Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 131
Filtrar
1.
Nucleic Acids Res ; 52(W1): W439-W449, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38783035

RESUMO

High-throughput screening rapidly tests an extensive array of chemical compounds to identify hit compounds for specific biological targets in drug discovery. However, false-positive results disrupt hit compound screening, leading to wastage of time and resources. To address this, we propose ChemFH, an integrated online platform facilitating rapid virtual evaluation of potential false positives, including colloidal aggregators, spectroscopic interference compounds, firefly luciferase inhibitors, chemical reactive compounds, promiscuous compounds, and other assay interferences. By leveraging a dataset containing 823 391 compounds, we constructed high-quality prediction models using multi-task directed message-passing network (DMPNN) architectures combining uncertainty estimation, yielding an average AUC value of 0.91. Furthermore, ChemFH incorporated 1441 representative alert substructures derived from the collected data and ten commonly used frequent hitter screening rules. ChemFH was validated with an external set of 75 compounds. Subsequently, the virtual screening capability of ChemFH was successfully confirmed through its application to five virtual screening libraries. Furthermore, ChemFH underwent additional validation on two natural products and FDA-approved drugs, yielding reliable and accurate results. ChemFH is a comprehensive, reliable, and computationally efficient screening pipeline that facilitates the identification of true positive results in assays, contributing to enhanced efficiency and success rates in drug discovery. ChemFH is freely available via https://chemfh.scbdd.com/.


Assuntos
Descoberta de Drogas , Ensaios de Triagem em Larga Escala , Software , Descoberta de Drogas/métodos , Ensaios de Triagem em Larga Escala/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Reações Falso-Positivas , Bibliotecas de Moléculas Pequenas/farmacologia , Bibliotecas de Moléculas Pequenas/química , Humanos
2.
Nucleic Acids Res ; 52(W1): W422-W431, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38572755

RESUMO

ADMETlab 3.0 is the second updated version of the web server that provides a comprehensive and efficient platform for evaluating ADMET-related parameters as well as physicochemical properties and medicinal chemistry characteristics involved in the drug discovery process. This new release addresses the limitations of the previous version and offers broader coverage, improved performance, API functionality, and decision support. For supporting data and endpoints, this version includes 119 features, an increase of 31 compared to the previous version. The updated number of entries is 1.5 times larger than the previous version with over 400 000 entries. ADMETlab 3.0 incorporates a multi-task DMPNN architecture coupled with molecular descriptors, a method that not only guaranteed calculation speed for each endpoint simultaneously, but also achieved a superior performance in terms of accuracy and robustness. In addition, an API has been introduced to meet the growing demand for programmatic access to large amounts of data in ADMETlab 3.0. Moreover, this version includes uncertainty estimates in the prediction results, aiding in the confident selection of candidate compounds for further studies and experiments. ADMETlab 3.0 is publicly for access without the need for registration at: https://admetlab3.scbdd.com.


Assuntos
Descoberta de Drogas , Internet , Software , Descoberta de Drogas/métodos , Humanos , Preparações Farmacêuticas/química , Preparações Farmacêuticas/metabolismo
3.
Brief Bioinform ; 24(1)2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36592061

RESUMO

Drug-drug interaction (DDI) prediction identifies interactions of drug combinations in which the adverse side effects caused by the physicochemical incompatibility have attracted much attention. Previous studies usually model drug information from single or dual views of the whole drug molecules but ignore the detailed interactions among atoms, which leads to incomplete and noisy information and limits the accuracy of DDI prediction. In this work, we propose a novel dual-view drug representation learning network for DDI prediction ('DSN-DDI'), which employs local and global representation learning modules iteratively and learns drug substructures from the single drug ('intra-view') and the drug pair ('inter-view') simultaneously. Comprehensive evaluations demonstrate that DSN-DDI significantly improved performance on DDI prediction for the existing drugs by achieving a relatively improved accuracy of 13.01% and an over 99% accuracy under the transductive setting. More importantly, DSN-DDI achieves a relatively improved accuracy of 7.07% to unseen drugs and shows the usefulness for real-world DDI applications. Finally, DSN-DDI exhibits good transferability on synergistic drug combination prediction and thus can serve as a generalized framework in the drug discovery field.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Humanos , Interações Medicamentosas , Descoberta de Drogas , Biologia Computacional
4.
Brief Bioinform ; 24(2)2023 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-36880207

RESUMO

Protein-protein interactions (PPIs) carry out the cellular processes of all living organisms. Experimental methods for PPI detection suffer from high cost and false-positive rate, hence efficient computational methods are highly desirable for facilitating PPI detection. In recent years, benefiting from the enormous amount of protein data produced by advanced high-throughput technologies, machine learning models have been well developed in the field of PPI prediction. In this paper, we present a comprehensive survey of the recently proposed machine learning-based prediction methods. The machine learning models applied in these methods and details of protein data representation are also outlined. To understand the potential improvements in PPI prediction, we discuss the trend in the development of machine learning-based methods. Finally, we highlight potential directions in PPI prediction, such as the use of computationally predicted protein structures to extend the data source for machine learning models. This review is supposed to serve as a companion for further improvements in this field.


Assuntos
Aprendizado de Máquina , Mapeamento de Interação de Proteínas , Mapeamento de Interação de Proteínas/métodos , Proteínas/metabolismo , Biologia Computacional/métodos
5.
Brief Bioinform ; 24(5)2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37668049

RESUMO

The Sequence Alignment/Map (SAM) format file is the text file used to record alignment information. Alignment is the core of sequencing analysis, and downstream tasks accept mapping results for further processing. Given the rapid development of the sequencing industry today, a comprehensive understanding of the SAM format and related tools is necessary to meet the challenges of data processing and analysis. This paper is devoted to retrieving knowledge in the broad field of SAM. First, the format of SAM is introduced to understand the overall process of the sequencing analysis. Then, existing work is systematically classified in accordance with generation, compression and application, and the involved SAM tools are specifically mined. Lastly, a summary and some thoughts on future directions are provided.


Assuntos
Alinhamento de Sequência
6.
Brief Bioinform ; 24(6)2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37974508

RESUMO

Current methods of molecular image-based drug discovery face two major challenges: (1) work effectively in absence of labels, and (2) capture chemical structure from implicitly encoded images. Given that chemical structures are explicitly encoded by molecular graphs (such as nitrogen, benzene rings and double bonds), we leverage self-supervised contrastive learning to transfer chemical knowledge from graphs to images. Specifically, we propose a novel Contrastive Graph-Image Pre-training (CGIP) framework for molecular representation learning, which learns explicit information in graphs and implicit information in images from large-scale unlabeled molecules via carefully designed intra- and inter-modal contrastive learning. We evaluate the performance of CGIP on multiple experimental settings (molecular property prediction, cross-modal retrieval and distribution similarity), and the results show that CGIP can achieve state-of-the-art performance on all 12 benchmark datasets and demonstrate that CGIP transfers chemical knowledge in graphs to molecular images, enabling image encoder to perceive chemical structures in images. We hope this simple and effective framework will inspire people to think about the value of image for molecular representation learning.


Assuntos
Benchmarking , Aprendizagem , Humanos , Descoberta de Drogas
7.
Brief Bioinform ; 24(6)2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37864294

RESUMO

Drug-gene interaction prediction occupies a crucial position in various areas of drug discovery, such as drug repurposing, lead discovery and off-target detection. Previous studies show good performance, but they are limited to exploring the binding interactions and ignoring the other interaction relationships. Graph neural networks have emerged as promising approaches owing to their powerful capability of modeling correlations under drug-gene bipartite graphs. Despite the widespread adoption of graph neural network-based methods, many of them experience performance degradation in situations where high-quality and sufficient training data are unavailable. Unfortunately, in practical drug discovery scenarios, interaction data are often sparse and noisy, which may lead to unsatisfactory results. To undertake the above challenges, we propose a novel Dynamic hyperGraph Contrastive Learning (DGCL) framework that exploits local and global relationships between drugs and genes. Specifically, graph convolutions are adopted to extract explicit local relations among drugs and genes. Meanwhile, the cooperation of dynamic hypergraph structure learning and hypergraph message passing enables the model to aggregate information in a global region. With flexible global-level messages, a self-augmented contrastive learning component is designed to constrain hypergraph structure learning and enhance the discrimination of drug/gene representations. Experiments conducted on three datasets show that DGCL is superior to eight state-of-the-art methods and notably gains a 7.6% performance improvement on the DGIdb dataset. Further analyses verify the robustness of DGCL for alleviating data sparsity and over-smoothing issues.


Assuntos
Descoberta de Drogas , Aprendizagem , Interações Medicamentosas , Reposicionamento de Medicamentos , Redes Neurais de Computação
8.
Brief Bioinform ; 24(3)2023 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-37088976

RESUMO

Single-cell RNA sequencing (scRNA-seq) is a revolutionary breakthrough that determines the precise gene expressions on individual cells and deciphers cell heterogeneity and subpopulations. However, scRNA-seq data are much noisier than traditional high-throughput RNA-seq data because of technical limitations, leading to many scRNA-seq data studies about dimensionality reduction and visualization remaining at the basic data-stacking stage. In this study, we propose an improved variational autoencoder model (termed DREAM) for dimensionality reduction and a visual analysis of scRNA-seq data. Here, DREAM combines the variational autoencoder and Gaussian mixture model for cell type identification, meanwhile explicitly solving 'dropout' events by introducing the zero-inflated layer to obtain the low-dimensional representation that describes the changes in the original scRNA-seq dataset. Benchmarking comparisons across nine scRNA-seq datasets show that DREAM outperforms four state-of-the-art methods on average. Moreover, we prove that DREAM can accurately capture the expression dynamics of human preimplantation embryonic development. DREAM is implemented in Python, freely available via the GitHub website, https://github.com/Crystal-JJ/DREAM.


Assuntos
Análise de Célula Única , Análise da Expressão Gênica de Célula Única , Humanos , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , RNA-Seq , Perfilação da Expressão Gênica/métodos , Análise por Conglomerados
9.
Brief Bioinform ; 25(1)2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-38145949

RESUMO

Prediction of drug-target interactions (DTIs) is essential in medicine field, since it benefits the identification of molecular structures potentially interacting with drugs and facilitates the discovery and reposition of drugs. Recently, much attention has been attracted to network representation learning to learn rich information from heterogeneous data. Although network representation learning algorithms have achieved success in predicting DTI, several manually designed meta-graphs limit the capability of extracting complex semantic information. To address the problem, we introduce an adaptive meta-graph-based method, termed AMGDTI, for DTI prediction. In the proposed AMGDTI, the semantic information is automatically aggregated from a heterogeneous network by training an adaptive meta-graph, thereby achieving efficient information integration without requiring domain knowledge. The effectiveness of the proposed AMGDTI is verified on two benchmark datasets. Experimental results demonstrate that the AMGDTI method overall outperforms eight state-of-the-art methods in predicting DTI and achieves the accurate identification of novel DTIs. It is also verified that the adaptive meta-graph exhibits flexibility and effectively captures complex fine-grained semantic information, enabling the learning of intricate heterogeneous network topology and the inference of potential drug-target relationship.


Assuntos
Algoritmos , Medicina , Benchmarking , Sistemas de Liberação de Medicamentos , Semântica
10.
Brief Bioinform ; 24(1)2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36642412

RESUMO

Machine learning-based scoring functions (MLSFs) have become a very favorable alternative to classical scoring functions because of their potential superior screening performance. However, the information of negative data used to construct MLSFs was rarely reported in the literature, and meanwhile the putative inactive molecules recorded in existing databases usually have obvious bias from active molecules. Here we proposed an easy-to-use method named AMLSF that combines active learning using negative molecular selection strategies with MLSF, which can iteratively improve the quality of inactive sets and thus reduce the false positive rate of virtual screening. We chose energy auxiliary terms learning as the MLSF and validated our method on eight targets in the diverse subset of DUD-E. For each target, we screened the IterBioScreen database by AMLSF and compared the screening results with those of the four control models. The results illustrate that the number of active molecules in the top 1000 molecules identified by AMLSF was significantly higher than those identified by the control models. In addition, the free energy calculation results for the top 10 molecules screened out by the AMLSF, null model and control models based on DUD-E also proved that more active molecules can be identified, and the false positive rate can be reduced by AMLSF.


Assuntos
Proteínas , Proteínas/metabolismo , Bases de Dados Factuais , Ligantes , Simulação de Acoplamento Molecular , Ligação Proteica
11.
Brief Bioinform ; 24(4)2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37401373

RESUMO

Recent advances and achievements of artificial intelligence (AI) as well as deep and graph learning models have established their usefulness in biomedical applications, especially in drug-drug interactions (DDIs). DDIs refer to a change in the effect of one drug to the presence of another drug in the human body, which plays an essential role in drug discovery and clinical research. DDIs prediction through traditional clinical trials and experiments is an expensive and time-consuming process. To correctly apply the advanced AI and deep learning, the developer and user meet various challenges such as the availability and encoding of data resources, and the design of computational methods. This review summarizes chemical structure based, network based, natural language processing based and hybrid methods, providing an updated and accessible guide to the broad researchers and development community with different domain knowledge. We introduce widely used molecular representation and describe the theoretical frameworks of graph neural network models for representing molecular structures. We present the advantages and disadvantages of deep and graph learning methods by performing comparative experiments. We discuss the potential technical challenges and highlight future directions of deep and graph learning models for accelerating DDIs prediction.


Assuntos
Inteligência Artificial , Redes Neurais de Computação , Humanos , Interações Medicamentosas , Processamento de Linguagem Natural , Descoberta de Drogas
12.
Methods ; 222: 133-141, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38242382

RESUMO

The versatility of ChatGPT in performing a diverse range of tasks has elicited considerable interest on its potential applications within professional fields. Taking drug discovery as a testbed, this paper provides a comprehensive evaluation of ChatGPT's ability on molecule property prediction. The study focuses on three aspects: 1) Effects of different prompt settings, where we investigate the impact of varying prompts on the prediction outcomes of ChatGPT; 2) Comprehensive evaluation on molecule property prediction, where we conduct a comprehensive evaluation on 53 ADMET-related endpoints; 3) Analysis of ChatGPT's potential and limitations, where we make comparisons with models tailored for molecule property prediction, thus gaining a more accurate understanding of ChatGPT's capabilities and limitations in this area. Through comprehensive evaluation, we find that 1) With appropriate prompt settings, ChatGPT can attain satisfactory prediction outcomes that are competitive with specialized models designed for those tasks. 2) Prompt settings significantly affect ChatGPT's performance. Among all prompt settings, the strategy of selecting examples in few-shot has the greatest impact on results. Scaffold sampling greatly outperforms random sampling. 3) The capacity of ChatGPT to accomplish high-precision predictions is significantly influenced by the quality of examples provided, which may constrain its practical applicability in real-world scenarios. This work highlights ChatGPT's potential and limitations on molecule property prediction, which we hope can inspire future design and evaluation of Large Language Models within scientific domains.


Assuntos
Descoberta de Drogas , Projetos de Pesquisa
13.
Brief Bioinform ; 23(2)2022 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35018418

RESUMO

Spatial structures of proteins are closely related to protein functions. Integrating protein structures improves the performance of protein-protein interaction (PPI) prediction. However, the limited quantity of known protein structures restricts the application of structure-based prediction methods. Utilizing the predicted protein structure information is a promising method to improve the performance of sequence-based prediction methods. We propose a novel end-to-end framework, TAGPPI, to predict PPIs using protein sequence alone. TAGPPI extracts multi-dimensional features by employing 1D convolution operation on protein sequences and graph learning method on contact maps constructed from AlphaFold. A contact map contains abundant spatial structure information, which is difficult to obtain from 1D sequence data directly. We further demonstrate that the spatial information learned from contact maps improves the ability of TAGPPI in PPI prediction tasks. We compare the performance of TAGPPI with those of nine state-of-the-art sequence-based methods, and TAGPPI outperforms such methods in all metrics. To the best of our knowledge, this is the first method to use the predicted protein topology structure graph for sequence-based PPI prediction. More importantly, our proposed architecture could be extended to other prediction tasks related to proteins.


Assuntos
Aprendizado de Máquina , Proteínas , Sequência de Aminoácidos , Proteínas/metabolismo
14.
Brief Bioinform ; 23(2)2022 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35039838

RESUMO

Drug repositioning is an efficient and promising strategy for traditional drug discovery and development. Many research efforts are focused on utilizing deep-learning approaches based on a heterogeneous network for modeling complex drug-disease associations. Similar to traditional latent factor models, which directly factorize drug-disease associations, they assume the neighbors are independent of each other in the network and thus tend to be ineffective to capture localized information. In this study, we propose a novel neighborhood and neighborhood interaction-based neural collaborative filtering approach (called DRWBNCF) to infer novel potential drugs for diseases. Specifically, we first construct three networks, including the known drug-disease association network, the drug-drug similarity and disease-disease similarity networks (using the nearest neighbors). To take the advantage of localized information in the three networks, we then design an integration component by proposing a new weighted bilinear graph convolution operation to integrate the information of the known drug-disease association, the drug's and disease's neighborhood and neighborhood interactions into a unified representation. Lastly, we introduce a prediction component, which utilizes the multi-layer perceptron optimized by the α-balanced focal loss function and graph regularization to model the complex drug-disease associations. Benchmarking comparisons on three datasets verified the effectiveness of DRWBNCF for drug repositioning. Importantly, the unknown drug-disease associations predicted by DRWBNCF were validated against clinical trials and three authoritative databases and we listed several new DRWBNCF-predicted potential drugs for breast cancer (e.g. valrubicin and teniposide) and small cell lung cancer (e.g. valrubicin and cytarabine).


Assuntos
Algoritmos , Reposicionamento de Medicamentos , Biologia Computacional , Bases de Dados Factuais , Descoberta de Drogas , Redes Neurais de Computação
15.
Brief Bioinform ; 23(1)2022 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-34850810

RESUMO

The interaction between microribonucleic acid and long non-coding ribonucleic acid plays a very important role in biological processes, and the prediction of the one is of great significance to the study of its mechanism of action. Due to the limitations of traditional biological experiment methods, more and more computational methods are applied to this field. However, the existing methods often have problems, such as inadequate acquisition of potential features of the sequence due to simple coding and the need to manually extract features as input. We propose a deep learning model, preMLI, based on rna2vec pre-training and deep feature mining mechanism. We use rna2vec to train the ribonucleic acid (RNA) dataset and to obtain the RNA word vector representation and then mine the RNA sequence features separately and finally concatenate the two feature vectors as the input of the prediction task. The preMLI performs better than existing methods on benchmark datasets and has cross-species prediction capabilities. Experiments show that both pre-training and deep feature mining mechanisms have a positive impact on the prediction performance of the model. To be more specific, pre-training can provide more accurate word vector representations. The deep feature mining mechanism also improves the prediction performance of the model. Meanwhile, The preMLI only needs RNA sequence as the input of the model and has better cross-species prediction performance than the most advanced prediction models, which have reference value for related research.


Assuntos
MicroRNAs , RNA Longo não Codificante , Biologia Computacional/métodos , MicroRNAs/genética , RNA Longo não Codificante/genética
16.
Brief Bioinform ; 23(1)2022 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-34571535

RESUMO

In recent years, synthesizing drugs powered by artificial intelligence has brought great convenience to society. Since retrosynthetic analysis occupies an essential position in synthetic chemistry, it has received broad attention from researchers. In this review, we comprehensively summarize the development process of retrosynthesis in the context of deep learning. This review covers all aspects of retrosynthesis, including datasets, models and tools. Specifically, we report representative models from academia, in addition to a detailed description of the available and stable platforms in the industry. We also discuss the disadvantages of the existing models and provide potential future trends, so that more abecedarians will quickly understand and participate in the family of retrosynthesis planning.


Assuntos
Inteligência Artificial , Aprendizado Profundo
17.
Brief Bioinform ; 23(1)2022 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-34718405

RESUMO

The tremendous progress of single-cell sequencing technology has given researchers the opportunity to study cell development and differentiation processes at single-cell resolution. Assay of Transposase-Accessible Chromatin by deep sequencing (ATAC-seq) was proposed for genome-wide analysis of chromatin accessibility. Due to technical limitations or other reasons, dropout events are almost a common occurrence for extremely sparse single-cell ATAC-seq data, leading to confusion in downstream analysis (such as clustering). Although considerable progress has been made in the estimation of scRNA-seq data, there is currently no specific method for the inference of dropout events in single-cell ATAC-seq data. In this paper, we select several state-of-the-art scRNA-seq imputation methods (including MAGIC, SAVER, scImpute, deepImpute, PRIME, bayNorm and knn-smoothing) in recent years to infer dropout peaks in scATAC-seq data, and perform a systematic evaluation of these methods through several downstream analyses. Specifically, we benchmarked these methods in terms of correlation with meta-cell, clustering, subpopulations distance analysis, imputation performance for corruption datasets, identification of TF motifs and computation time. The experimental results indicated that most of the imputed peaks increased the correlation with the reference meta-cell, while the performance of different methods on different datasets varied greatly in different downstream analyses, thus should be used with caution. In general, MAGIC performed better than the other methods most consistently across all assessments. Our source code is freely available at https://github.com/yueyueliu/scATAC-master.


Assuntos
Análise de Célula Única , Software , Análise por Conglomerados , Análise de Sequência de RNA , Sequenciamento do Exoma
18.
Brief Bioinform ; 23(5)2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-35953081

RESUMO

Posttranslational modification of lysine residues, K-PTM, is one of the most popular PTMs. Some lysine residues in proteins can be continuously or cascaded covalently modified, such as acetylation, crotonylation, methylation and succinylation modification. The covalent modification of lysine residues may have some special functions in basic research and drug development. Although many computational methods have been developed to predict lysine PTMs, up to now, the K-PTM prediction methods have been modeled and learned a single class of K-PTM modification. In view of this, this study aims to fill this gap by building a multi-label computational model that can be directly used to predict multiple K-PTMs in proteins. In this study, a multi-label prediction model, MLysPRED, is proposed to identify multiple lysine sites using features generated from human protein sequences. In MLysPRED, three kinds of multi-label sequence encoding algorithms (MLDBPB, MLPSDAAP, MLPSTAAP) are proposed and combined with three encoding strategies (CHHAA, DR and Kmer) to convert preprocessed lysine sequences into effective numerical features. A multidimensional normal distribution oversampling technique and graph-based multi-view clustering under-sampling algorithm were first proposed and incorporated to reduce the proportion of the original training samples, and multi-label nearest neighbor algorithm is used for classification. It is observed that MLysPRED achieved an Aiming of 92.21%, Coverage of 94.98%, Accuracy of 89.63%, Absolute-True of 81.46% and Absolute-False of 0.0682 on the independent datasets. Additionally, comparison of results with five existing predictors also indicated that MLysPRED is very promising and encouraging to predict multiple K-PTMs in proteins. For the convenience of the experimental scientists, 'MLysPRED' has been deployed as a user-friendly web-server at http://47.100.136.41:8181.


Assuntos
Lisina , Proteínas , Algoritmos , Análise por Conglomerados , Biologia Computacional/métodos , Humanos , Lisina/metabolismo , Distribuição Normal , Processamento de Proteína Pós-Traducional , Proteínas/química
19.
Brief Bioinform ; 23(6)2022 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-36125190

RESUMO

The rapid development of biomedicine has produced a large number of biomedical written materials. These unstructured text data create serious challenges for biomedical researchers to find information. Biomedical named entity recognition (BioNER) and biomedical relation extraction (BioRE) are the two most fundamental tasks of biomedical text mining. Accurately and efficiently identifying entities and extracting relations have become very important. Methods that perform two tasks separately are called pipeline models, and they have shortcomings such as insufficient interaction, low extraction quality and easy redundancy. To overcome the above shortcomings, many deep learning-based joint name entity recognition and relation extraction models have been proposed, and they have achieved advanced performance. This paper comprehensively summarize deep learning models for joint name entity recognition and relation extraction for biomedicine. The joint BioNER and BioRE models are discussed in the light of the challenges existing in the BioNER and BioRE tasks. Five joint BioNER and BioRE models and one pipeline model are selected for comparative experiments on four biomedical public datasets, and the experimental results are analyzed. Finally, we discuss the opportunities for future development of deep learning-based joint BioNER and BioRE models.


Assuntos
Aprendizado Profundo , Mineração de Dados/métodos
20.
PLoS Comput Biol ; 19(11): e1011597, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37956212

RESUMO

The powerful combination of large-scale drug-related interaction networks and deep learning provides new opportunities for accelerating the process of drug discovery. However, chemical structures that play an important role in drug properties and high-order relations that involve a greater number of nodes are not tackled in current biomedical networks. In this study, we present a general hypergraph learning framework, which introduces Drug-Substructures relationship into Molecular interaction Networks to construct the micro-to-macro drug centric heterogeneous network (DSMN), and develop a multi-branches HyperGraph learning model, called HGDrug, for Drug multi-task predictions. HGDrug achieves highly accurate and robust predictions on 4 benchmark tasks (drug-drug, drug-target, drug-disease, and drug-side-effect interactions), outperforming 8 state-of-the-art task specific models and 6 general-purpose conventional models. Experiments analysis verifies the effectiveness and rationality of the HGDrug model architecture as well as the multi-branches setup, and demonstrates that HGDrug is able to capture the relations between drugs associated with the same functional groups. In addition, our proposed drug-substructure interaction networks can help improve the performance of existing network models for drug-related prediction tasks.


Assuntos
Algoritmos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Humanos , Benchmarking , Sistemas de Liberação de Medicamentos , Descoberta de Drogas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA