Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nanoscale ; 13(32): 13896-13904, 2021 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-34477663

RESUMO

In electrochemical reactions, interactions between reaction intermediates and catalytic surfaces control the catalytic activity, and thereby require to be optimized. Electrochemical de-alloying of mixed-metal nanoparticles is a promising strategy to modify catalysts' surface chemistry and/or induce lattice strain to alter their electronic structure. Perfect design of the electrochemical de-alloying strategy to modify the catalyst's d-band center position can yield significant improvement on the catalytic performance of the oxygen reduction reaction (ORR). Herein, carbon supported PtCu catalysts are prepared by a simple polyol method followed by an electrochemical de-alloying treatment to form PtCu/C catalysts with a Pt-enriched porous shell with improved catalytic activity. Although the pristine PtCu/C catalyst exhibits a mass activity of 0.64 A mg-1Pt, the dissolution of Cu atoms from the catalyst surface after electrochemical de-alloying cycling leads to a significant enhancement in mass activity (1.19 A mg-1Pt), which is 400% better than that of state-of-the-art commercial Pt/C (0.24 A mg-1Pt). Furthermore, the de-alloyed PtCu/C-10 catalyst with a Pt-enriched shell delivers prolonged stability (loss of only 28.6% after 30 000 cycles), which is much better than that of Pt/C with a loss of 45.8%. By virtue of scanning transmission electron microscopy and elemental mapping experiments, the morphology and composition evolution of the catalysts could clearly be elucidated. This work helps in drawing a roadmap to design highly active and stable catalyst platforms for the ORR and relevant proton exchange membrane fuel cell applications.

2.
J Colloid Interface Sci ; 572: 74-82, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32222604

RESUMO

Ultra-small and monodispersed Pt nanoparticles (NPs) have been successfully synthesized in polymer electrolyte membrane fuel cells. The process normally involves the use of capping agents, organic species, templates, and substrates and is thus complex. Hence, obtaining Pt NPs with a clean surface is challenging. In this study, a method for preparing stable and highly dispersed Pt NPs with clean surfaces is proposed. The method involves the use of a modified Na3C6H5O7 reduction process assisted by NaNO3 stabilization. The specific complexations of NO2- ions possibly alter the reaction kinetics and lower the growth rate of Pt NPs by retarding the reduction reaction. The optimized Pt/carbon nanotube (CNT) catalysts exhibit high mass activity and moderate activity decay after 10,000 times of potential cycling compared with commercially available Pt/C catalysts. Then, membrane electrode assemblies based on the resultant catalysts are characterized. The cell performance of 744 mW cm-2 (maximum power density) is achieved after the optimized Pt/CNT catalysts are used in carbon black.

3.
ACS Appl Mater Interfaces ; 12(44): 49510-49518, 2020 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-32897685

RESUMO

Economical production of highly active and robust Pt catalysts on a large scale is vital to the broad commercialization of polymer electrolyte membrane fuel cells. Here, we report a low-cost, one-pot process for large-scale synthesis of single-crystal Pt multipods with abundant high-index facets, in an aqueous solution without any template or surfactant. A composite consisting of the Pt multipods (40 wt %) and carbon displays a specific activity of 0.242 mA/cm2 and a mass activity of 0.109 A/mg at 0.9 V (versus a reversible hydrogen electrode) for oxygen reduction reaction, corresponding to ∼124% and ∼100% enhancement compared with those of the state-of-the-art commercial Pt/C catalyst (0.108 mA/cm2 and 0.054 A/mg). The single-crystal Pt multipods also show excellent stability when tested for 4500 cycles in a potential range of 0.6-1.1 V and another 2000 cycles in 0-1.2 V. More importantly, the superior performance of the Pt multipods/C catalyst is also demonstrated in a membrane electrode assembly (MEA), achieving a power density of 774 mW/cm2 (1.29 A/cm2) at 0.6 V and a peak power density of ∼1 W/cm2, representing 34% and 20% enhancement compared with those of a MEA based on the state-of-the-art commercial Pt/C catalyst (576 and 834 mW/cm2).

4.
ACS Appl Mater Interfaces ; 12(12): 13878-13887, 2020 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-32155039

RESUMO

Developing efficient non-precious-metal catalysts to accelerate the sluggish oxygen reduction reaction (ORR) is highly desired but remains a great challenge. Herein, using 2D bimetallic Zn/Fe-MOF as the precursor and g-C3N4 as the nitrogen source and stabilizer, porous carbon nanosheets doped with large amounts of single/paired Fe atoms (3.89 wt %) and N (10.28 wt %) are successfully prepared. It is found that the addition of g-C3N4 plays a key role in achieving a high loading of Fe single/paired atoms, and the 2D nanosheet structure gives the materials a high surface area and highly porous structure, resulting in outstanding ORR catalytic activity in both alkaline and acidic solutions. Our optimal sample achieved half-wave potentials in alkaline and acid media of up to 0.86 and 0.79 V (vs reversible hydrogen electrode (RHE)), respectively, values 20 mV higher than a commercial Pt/C catalyst in an alkaline medium and only 60 mV lower than Pt/C in an acidic medium. Moreover, its ORR durability was superior to that of commercial Pt/C in both electrolytes. We found that almost all the doped Fe in the sample existed as single or paired atoms coordinated with N. This work may provide an effective strategy for preparing high-performance catalysts bearing single/paired atoms by using MOFs as precursors.

5.
J Phys Chem B ; 110(48): 24606-11, 2006 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-17134221

RESUMO

Core-shell Au-Pt nanoparticles with intimate contact of Pt and Au were prepared by a displacement reaction without formation of monometallic Au nanoparticles. The Au-Pt nanoparticles were dispersed on carbon (Au@Pt/C) and were used to catalyze methanol electrooxidation in acidic solutions at room temperature. The core-shell nanostructure was confirmed by transmission electron microscopy and X-ray photoelectron spectroscopy, and specific catalytic activities were evaluated by CO anodic stripping voltammetry in 0.5 M H(2)SO(4) and by cyclic voltammetry in 1 M CH(3)OH + 0.5 M H(2)SO(4). The Au@Pt/C catalyst demonstrated enhanced specific activity in methanol electrooxidation and showed multiple CO stripping peaks which were all negatively shifted with respect to a similarly prepared Ag@Pt/C catalyst. The activity enhancement is attributed to the presence of Au underneath a very thin Pt shell where electron exchange between Au and Pt had promoted the formation of active oxygen species on Pt, which facilitated the removal of inhibiting CO-like reaction intermediates.

6.
J Phys Chem B ; 109(43): 20200-6, 2005 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-16853611

RESUMO

In this study, ordered macroporous carbon with a three-dimensional (3D) interconnected pore structure and a graphitic pore wall was prepared by chemical vapor deposition (CVD) of benzene using inverse silica opal as the template. Field-emission scanning electron microscopy, transmission electron microscopy, X-ray diffraction, Raman spectrometry, nitrogen adsorption, and thermogravimetric analysis techniques were used to characterize the carbon samples. The electrochemical properties of the carbon materials as a carbon-based anode for lithium-ion batteries and as a Pt catalyst support for room-temperature methanol electrochemical oxidation were examined. It was observed that the CVD method is a simple route to fabrication of desired carbon nanostructures, affording a carbon with graphitic pore walls and uniform pores. The graphitic nature of the carbon enhances the rate performance and cyclability in lithium-ion batteries. The specific capacity was found to be further improved when SnO(2) nanoparticles were supported on the carbon. The specific activity of Pt catalyst supported on the carbon materials for room-temperature methanol electrochemical oxidation was observed to be higher than that of a commercial Pt catalyst (E-TEK).

7.
Nanoscale ; 7(8): 3780-5, 2015 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-25648746

RESUMO

A high-performance N-doped carbon catalyst with a fog-like, fluffy structure was prepared through pyrolyzing a mixture of polyacrylonitrile, melamine and iron chloride. The catalyst exhibits an excellent oxygen reduction reaction (ORR) performance, with a half-wave potential 27 mV more positive than that of a commercial Pt/C catalyst (-0.120 vs. -0.147 V) and a higher diffusion-limiting current density than that of Pt/C (5.60 vs. 5.33 mA cm(-2)) in an alkaline medium. Moreover, it also shows outstanding methanol tolerance, remarkable stability and nearly 100% selectivity for the four-electron ORR process. To our knowledge, it is one of the most active doped carbon ORR catalysts in alkaline media to date. By comparing catalysts derived from precursors containing different amounts of melamine, we found that the added melamine not only gives the catalyst a fluffy structure but also modifies the N content and the distribution of N species in the catalyst, which we believe to be the origins for the catalyst's excellent ORR performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA