Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 116(27): 13394-13403, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31213542

RESUMO

Increased glycolysis in the lung vasculature has been connected to the development of pulmonary hypertension (PH). We therefore investigated whether glycolytic regulator 6-phosphofructo-2-kinase/fructose-2, 6-bisphosphatase (PFKFB3)-mediated endothelial glycolysis plays a critical role in the development of PH. Heterozygous global deficiency of Pfkfb3 protected mice from developing hypoxia-induced PH, and administration of the PFKFB3 inhibitor 3PO almost completely prevented PH in rats treated with Sugen 5416/hypoxia, indicating a causative role of PFKFB3 in the development of PH. Immunostaining of lung sections and Western blot with isolated lung endothelial cells showed a dramatic increase in PFKFB3 expression and activity in pulmonary endothelial cells of rodents and humans with PH. We generated mice that were constitutively or inducibly deficient in endothelial Pfkfb3 and found that these mice were incapable of developing PH or showed slowed PH progression. Compared with control mice, endothelial Pfkfb3-knockout mice exhibited less severity of vascular smooth muscle cell proliferation, endothelial inflammation, and leukocyte recruitment in the lungs. In the absence of PFKFB3, lung endothelial cells from rodents and humans with PH produced lower levels of growth factors (such as PDGFB and FGF2) and proinflammatory factors (such as CXCL12 and IL1ß). This is mechanistically linked to decreased levels of HIF2A in lung ECs following PFKFB3 knockdown. Taken together, these results suggest that targeting PFKFB3 is a promising strategy for the treatment of PH.


Assuntos
Glicólise , Hipertensão Pulmonar/etiologia , Pulmão/metabolismo , Fosfofrutoquinase-2/fisiologia , Animais , Modelos Animais de Doenças , Endotélio/metabolismo , Técnicas de Silenciamento de Genes , Glicólise/fisiologia , Humanos , Hipertensão Pulmonar/metabolismo , Hipóxia/complicações , Pulmão/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosfofrutoquinase-2/deficiência , Fosfofrutoquinase-2/metabolismo , Ratos , Ratos Sprague-Dawley
2.
Pharmacol Res ; 146: 104292, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31167111

RESUMO

Acute lung injury (ALI) is one of the leading causes of death in sepsis. Endothelial inflammation and dysfunction play a prominent role in development of ALI. Glycolysis is the predominant bioenergetic pathway for endothelial cells (ECs). However, the role of EC glycolysis in ALI of sepsis remains unclear. Here we show that both the expression and activity of PFKFB3, a key glycolytic activator, were markedly increased in lipopolysaccharide (LPS)-treated human pulmonary arterial ECs (HPAECs) in vitro and in lung ECs of mice challenged with LPS in vivo. PFKFB3 knockdown significantly reduced LPS-enhanced glycolysis in HPAECs. Compared with LPS-challenged wild-type mice, endothelial-specific Pfkfb3 knockout (Pfkfb3ΔVEC) mice exhibited reduced endothelium permeability, lower pulmonary edema, and higher survival rate. This was accompanied by decreased expression of intracellular adhesion molecule-1 (Icam-1) and vascular cell adhesion molecule 1 (Vcam-1), as well as decreased neutrophil and macrophage infiltration to the lung. Consistently, PFKFB3 silencing or PFKFB3 inhibition in HPAECs and human pulmonary microvascular ECs (HPMVECs) significantly downregulated LPS-induced expression of ICAM-1 and VCAM-1, and monocyte adhesion to human pulmonary ECs. In contrast, adenovirus-mediated PFKFB3 overexpression upregulated ICAM-1 and VCAM-1 expression in HPAECs. Mechanistically, PFKFB3 silencing suppressed LPS-induced nuclear translocation of nuclear factor κB (NF-κB)-p65, and NF-κB inhibitors abrogated PFKFB3-induced expression of ICAM-1 and VCAM-1. Finally, administration of the PFKFB3 inhibitor 3PO also reduced the inflammatory response of vascular endothelium and protected mice from LPS-induced ALI. Overall, these findings suggest that targeting PFKFB3-mediated EC glycolysis is an efficient therapeutic strategy for ALI in sepsis.


Assuntos
Lesão Pulmonar Aguda/metabolismo , Células Endoteliais/metabolismo , Endotoxemia/induzido quimicamente , Endotoxemia/metabolismo , Lipopolissacarídeos/farmacologia , Fosfofrutoquinase-2/metabolismo , Animais , Modelos Animais de Doenças , Endotélio Vascular/metabolismo , Glicólise/fisiologia , Humanos , Inflamação/metabolismo , Molécula 1 de Adesão Intercelular/metabolismo , Pulmão/metabolismo , Camundongos , Monócitos/metabolismo , NF-kappa B/metabolismo , Ocitocina/metabolismo , Edema Pulmonar/metabolismo , Sepse/metabolismo , Transdução de Sinais/fisiologia , Molécula 1 de Adesão de Célula Vascular/metabolismo
3.
Arterioscler Thromb Vasc Biol ; 38(12): 2780-2792, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30571174

RESUMO

Objective- Monocyte-derived foam cells are one of the key players in the formation of atherosclerotic plaques. Adenosine receptors and extracellular adenosine have been demonstrated to modulate foam cell formation. ADK (adenosine kinase) is a major enzyme regulating intracellular adenosine levels, but its functional role in myeloid cells remains poorly understood. To enhance intracellular adenosine levels in myeloid cells, ADK was selectively deleted in novel transgenic mice using Cre-LoxP technology, and foam cell formation and the development of atherosclerotic lesions were determined. Approach and Results- ADK was upregulated in macrophages on ox-LDL (oxidized low-density lipoprotein) treatment in vitro and was highly expressed in foam cells in atherosclerotic plaques. Atherosclerotic mice deficient in ADK in myeloid cells were generated by breeding floxed ADK (ADKF/F) mice with LysM-Cre (myeloid-specific Cre recombinase expressing) mice and ApoE-/- (apolipoprotein E deficient) mice. Mice absent ADK in myeloid cells exhibited much smaller atherosclerotic plaques compared with controls. In vitro assays showed that ADK deletion or inhibition resulted in increased intracellular adenosine and reduced DNA methylation of the ABCG1 (ATP-binding cassette transporter G1) gene. Loss of methylation was associated with ABCG1 upregulation, enhanced cholesterol efflux, and eventually decreased foam cell formation. Conclusions- Augmentation of intracellular adenosine levels through ADK knockout in myeloid cells protects ApoE-/- mice against atherosclerosis by reducing foam cell formation via the epigenetic regulation of cholesterol trafficking. ADK inhibition is a promising approach for the treatment of atherosclerotic diseases.


Assuntos
Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Adenosina Quinase/deficiência , Aorta/enzimologia , Doenças da Aorta/prevenção & controle , Aterosclerose/prevenção & controle , Epigênese Genética , Células Espumosas/enzimologia , Camundongos Knockout para ApoE , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Adenosina Quinase/genética , Animais , Aorta/patologia , Doenças da Aorta/enzimologia , Doenças da Aorta/genética , Doenças da Aorta/patologia , Aterosclerose/enzimologia , Aterosclerose/genética , Aterosclerose/patologia , Células Cultivadas , Colesterol/metabolismo , Metilação de DNA , Modelos Animais de Doenças , Feminino , Células Espumosas/patologia , Masculino , Camundongos Endogâmicos C57BL , Placa Aterosclerótica , Transdução de Sinais
4.
Cardiovasc Res ; 117(2): 561-575, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-32065618

RESUMO

AIMS: Adenosine receptors and extracellular adenosine have been demonstrated to modulate vascular smooth muscle cell (VSMC) proliferation and neointima formation. Adenosine kinase (ADK) is a major enzyme regulating intracellular adenosine levels but is function in VSMC remains unclear. Here, we investigated the role of ADK in vascular injury-induced smooth muscle proliferation and delineated the mechanisms underlying its action. METHODS AND RESULTS: We found that ADK expression was higher in the neointima of injured vessels and in platelet-derived growth factor-treated VSMCs. Genetic and pharmacological inhibition of ADK was enough to attenuate arterial injury-induced neointima formation due to inhibition of VSMC proliferation. Mechanistically, using infinium methylation assays and bisulfite sequencing, we showed that ADK metabolized the intracellular adenosine and potentiated the transmethylation pathway, then induced the aberrant DNA hypermethylation. Pharmacological inhibition of aberrant DNA hypermethylation increased KLF4 expression and suppressed VSMC proliferation as well as the neointima formation. Importantly, in human femoral arteries, we observed increased ADK expression and DNA hypermethylation as well as decreased KLF4 expression in neointimal VSMCs of stenotic vessels suggesting that our findings in mice are relevant for human disease and may hold translational significance. CONCLUSION: Our study unravels a novel mechanism by which ADK promotes VSMC proliferation via inducing aberrant DNA hypermethylation, thereby down-regulating KLF4 expression and promoting neointima formation. These findings advance the possibility of targeting ADK as an epigenetic modulator to combat vascular injury.


Assuntos
Adenosina Quinase/metabolismo , Lesões das Artérias Carótidas/enzimologia , Proliferação de Células , Metilação de DNA , Epigênese Genética , Músculo Liso Vascular/enzimologia , Miócitos de Músculo Liso/enzimologia , Neointima , Adenosina Quinase/genética , Animais , Artérias Carótidas/enzimologia , Artérias Carótidas/patologia , Lesões das Artérias Carótidas/genética , Lesões das Artérias Carótidas/patologia , Lesões das Artérias Carótidas/prevenção & controle , Modelos Animais de Doenças , Humanos , Fator 4 Semelhante a Kruppel/genética , Fator 4 Semelhante a Kruppel/metabolismo , Camundongos Knockout , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia , Remodelação Vascular
5.
Br J Pharmacol ; 176(13): 2250-2263, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30931525

RESUMO

BACKGROUND AND PURPOSE: Inactivation of the gene for adenosine A2A receptors (ADORA2A for humans and Adora2a for rodents) protects against brain injury in experimental stroke. However, the cell-specific pathogenic effects of A2A receptors in thromboembolic stroke and the underlying mechanisms remain undefined. Here, we tested the hypothesis that inhibition of endothelial A2A receptors after thromboembolic stroke improves post-stroke outcomes via down-regulation of inflammation. EXPERIMENTAL APPROACH: Thromboembolic stroke was induced by embolic middle cerebral artery occlusion in mice. Post-stroke outcomes were determined with neurological deficit scoring, infarct volume, inflammatory marker expression, brain leukocyte infiltration, blood-brain barrier (BBB) leakage, and oedema assessment. Anti-inflammatory effects of silencing the gene for A2A receptors or pharmacological antagonism of these receptors were assessed in vitro. KEY RESULTS: Thromboembolic stroke induced Adora2a expression in the brain. Mice globally deficient in Adora2a (Adora2a-/- ) were resistant to stroke injury. Mice specifically deficient in endothelial Adora2a (Adora2aΔVEC ) showed reduced leukocyte infiltration, BBB leakage, and oedema after stroke, along with attenuated downstream proinflammatory markers, both in vivo and in vitro. The A2A receptor antagonist, KW 6002, also reduced brain injury and inflammation after stroke. Inactivation of ADORA2A inhibited endothelial inflammation via suppression of the NLRP3 inflammasome, down-regulating cleaved caspase 1 and IL-1ß expression. CONCLUSIONS AND IMPLICATIONS: Specific inactivation of endothelial A2A receptors mitigated ischaemic brain injury and improved post-stroke outcomes, at least partly, through anti-inflammatory effects via blockade of NLRP3 inflammasome activity. Our findings may open new approaches to vascular protection after ischaemic stroke.


Assuntos
Encéfalo/metabolismo , Células Endoteliais/metabolismo , Infarto da Artéria Cerebral Média/metabolismo , Neuroproteção , Receptor A2A de Adenosina/metabolismo , Tromboembolia/metabolismo , Antagonistas do Receptor A2 de Adenosina/farmacologia , Animais , Encéfalo/fisiologia , Humanos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microvasos/citologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Purinas/farmacologia , Receptor A2A de Adenosina/genética , Acidente Vascular Cerebral/fisiopatologia , Células THP-1
6.
J Endocrinol ; 242(2): 159-172, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31189131

RESUMO

Insulin resistance-related disorders are associated with endothelial dysfunction. Accumulating evidence has suggested a role for adenosine signaling in the regulation of endothelial function. Here, we identified a crucial role of endothelial adenosine kinase (ADK) in the regulation of insulin resistance. Feeding mice with a high-fat diet (HFD) markedly enhanced the expression of endothelial Adk. Ablation of endothelial Adk in HFD-fed mice improved glucose tolerance and insulin sensitivity and decreased hepatic steatosis, adipose inflammation and adiposity, which were associated with improved arteriole vasodilation, decreased inflammation and increased adipose angiogenesis. Mechanistically, ADK inhibition or knockdown in human umbilical vein endothelial cells (HUVECs) elevated intracellular adenosine level and increased endothelial nitric oxide synthase (NOS3) activity, resulting in an increase in nitric oxide (NO) production. Antagonism of adenosine receptor A2b abolished ADK-knockdown-enhanced NOS3 expression in HUVECs. Additionally, increased phosphorylation of NOS3 in ADK-knockdown HUVECs was regulated by an adenosine receptor-independent mechanism. These data suggest that Adk-deficiency-elevated intracellular adenosine in endothelial cells ameliorates diet-induced insulin resistance and metabolic disorders, and this is associated with an enhancement of NO production caused by increased NOS3 expression and activation. Therefore, ADK is a potential target for the prevention and treatment of metabolic disorders associated with insulin resistance.


Assuntos
Adenosina Quinase/deficiência , Endotélio Vascular/metabolismo , Resistência à Insulina/fisiologia , Adenosina Quinase/genética , Tecido Adiposo/metabolismo , Animais , Células Cultivadas , Dieta Hiperlipídica/efeitos adversos , Endotélio Vascular/citologia , Fígado Gorduroso/etiologia , Fígado Gorduroso/genética , Fígado Gorduroso/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Inflamação/etiologia , Inflamação/genética , Inflamação/metabolismo , Resistência à Insulina/genética , Masculino , Camundongos Knockout , Camundongos Transgênicos , Óxido Nítrico Sintase Tipo III/metabolismo , Obesidade/etiologia , Obesidade/genética , Obesidade/metabolismo , Fosforilação
7.
Nat Commun ; 9(1): 4667, 2018 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-30405100

RESUMO

Increased aerobic glycolysis in endothelial cells of atheroprone areas of blood vessels has been hypothesized to drive increased inflammation and lesion burden but direct links remain to be established. Here we show that endothelial cells exposed to disturbed flow in vivo and in vitro exhibit increased levels of protein kinase AMP-activated (PRKA)/AMP-activated protein kinases (AMPKs). Selective deletion of endothelial Prkaa1, coding for protein kinase AMP-activated catalytic subunit alpha1, reduces glycolysis, compromises endothelial cell proliferation, and accelerates the formation of atherosclerotic lesions in hyperlipidemic mice. Rescue of the impaired glycolysis in Prkaa1-deficient endothelial cells through Slc2a1 overexpression enhances endothelial cell viability and integrity of the endothelial cell barrier, and reverses susceptibility to atherosclerosis. In human endothelial cells, PRKAA1 is upregulated by disturbed flow, and silencing PRKAA1 reduces glycolysis and endothelial viability. Collectively, these results suggest that increased glycolysis in the endothelium of atheroprone arteries is a protective mechanism.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Aterosclerose/enzimologia , Aterosclerose/prevenção & controle , Células Endoteliais/enzimologia , Glicólise , Reologia , Animais , Apolipoproteínas E/deficiência , Apolipoproteínas E/metabolismo , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Transportador de Glucose Tipo 1/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Biológicos
8.
Nat Commun ; 8(1): 943, 2017 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-29038540

RESUMO

The molecular mechanisms underlying vascular inflammation and associated inflammatory vascular diseases are not well defined. Here we show that endothelial intracellular adenosine and its key regulator adenosine kinase (ADK) play important roles in vascular inflammation. Pro-inflammatory stimuli lead to endothelial inflammation by increasing endothelial ADK expression, reducing the level of intracellular adenosine in endothelial cells, and activating the transmethylation pathway through increasing the association of ADK with S-adenosylhomocysteine (SAH) hydrolase (SAHH). Increasing intracellular adenosine by genetic ADK knockdown or exogenous adenosine reduces activation of the transmethylation pathway and attenuates the endothelial inflammatory response. In addition, loss of endothelial ADK in mice leads to reduced atherosclerosis and affords protection against ischemia/reperfusion injury of the cerebral cortex. Taken together, these results demonstrate that intracellular adenosine, which is controlled by the key molecular regulator ADK, influences endothelial inflammation and vascular inflammatory diseases.The molecular mechanisms underlying vascular inflammation are unclear. Here the authors show that pro-inflammatory stimuli lead to endothelial inflammation by increasing adenosine kinase expression, and that its knockdown in endothelial cells inhibits atherosclerosis and cerebral ischemic injury in mice.


Assuntos
Adenosina Quinase/imunologia , Adenosina/imunologia , Aterosclerose/imunologia , Vasos Sanguíneos/imunologia , Células Endoteliais/imunologia , Epigênese Genética/imunologia , Regulação da Expressão Gênica/imunologia , Adenosina Quinase/genética , Adenosil-Homocisteinase/metabolismo , Animais , Aterosclerose/genética , Córtex Cerebral/irrigação sanguínea , Epigênese Genética/genética , Técnicas de Silenciamento de Genes , Inflamação/genética , Inflamação/imunologia , Camundongos , Camundongos Knockout para ApoE , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/imunologia
9.
EMBO Mol Med ; 9(9): 1263-1278, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28751580

RESUMO

The nucleoside adenosine is a potent regulator of vascular homeostasis, but it remains unclear how expression or function of the adenosine-metabolizing enzyme adenosine kinase (ADK) and the intracellular adenosine levels influence angiogenesis. We show here that hypoxia lowered the expression of ADK and increased the levels of intracellular adenosine in human endothelial cells. Knockdown (KD) of ADK elevated intracellular adenosine, promoted proliferation, migration, and angiogenic sprouting in human endothelial cells. Additionally, mice deficient in endothelial ADK displayed increased angiogenesis as evidenced by the rapid development of the retinal and hindbrain vasculature, increased healing of skin wounds, and prompt recovery of arterial blood flow in the ischemic hindlimb. Mechanistically, hypomethylation of the promoters of a series of pro-angiogenic genes, especially for VEGFR2 in ADK KD cells, was demonstrated by the Infinium methylation assay. Methylation-specific PCR, bisulfite sequencing, and methylated DNA immunoprecipitation further confirmed hypomethylation in the promoter region of VEGFR2 in ADK-deficient endothelial cells. Accordingly, loss or inactivation of ADK increased VEGFR2 expression and signaling in endothelial cells. Based on these findings, we propose that ADK downregulation-induced elevation of intracellular adenosine levels in endothelial cells in the setting of hypoxia is one of the crucial intrinsic mechanisms that promote angiogenesis.


Assuntos
Adenosina/metabolismo , Epigênese Genética , Células Endoteliais da Veia Umbilical Humana/metabolismo , Neovascularização Fisiológica , Adenosina Quinase/genética , Adenosina Quinase/metabolismo , Animais , Aorta/metabolismo , Metilação de DNA , Humanos , Camundongos , Regiões Promotoras Genéticas , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
10.
Nat Commun ; 8(1): 584, 2017 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-28928465

RESUMO

Adenosine/adenosine receptor-mediated signaling has been implicated in the development of various ischemic diseases, including ischemic retinopathies. Here, we show that the adenosine A2a receptor (ADORA2A) promotes hypoxia-inducible transcription factor-1 (HIF-1)-dependent endothelial cell glycolysis, which is crucial for pathological angiogenesis in proliferative retinopathies. Adora2a expression is markedly increased in the retina of mice with oxygen-induced retinopathy (OIR). Endothelial cell-specific, but not macrophage-specific Adora2a deletion decreases key glycolytic enzymes and reduces pathological neovascularization in the OIR mice. In human primary retinal microvascular endothelial cells, hypoxia induces the expression of ADORA2A by activating HIF-2α. ADORA2A knockdown decreases hypoxia-induced glycolytic enzyme expression, glycolytic flux, and endothelial cell proliferation, sprouting and tubule formation. Mechanistically, ADORA2A activation promotes the transcriptional induction of glycolytic enzymes via ERK- and Akt-dependent translational activation of HIF-1α protein. Taken together, these findings advance translation of ADORA2A as a therapeutic target in the treatment of proliferative retinopathies and other diseases dependent on pathological angiogenesis.Pathological angiogenesis in the retina is a major cause of blindness. Here the authors show that adenosine receptor A2A drives pathological angiogenesis in the oxygen-induced retinopathy mouse model by promoting glycolysis in endothelial cells via the ERK/Akt/HIF-1α pathway, thereby suggesting new therapeutic targets for disease treatment.


Assuntos
Células Endoteliais/metabolismo , Receptor A2A de Adenosina/metabolismo , Doenças Retinianas/metabolismo , Neovascularização Retiniana/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Glicólise , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptor A2A de Adenosina/genética , Retina/metabolismo , Retina/patologia , Doenças Retinianas/genética , Doenças Retinianas/patologia , Neovascularização Retiniana/genética , Neovascularização Retiniana/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA