCC). More lncRNAs are assumed to influence the progression of ccRCC via their own molecular mechanisms. METHODS: This study investigated the prognostic significance of differentially expressed lncRNAs by mining high-throughput lncRNA-sequencing data from The Cancer Genome Atlas (TCGA) containing 13,198 lncRNAs from 539 patients. Differentially expressed lncRNAs were assessed using the R packages edgeR and DESeq. The prognostic significance of lncRNAs was measured using univariate Cox proportional hazards regression. ccRCC patients were then categorized into high- and low-score cohorts based on the cumulative distribution curve inflection point the of risk score, which was generated by the multivariate Cox regression model. Samples from the TCGA dataset were divided into training and validation subsets to verify the prognostic risk model. Bioinformatics methods, gene set enrichment analysis, and protein-protein interaction networks, Gene Ontology, and Kyoto Encyclopedia of Genes and Genomes analyses were subsequently used. RESULTS: It was found that the risk score based on 6 novel lncRNAs (CTA-384D8.35, CTD-2263F21.1, LINC01510, RP11-352G9.1, RP11-395B7.2, RP11-426C22.4) exhibited superior prognostic value for ccRCC. Moreover, we categorized the cases into two groups (high-risk and low-risk), and also examined related pathways and genetic differences between them. Kaplan-Meier curves indicated that the median survival time of patients in the high-risk group was 73.5 months, much shorter than that of the low-risk group (112.6 months; P < 0.05). Furthermore, the risk score predicted the 5-year survival of all 539 ccRCC patients (AUC at 5 years, 0.683; concordance index [C-index], 0.853; 95% CI 0.817-0.889). The training set and validation set also showed similar performance (AUC at 5 years, 0.649 and 0.681, respectively; C-index, 0.822 and 0.891; 95% CI 0.774-0.870 and 0.844-0.938). CONCLUSIONS: The results of this study can be applied to analyzing various prognostic factors, leading to new possibilities for clinical diagnosis and prognosis of ccRCC.
Assuntos
Carcinoma de Células Renais/genética , Neoplasias Renais/genética , RNA Longo não Codificante/genética , Análise de Sequência de RNA , Carcinoma de Células Renais/patologia , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Estimativa de Kaplan-Meier , Neoplasias Renais/patologia , Análise Multivariada , Prognóstico , Modelos de Riscos Proporcionais , RNA Longo não Codificante/metabolismo , Curva ROC , Reprodutibilidade dos Testes , Fatores de RiscoRESUMO
BACKGROUND/AIMS: Left- and right-sided colon cancers are considered to be two different diseases and have altered outcomes. However, specific molecules to predict the prognosis of left- and right-sided colon cancers are currently lacking. METHODS: Expression profiling of colon cancer were downloaded from The Cancer Genome Atlas (TCGA). Differentially expressed genes (DEGs) of left- and right-sided colon cancers were compared by DESeq analysis. The prognostic values of DEGs were assessed by univariate and multivariate Cox regression. Prognostic index models of two side colon cancers were conducted with prognostic values genes, respectively. Interaction of DEGs was then analyzed by the protein-protein interaction (PPI). Different biology function of two sides of colon cancer was assessed by Gene Set Enrichment Analysis (GSEA). RESULTS: A total of 167 DEGs were identified between left- and right-sided colon cancers based on TCGA data. Using univariate COX regression analysis, five genes (PHACTR3, CKMT2, CYP2W1, ERFE, HOXC4) were related to overall survival in left-sided, and eight distinguishable genes (EREG, ERFE, HOXC6, SLC22A31, TFF1, GFI1, ZG16, RASL10B) in right-sided. Further, left-sided prognostic model was established with PHACTR3 and CKMT2 (HR=2.040; 95%CI=1.004-4.145; P=0.049). Distinguishable prognostic signature for right-sided colon cancer was established based on EREG, ERFE, GFI1, and RASL10B (HR=3.530; 95%CI: 1.934-6.444; P< 0.001) in multivariate analysis. PPI analysis of 167 DEGs showed that CCL5, GNG4, GNLY, GZMH, DRD2, and FASLG genes were at the core of interaction network. In GSEA function analysis, four pathways, including antigen processing and presentation, natural killer cell mediated cytotoxicity, intestinal immune network for Iga production, and type I diabetes mellitus, were significantly enriched in the DEGs of the right-sided colon cancer. CONCLUSIONS: This study constructs a panel of potential prognostic model of left- and right-sided colon cancers, respectively. We also provide molecular biological alterations between left- and right-sided colon cancers.
Assuntos
Neoplasias do Colo/patologia , Idoso , Área Sob a Curva , Neoplasias do Colo/metabolismo , Neoplasias do Colo/mortalidade , Proteínas de Ligação a DNA/genética , Epirregulina/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Hormônios Peptídicos/genética , Prognóstico , Modelos de Riscos Proporcionais , Mapas de Interação de Proteínas , Curva ROC , Fatores de Transcrição/genéticaRESUMO
MicroRNAs (miRNAs) play key roles in the regulation of gene expression during multiple physiological processes, including early development, differentiation, and ageing. However, their involvement in age-related thymic involution is not clear. In this study, we profiled the global transcriptome and miRNAome of thymic epithelial cells in 1- and 3-month-old male and female mice, and predicted the possible transcription factors and target genes of the four most significantly differentially expressed miRNAs (DEMs) (miR-183-5p, miR-199b-5p, miR-205-5p, and miR-200b-3p) by performing bioinformatics analyses. We also evaluated the relationships between the significantly DEMs and mRNAs. We performed quantitative polymerase chain reaction to confirm the changes in the expression of the miRNAs and their predicted target genes. We found that miR-183-5p, miR-199b-5p, miR-205-5p, and miR-200b-3p can be used as a biomarker group for mouse thymus development and involution. In addition, the predicted target genes (Ptpn4, Slc2a9, Pkib, Pecam1, and Prkdc), which were identified by mRNA sequencing analysis, were mainly involved in growth, development, and accelerated senescence. In conclusion, miRNAs and their predicted target genes likely play important roles in thymus development and involution. To the best of our knowledge, this is the first study to systematically analyze the relevance of miRNAs and their targets by mRNA sequencing in mouse thymic epithelial cells. © 2018 IUBMB Life, 70(7):678-690, 2018.
Assuntos
Envelhecimento/genética , Células Epiteliais/fisiologia , MicroRNAs/genética , RNA Mensageiro/genética , Timo/citologia , Animais , Feminino , Redes Reguladoras de Genes , Sequenciamento de Nucleotídeos em Larga Escala , Masculino , Camundongos Endogâmicos BALB C , Mapas de Interação de Proteínas/genética , Reação em Cadeia da Polimerase em Tempo Real , Reprodutibilidade dos Testes , Timo/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismoRESUMO
Background: Colorectal cancer (CRC) is a major global health challenge with a need for new biomarkers and therapeutic targets. This work aimed to investigate the biological mechanisms and clinical value of Ly1 antibody reactive (LYAR) in CRC. Methods: We analyzed LYAR mRNA expression across multiple public databases, including genotype-tissue expression, gene expression omnibus, Oncomine, and the cancer genome atlas, alongside in-house immunohistochemical data to evaluate LYAR protein expression in CRC and non-CRC colorectal tissues. Gene set enrichment analysis (GSEA) was used to elucidate LYAR's biological functions, and its impact on the tumor immune microenvironment was assessed using CIBERSORT, ESTIMATE, and single-cell RNA sequencing techniques. In addition, LYAR's association with clinicopathological features and patient prognosis was explored, and its influence on drug sensitivity was investigated using the Connectivity Map database. Results: LYAR was significantly upregulated in CRC tissues compared with non-CRC colorectal counterparts, associated with altered immune cell composition and enhanced RNA processing, splicing, and cell cycle regulation. High LYAR expression correlated with poor disease-free and overall survival, underscoring its prognostic value. GSEA revealed LYAR's involvement in critical cellular processes and pathways, including DNA repair, cell cycle, and mTORC1 signaling. Correlation analysis identified genes positively and negatively associated with LYAR, leading to the discovery of temsirolimus and WYE-354, mTOR inhibitors, as potential therapeutic agents for CRC. Furthermore, LYAR expression predicted increased sensitivity to cetuximab in RAS wild-type metastatic CRC, indicating its utility as a biomarker for treatment responsiveness. Conclusions: LYAR's upregulation in CRC highlights its potential as a biomarker for prognosis and therapeutic targeting, offering insights into CRC pathology and suggesting new avenues for treatment optimization.
RESUMO
BACKGROUND: The clinical value of pyroptosis-related genes (PRGs) in lung adenocarcinoma (LUAD) remains obscure. OBJECTIVE: The study attempts to explore PRGs in LUAD, which will enable an understanding of LUAD from the perspective of PRGs. METHODS: Lung adenocarcinoma patients were diagnosed using pathology, and their clinical information was collected from several public databases. A PRGs prognostic signature (PPS) for LUAD patients was established based on a multivariate Cox regression analysis. The differential expression of PRGs was identified using standardized mean differences in 6,958 samples. The area under the curve (AUC) was used to evaluate the predictive effects of the PPS to determine the survival rate of LUAD patients. Decision curve analysis was utilized to assess the clinical significance of the PPS in LUAD. RESULTS: The PPS consists of five PRGs, namely CASP3, CASP9, GSDMB, NLRP1, and TNF. The prognostic effect of the PPS is evident in all the predicted one-, three-, and five-year survival rates (AUCs ≥ 0.58). The PPS represents an independent risk factor for the prognosis of LUAD patients (hazard ratio > 1; 95% confidence interval excluding 1). The PPS risk score can predict the prognosis of LUAD patients more accurately than PRGs of the PPS and multiple clinical parameters, such as age, tumor stage, and clinical stage. The decision curve analysis revealed that the nomogram based on the PPS and clinical parameters might result in better clinical decisions. CONCLUSION: The PPS makes it feasible to distinguish LUAD from non-LUAD. Thus, the underlying significance of the PPS in distinguishing LUAD from non-LUAD is promising.
Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Prognóstico , Piroptose/genética , Adenocarcinoma de Pulmão/diagnóstico , Adenocarcinoma de Pulmão/genética , Relevância Clínica , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genéticaRESUMO
Introduction: We aimed to explore the abnormal expression of dual-specificity protein phosphatase 1 (DUSP1) and its latent molecular mechanisms in ovarian carcinoma (OVCA). Materials and Methods: Two clinical cohorts collected from two different hospitals were used to evaluate the expression of DUSP1 protein in OVCA tissues. RNA-sequencing and microarray datasets were utilised to verify DUSP1 expression at mRNA levels in both OVCA tissues and in the peripheral blood of OVCA patients. Furthermore, an integrated calculation was performed to pool the standard mean difference (SMD) from each cohort in order to comprehensively assess the expression of DUSP1 in OVCA. Furthermore, we examined the relationship among DUSP1, tumour microenvironment (TME), and chemotherapy resistance in OVCA. Moreover, we used pathway enrichment analysis to explore the underlying mechanisms of DUSP1 in OVCA. Results: A pooled SMD of -1.19 (95% CI [-2.00, -0.38], p = 0.004) with 1,240 samples revealed that DUSP1 was downregulated in OVCA at both mRNA and protein levels. The area under the receiver operating characteristic curve of 0.9235 indicated the downregulated DUSP1 in peripheral blood may have a non-invasive diagnostic value in OVCA. Through six algorithms, we identified that DUSP1 may related to tumour-infiltrating T cells and cancer associated fibroblasts (CAFs) in OVCA. Pathway enrichment demonstrated that DUSP1 might participate in the mitogen-activated protein kinase (MAPK) signalling pathway. Furthermore, DUSP1 may have relations with chemotherapy resistance, and a favourable combining affinity was observed in the paclitaxel-DUSP1 docking model. Conclusion: DUSP1 was downregulated in OVCA, and this decreasing trend may affect the infiltration of CAFs. Finally, DUSP1 may have a targeting relation with paclitaxel and participate in MAPK signaling pathways.
Assuntos
Fosfatase 1 de Especificidade Dupla , Neoplasias Ovarianas , Carcinoma Epitelial do Ovário , Fosfatase 1 de Especificidade Dupla/metabolismo , Feminino , Humanos , Sistema de Sinalização das MAP Quinases , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/metabolismo , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , RNA Mensageiro/metabolismo , Microambiente Tumoral/genéticaRESUMO
Background: Currently, the benefits of nasopharyngeal carcinoma (NPC) therapy are limited, and it is necessary to further explore possible therapeutic targets. Aryl hydrocarbon receptor nuclear translocator 2 (ARNT2) has been extensively studied in other cancer species, but little has been explored in NPC. The aim of this study was to verify the expression level of ARNT2 and its underlying mechanism in NPC. Methods: Datasets containing ARNT2 mRNA expression levels were retrieved and collected from various databases to explore the expression status of ARNT2 in NPC. ARNT2-related coexpressed genes, differential expressed genes, and target genes were obtained for functional enrichment analysis. The potential target gene of ARNT2 and their regulatory relationship were studied through ChIP-seq data. CIBERSORTx was used to assess the immune infiltration of NPC, and the association with ARNT2 expression was calculated through correlation analysis. Results: ARNT2 was upregulated and possessed an excellent discriminatory capability in NPC samples. ARNT2 positively correlated target genes were clustered in pathways in cancer, while negatively correlated target genes were enriched in immune-related pathway. The ChIP-seq information of ARNT2 and histone showed that prostaglandin-endoperoxide synthase 2 (PTGS2) was a potential target gene of ARNT2. CIBERSORTx revealed the immunity status in NPC, and ARNT2 expression was correlated with infiltration of five immune cells. Conclusions: ARNT2 is overexpressed in NPC and may regulate PTGS2 to participate in the cancer process. ARNT2 serves as a key oncogenic target in NPC patients.
Assuntos
Translocador Nuclear Receptor Aril Hidrocarboneto , Neoplasias Nasofaríngeas , Translocador Nuclear Receptor Aril Hidrocarboneto/genética , Translocador Nuclear Receptor Aril Hidrocarboneto/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Ciclo-Oxigenase 2/metabolismo , Histonas , Humanos , Carcinoma Nasofaríngeo/genética , Neoplasias Nasofaríngeas/genética , RNA MensageiroRESUMO
Purpose: Our purpose was to systematically appraise the clinicopathological significance and explore the molecular bases of CKS2 in endometrial carcinoma. Patients and Methods: We measured the clinicopathological significance of CKS2 using diverse methods of public RNA-seq, microarrays, and in-house tissue microarrays to investigate the molecular basis of CKS2 in endometrial carcinoma through upstream transcriptional analysis, immune infiltration correlation analysis, and co-expression analysis. Results: Both the analysis for public RNA-seq plus the microarray data and in-house tissue microarray confirmed the significant overexpression of CKS2 in a total of 1,021 endometrial carcinoma samples compared with 279 non-cancer endometrium samples (SMD = 2.10, 95% CI = 0.72-3.48). The upregulated CKS2 was significantly related to the lymph node metastasis and advanced clinical grade of endometrial carcinoma patients (p < 0.001). Mutation types such as amplification and mRNA occurred with high frequency in the CKS2 gene in endometrial carcinoma patients. A series of miRNAs and transcription factors, such as hsa-miR-26a, hsa-miR-130a, hsa-miR-30, E2F4, MAX, and GABPA, were predicted to regulate the transcription and expression of CKS2. Significant links were found between CKS2 expression and the infiltration level of B cells, CD4+ T cells, and neutrophils in endometrial carcinoma. CKS2-coexpressed genes were actively involved in pathways such as the mitotic cell cycle process, PID aurora B pathway, and prolactin signaling pathway. Conclusion: The overexpressed CKS2 showed positive correlations with the clinical progression of endometrial carcinoma and was associated with various cancer-related biological processes and pathways, showing potential as a promising clinical biomarker for endometrial carcinoma.
Assuntos
Quinases relacionadas a CDC2 e CDC28 , Neoplasias do Endométrio , MicroRNAs , Quinases relacionadas a CDC2 e CDC28/genética , Proteínas de Transporte/genética , Proteínas de Ciclo Celular/genética , Proliferação de Células/genética , Neoplasias do Endométrio/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , MicroRNAs/genéticaRESUMO
BACKGROUND: The role of pyroptosis-related genes (PRGs) in esophageal adenocarcinoma (EAC) remains unknown. METHODS: In this study, the first PRGs prognostic signature (PPS) of EAC was constructed based on the results of multivariate stepwise Cox regression analysis. Based on 1,047 samples of EAC and normal esophagus (NE), differentially expressed PRGs were selected for the establishment of the PPS. The discrimination effect of this PPS was detected by receiver operating characteristic curves, and the prognosis value of this PPS was determined through Cox regression analysis and Kaplan-Meier curves. Net benefits of the EAC patients from the nomogram (constructed based on the PPS and some clinical parameters) were assessed via decision curve analysis. The potential molecular mechanism of the PPS in EAC was explored via gene set enrichment analysis. The ability of PPS to distinguish EAC and NE was evaluated based on the results of summary receiver operating characteristic curves. RESULTS: The significant prognostic value of PPS can be observed at all of the training cohort, test cohort, and validation cohort, such as its independent risk role in the prognosis of the EAC patients (hazard ratio > 0; 95% CI not including 0). The positive net benefits of the nomogram for the EAC patients can be detected via decision curve analysis, and the potential molecular mechanism of the PPS in EAC is likely related to cell pyroptosis. Last, some of the PRGs (particularly CASP5) included in this PPS specifically support its feasibility for identifying EAC (area under the curves > 0.7). CONCLUSIONS: The construction of this PPS in EAC enhances the present understanding of the relationship between PRGs and EAC, thus representing a novel approach to the clinical identification and management of EAC based on PRGs.
Assuntos
Adenocarcinoma , Piroptose , Adenocarcinoma/genética , Biomarcadores Tumorais/genética , Neoplasias Esofágicas , Humanos , Prognóstico , Piroptose/genéticaRESUMO
Background: Triple-negative breast cancer (TNBC) is the most malignant subtype of breast cancer and lacks effective biomarkers. This study seeks to unravel the expression status and the prospective transcriptional mechanisms of EZH1/EZH2 in TNBC tissue samples. Moreover, another objective of this study is to reveal the prognostic molecular signatures for risk stratification in TNBC patients. Methods: To determine the expression status of EZH1/EZH2 in TNBC tissue samples, microarray analysis and immunohistochemistry were performed on in house breast cancer tissue samples. External mRNA expression matrices were used to verify its expression patterns. Furthermore, the prospective transcriptional mechanisms of EZH1/EZH2 in TNBC were explored by performing differential expression analysis, co-expression analysis, and chromatin immunoprecipitation sequencing analysis. Kaplan-Meier survival analysis and univariate Cox regression analysis were utilized to detect the prognostic molecular signatures in TNBC patients. Nomogram and time-dependent receiver operating characteristic curves were plotted to predict the risk stratification ability of the prognostic-signatures-based Cox model. Results: In-house TMAs (66 TNBC vs. 106 non-TNBC) and external gene microarrays, as well as RNA-seq datasets (1,135 TNBC vs. 6,198 non-TNBC) results, confirmed the downregulation of EZH1 at both the protein and mRNA levels (SMD = -0.59 [-0.80, -0.37]), as is opposite to that of EZH2 (SMD = 0.74 [0.40, 1.08]). The upregulated transcriptional target genes of EZH1 were significantly aggregated in the cell cycle pathway, where CCNA2, CCNB1, MAD2L1, and PKMYT1 were determined as key transcriptional targets. Additionally, the downregulated transcriptional targets of EZH2 were enriched in response to the hormone, where ESR1 was identified as the hub gene. The six-signature-based prognostic model produced an impressive performance in this study, with a training AUC of 0.753, 0.981, and 0.977 at 3-, 5-, and 10-year survival probability, respectively. Conclusion: EZH1 downregulation may be a key modulator in the progression of TNBC through negative transcriptional regulation by targeting CCNA2, CCNB1, MAD2L1, and PKMYT1.
Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Proteínas de Ciclo Celular/genética , Regulação para Baixo/genética , Proteínas de Membrana/genética , Prognóstico , Estudos Prospectivos , Proteínas Serina-Treonina Quinases/genética , Proteínas Tirosina Quinases/genética , RNA Mensageiro , Neoplasias de Mama Triplo Negativas/genéticaRESUMO
PURPOSE: The molecular mechanisms and signal pathways of ferroptosis in hepatoblastoma (HB) have not yet been clarified. In previous studies, activating transcription factor 3 (ATF3) was reported to be correlated with several tumors, but the clinical significance of ATF3 has never been determined. Herein, we investigated the clinicopathological value and mechanisms of ATF3 in regulating ferroptosis in HB. METHODS: The mRNA microarray and RNA-sequencing data of 402 samples from our hospital and public databases were used to estimate ATF3 expression and assess its clinical role in HB. The standard mean difference (SMD) and summary receiver operating characteristic curves were utilized to judge the discrimination ability of ATF3 between HB and non-HB liver tissues. We examined the expression variation of ATF3 in HB cells after the treatment with erastin. We also predicted the target genes of ATF3 as a transcriptional factor from public Chromatin Immunoprecipitation-sequencing data and selected the ferroptosis-related genes for a signaling pathway analysis. RESULTS: In ten series, the pooled SMD for ATF3 was -0.91, demonstrating that ATF3 expression was predominantly lower in HB than in non-HB liver tissues. ATF3 down-regulation showed moderate potential to distinguish HB from non-HB liver tissues (area under curves = 0.83, 95% confidence interval = 0.79-0.86). Altogether, 4855 putative targets of ATF3 as a transcriptional factor were collected, among which, 60 genes were ferroptosis-related. CONCLUSION: The down-regulated ATF3 expression may play a vital role in the occurrence of HB possible partially by regulating ferroptosis.
RESUMO
Although the molecular studies of single gastrointestinal tumors have been widely reported by media, it is not clear about the function of small nucleolar RNA (snoRNA) in the progression, development and prognostic significance in colon adenocarcinoma, and its certain molecular mechanisms and functions remain to be studied. This study aims to dig out the gene expression data profile of colon adenocarcinoma and construct the prognostic molecular pathology prediction-evaluation, ultimately revealing the clinical prognostic value of snoRNA in colon adenocarcinoma. 932 differentially expressed snoRNAs of the colon adenocarcinoma were obtained by edgeR R package. Only 4 prognostically-significant snoRNAs (SNORD14E, SNORD67, SNORD12C, and SNORD17) (P < 0.05) were discovered after univariate COX regression mode analysis. Moreover, through multivariate COX regression mode analysis, 2 prognostically-significant snoRNAs (SNORD14E and SNORD67) (P < 0.05) were obtained. Using the above 473 COAD samples, a prognostic model of risk score was constructed. The inflection point of the prognostic risk score acted as a boundary to divide the patients into high-risk and low-risk groups. The K-M survival curve of the prognostic model of risk score revealed that high risk group has a lower survival rate (P < 0.05). The research has successfully provided valuable prognostic factors and prognostic models for patients with malignant colon tumor.
Assuntos
Adenocarcinoma/genética , Biomarcadores Tumorais/genética , Neoplasias do Colo/genética , RNA Nucleolar Pequeno/genética , Adenocarcinoma/patologia , Neoplasias do Colo/patologia , Humanos , Prognóstico , Análise de Sequência de RNARESUMO
miR-15b-5p has frequently been reported to function as a biomarker in some malignancies; however, the function of miR-15b-5p in hepatocellular carcinoma (HCC) and its molecular mechanism are still not well understood. The present study was designed to confirm the clinical value of miR-15b-5p and further explore its underlying molecular mechanism. A comprehensive investigation of the clinical value of miR-15b-5p in HCC was investigated by data mining The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets as well as literature. In addition, intersected target genes of miR-15b-5p were predicted using the miRWalk database and differentially expressed genes of HCC from TCGA. Furthermore, gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were carried out. Then, a protein-protein interaction network (PPI) was constructed to reveal the interactions between some hub target genes of miR-15b-5p. The miR-15b-5p expression level in HCC was predominantly overexpressed compared with non-HCC tissues samples (SMD=0.618, 95% CI: 0.207, 1.029; P<0.0001) based on 991 HCC and 456 adjacent non-HCC tissue samples. The pooled summary receiver operator characteristic (SROC) of miR-15b-5p was 0.81 (Q*=0.74), and the pooled sensitivity and specificity of miR-15b-5p in HCC were 72% (95% CI: 69-75%) and 68% (95% CI: 65-72%), respectively. Bioinformatically, 225 overlapping genes were selected as prospective target genes of miR-15b-5p in HCC, and profoundly enriched GO terms and KEGG pathway investigation in silico demonstrated that the target genes were associated with prostate cancer, proximal tubule bicarbonate reclamation, heart trabecula formation, extracellular space, and interleukin-1 receptor activity. Five genes (ACACB, RIPK4, MAP2K1, TLR4 and IGF1) were defined as hub genes from the PPI network. The high expression of miR-15b-5p could play an essential part in hepatocarcinogenesis through diverse regulation approaches.
RESUMO
Malignant tumors of the digestive tract include esophageal, gastric, and colorectal carcinomas, which all have high global mortality rates. A clinical role for small nuclear RNA (snRNA), a type of small non-coding RNA, has not yet been documented for digestive tract pan-adenocarcinomas. Therefore, the aim of the study was to identify differentially expressed snRNAs and to explore their prognostic implications in pan-adenocarcinomas from the esophagus, stomach, colon, and rectum. The pan-carcinoma RNA-sequencing data of four types of digestive tract cancers with 1, 102 cases obtained from The Cancer Genome Atlas (TCGA) project were analyzed and the differentially expressed snRNAs were evaluated using the edgeR package. The prognostic value of each of the selected snRNAs was determined by univariate and multivariate Cox regression analyses. All the digestive tract pan-adenocarcinomas showed differential expression of three snRNAs: the up-regulated RNU1-106 P and RNU6-850 P and the down-regulated RNU6-529 P. Interestingly, RNU6-101 P appeared to be a risk factor for esophageal adenocarcinoma (ESAD) and RNVU1-4 was potentially a protective factor for stomach adenocarcinoma (STAD) survival. This consistent finding of differential expression of all three snRNAs in all four types of digestive system cancers suggests potential roles for these snRNAs in the tumorigenesis of digestive system cancers. RNU6-101 P could play a pivotal role in the progression of ESAD and RNVU1-4 could perform a protective role in STAD. However, since the current findings were based on RNA-sequencing data mining, more studies are needed for verification.
Assuntos
Adenocarcinoma/genética , Biomarcadores Tumorais/genética , Neoplasias do Sistema Digestório/genética , RNA Nuclear Pequeno/análise , Adenocarcinoma/mortalidade , Neoplasias do Sistema Digestório/mortalidade , Humanos , Estimativa de Kaplan-Meier , Prognóstico , Modelos de Riscos Proporcionais , Análise de Sequência de RNARESUMO
The cancer susceptibility candidate 9 (CASC9) gene has been reported to exert an oncogenic effect in several types of cancer. However, its role in lung squamous cell carcinoma (LUSC) is unknown. Therefore, the present study examined the expression of CASC9 in LUSC and noncancer tissues by reverse transcriptionquantitative polymerase chain reaction assays and by data mining of highthroughput public databases, including The Cancer Genome Atlas, the Gene Expression Omnibus, ArrayExpress and the Cancer Cell Line Encyclopedia. In vitro experiments were conducted to investigate the effects of CASC9 on the viability and the proliferation of LUSC cells. Furthermore, consulting the alteration status of CASC9 in LUSC from cBioPortal, functional enrichment analysis of coexpressed genes, prediction of potential transcription factors, and inspection of adjacent proteincoding genes were conducted to explore the potential molecular mechanism of CASC9 in LUSC. The results revealed that CASC9 was overexpressed in LUSC tissue, and significantly associated with the malignant progression of LUSC. In vitro experiments demonstrated that CASC9 knockdown by RNA interference attenuated the viability and proliferation of LUSC cells. Multiple copies of CASC9 gene were detected in 4 of 179 available sequenced LUSC cases. A functional enrichment analysis of 200 coexpressed genes indicated that these genes were significantly associated with terms, including 'cellcell junction organization', 'desmosome organization', 'epidermis development', 'Hippo signaling pathway', 'pathogenic Escherichia coli infection' and 'PID HIF1 TF pathway'. Three genes, Fosrelated antigen 2 (FOSL2), SWI/SNF complex subunit SMARCC2, and transcription factor COE1 (EBF1), were predicted by lncRNAMap to be associated with CASC9. Among these, the expression of FOSL2 and EBF1 was positively and negatively correlated with the expression of CASC9, respectively. Two adjacent proteincoding genes, cysteinerich secretory protein LCCL domaincontaining 1 and hepatocyte nuclear factor 4γ, were also positively correlated with CASC9 expression. In conclusion, the present data suggest that CASC9 serves as an oncogene in LUSC and may be a promising target for alternative therapeutic options for patients with this condition.
Assuntos
Carcinoma de Células Escamosas/genética , Redes Reguladoras de Genes , Neoplasias Pulmonares/genética , RNA Longo não Codificante/genética , Regulação para Cima , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Biologia Computacional , Proteínas de Ligação a DNA , Mineração de Dados , Progressão da Doença , Feminino , Antígeno 2 Relacionado a Fos/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/patologia , Masculino , Transativadores/genética , Fatores de Transcrição/genéticaRESUMO
OBJECTIVE: miRNA has gained attention as a therapeutic target in various malignancies. The proposal of this study was to investigate the biological functions of key miRNAs and target genes in cancers of the digestive tract which include esophageal carcinoma (ESCA), gastric adenocarcinoma (GAC), colon adenocarcinoma (COAD), and rectal adenocarcinoma (READ). MATERIALS AND METHODS: After screening differentially expressed miRNAs (DEMIs) and differentially expressed mRNAs (DEMs) in four digestive cancers from The Cancer Genome Atlas (TCGA) database, the diagnostic value of above DEMIs was evaluated by receiver-operating characteristic (ROC) curve analysis. Then, corresponding DEMIs' target genes were predicted by miRWalk 2.0. Intersection of predicted target genes and DEMs was taken as the target genes of DEMIs, and miRNA-mRNA regulatory networks between DEMIs and target genes were constructed. Meanwhile, the univariate Cox risk regression model was used to screen miRNAs with distinct prognostic value, and Kaplan-Meier analysis was used to determine their significance of prognosis. Furthermore, we performed bioinformatics methods including protein-protein interaction (PPI) networks, gene ontology (GO) annotation, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, and gene group RIDA analysis by Gene-Cloud of Biotechnology Information (GCBI) to explore the function and molecular mechanisms of DEMIs and predicted target genes in tumor development. RESULTS: Eventually, 3 DEMIs (miR-7-3, miR-328, and miR-323a) with significant prognostic value were obtained. In addition, 3 DEMIs (miR-490-3p, miR-133a-3p, and miR-552-3p) and 281 target genes were identified, and the 3 DEMIs showed high diagnostic value in READ and moderate diagnostic value in ESCA, GAC, and COAD. Also, the miRNA-mRNA regulatory network with 3 DEMIs and 281 overlapping genes was successfully established. Functional enrichment analysis showed that 281 overlapping genes were mainly related to regulation of cell proliferation, cell migration, and PI3K-Akt signaling pathway. CONCLUSION: The diagnostic value and prognostic value of significant DEMIs in cancers of the digestive tract were identified, which may provide a novel direction for treatment and prognosis improvement of cancers of the digestive tract.
Assuntos
Trato Gastrointestinal/metabolismo , MicroRNAs/genética , Neoplasias/genética , Prognóstico , Biologia Computacional , Trato Gastrointestinal/patologia , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Estimativa de Kaplan-Meier , MicroRNAs/classificação , Anotação de Sequência Molecular , Neoplasias/diagnóstico , Neoplasias/patologia , RNA Mensageiro/genética , Transdução de Sinais/genéticaRESUMO
BACKGROUND: MicroRNA is endogenous non-coding small RNA that negative regulate and control gene expression, and increasing evidence links microRNA to oncogenesis and the pathogenesis of cancer. The goal of this study was to explore the potential molecular mechanism of miR-375 in various cancers. METHODS: MiR-375 overexpression in different tumor cell lines was probed with microarray data from Gene Expression Omnibus (GEO). The common target genes of miR-375 were obtained by Robust Rank Aggregation (RRA), and identified by miRWalk2.0 software for target gene prediction. Additionally, we directed in silico analysis including Protein-Protein Interactions (PPI) analysis, gene ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways annotations to provide a summary of the function of miR-375 in various carcinomas. Eventually, data was obtained from The Cancer Genome Atlas (TCGA) were utilized for a validation in 7 cancers. RESULTS: The nine miR-375 related chips were acquired by the GEO data. The 5 down regulated genes came from 9 available microarray datasets, which overlapped with the potential target genes predicted by miRWalk2.0 software. The target genes were intensely enriched in amino acid biosynthetic and metabolic process from biological process (GO) and Cysteine and methionine metabolism (KEGG analysis). In view of these approaches, VASN, MAT2B, HERPUD1, TPAPPC6B and TAT are probably the most important miR-375 targets. In addition, miR-375 was negatively correlated with MAT2B, which was verified in 5 tumors of TCGA. CONCLUSION: In summary, this study based on common target genes provides an innovative perspective for exploring the molecular mechanism of miR-375 in human tumors.
Assuntos
Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Linhagem Celular Tumoral , Biologia Computacional , Bases de Dados Genéticas , Perfilação da Expressão Gênica , HumanosRESUMO
In order to determine the diagnostic efficacy of microRNA (miR)-122-5p and to identify the potential molecular signaling pathways underlying the function of miR-122-5p in hepatocellular carcinoma (HCC), the expression profiles of data collected from The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO) and literature databases were analyzed, along with any associations between clinicopathological characteristics and the diagnostic value of miR-122-5p in HCC. The intersection of 12 online prediction databases and differentially expressed genes from TCGA and GEO were utilized in order to select the prospective target genes of miR-122-5p in HCC. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and protein-protein interaction network (PPI) analyses were subsequently performed based on the selected target genes. The average expression level of miR-122-5p was decreased in HCC patients compared with controls from TCGA database (P<0.001), and the downregulation of miR-122-5p was significantly associated with HCC tissues (P<0.001), tumor vascular invasion (P<0.001), metastasis (P=0.001), sex (P=0.006), virus infection status (P=0.001) and tissue (compared with serum; P<0.001) in cases from the GEO database. The pooled sensitivity and specificity for miR-122-5p to diagnose HCC were 0.60 [95% confidence interval (CI), 0.48-0.71] and 0.81 (95% CI, 0.70-0.89), respectively. The area under the curve (AUC) value was 0.76 (95% CI, 0.72-0.80), while in Meta-DiSc 1.4, the AUC was 0.76 (Q*=0.70). The pooled sensitivity and specificity were 0.60 (95% CI, 0.57-0.62) and 0.79 (95% CI, 0.76-0.81), respectively. A total of 198 overlapping genes were selected as the potential target genes of miR-122-5p, and 7 genes were defined as the hub genes from the PPI network. Cell division cycle 6 (CDC6), minichromosome maintenance complex component 4 (MCM4) and MCM8, which serve pivotal functions in the occurrence and development of HCC, were the most significant hub genes. The regulation of cell proliferation for cellular adhesion and the biosynthesis of amino acids was highlighted in the GO and KEGG pathway analyses. The downregulation of miR-122-5p in HCC demonstrated diagnostic value, worthy of further attention. Therefore, miR-122-5p may function as a tumor suppressor by modulating genome replication.