Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 161
Filtrar
1.
Blood ; 139(4): 538-553, 2022 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-34624079

RESUMO

Burkitt lymphoma (BL) is an aggressive lymphoma type that is currently treated by intensive chemoimmunotherapy. Despite the favorable clinical outcome for most patients with BL, chemotherapy-related toxicity and disease relapse remain major clinical challenges, emphasizing the need for innovative therapies. Using genome-scale CRISPR-Cas9 screens, we identified B-cell receptor (BCR) signaling, specific transcriptional regulators, and one-carbon metabolism as vulnerabilities in BL. We focused on serine hydroxymethyltransferase 2 (SHMT2), a key enzyme in one-carbon metabolism. Inhibition of SHMT2 by either knockdown or pharmacological compounds induced anti-BL effects in vitro and in vivo. Mechanistically, SHMT2 inhibition led to a significant reduction of intracellular glycine and formate levels, which inhibited the mTOR pathway and thereby triggered autophagic degradation of the oncogenic transcription factor TCF3. Consequently, this led to a collapse of tonic BCR signaling, which is controlled by TCF3 and is essential for BL cell survival. In terms of clinical translation, we also identified drugs such as methotrexate that synergized with SHMT inhibitors. Overall, our study has uncovered the dependency landscape in BL, identified and validated SHMT2 as a drug target, and revealed a mechanistic link between SHMT2 and the transcriptional master regulator TCF3, opening up new perspectives for innovative therapies.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Linfoma de Burkitt/tratamento farmacológico , Linfoma de Burkitt/metabolismo , Glicina Hidroximetiltransferase/antagonistas & inibidores , Glicina Hidroximetiltransferase/metabolismo , Animais , Linfoma de Burkitt/genética , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Descoberta de Drogas , Formiatos/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Glicina/metabolismo , Glicina Hidroximetiltransferase/genética , Humanos , Camundongos , Terapia de Alvo Molecular , Proteólise/efeitos dos fármacos
2.
Haematologica ; 109(2): 493-508, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37560801

RESUMO

The t(14;19)(q32;q13) often juxtaposes BCL3 with immunoglobulin heavy chain (IGH) resulting in overexpression of the gene. In contrast to other oncogenic translocations, BCL3 rearrangement (BCL3-R) has been associated with a broad spectrum of lymphoid neoplasms. Here we report an integrative whole-genome sequence, transcriptomic, and DNA methylation analysis of 13 lymphoid neoplasms with BCL3-R. The resolution of the breakpoints at single base-pair revealed that they occur in two clusters at 5' (n=9) and 3' (n=4) regions of BCL3 associated with two different biological and clinical entities. Both breakpoints were mediated by aberrant class switch recombination of the IGH locus. However, the 5' breakpoints (upstream) juxtaposed BCL3 next to an IGH enhancer leading to overexpression of the gene whereas the 3' breakpoints (downstream) positioned BCL3 outside the influence of the IGH and were not associated with its expression. Upstream BCL3-R tumors had unmutated IGHV, trisomy 12, and mutated genes frequently seen in chronic lymphocytic leukemia (CLL) but had an atypical CLL morphology, immunophenotype, DNA methylome, and expression profile that differ from conventional CLL. In contrast, downstream BCL3-R neoplasms were atypical splenic or nodal marginal zone lymphomas (MZL) with mutated IGHV, complex karyotypes and mutated genes typical of MZL. Two of the latter four tumors transformed to a large B-cell lymphoma. We designed a novel fluorescence in situ hybridization assay that recognizes the two different breakpoints and validated these findings in 17 independent tumors. Overall, upstream or downstream breakpoints of BCL3-R are mainly associated with two subtypes of lymphoid neoplasms with different (epi)genomic, expression, and clinicopathological features resembling atypical CLL and MZL, respectively.


Assuntos
Leucemia Linfocítica Crônica de Células B , Linfoma Difuso de Grandes Células B , Humanos , Leucemia Linfocítica Crônica de Células B/genética , Hibridização in Situ Fluorescente , Translocação Genética , Rearranjo Gênico , Linfoma Difuso de Grandes Células B/genética , Cadeias Pesadas de Imunoglobulinas/genética , Cromossomos Humanos Par 14/genética
3.
Hematol Oncol ; 42(1): e3237, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37937474

RESUMO

About one third of patients with diffuse large B-cell lymphoma (DLBCL) have a relapsing/refractory (R/R) disease after first line chemo-immunotherapy, with particularly poor outcomes observed in patients with primary refractory disease and early relapse. CD19 specific chimeric antigen receptor (CAR) T cell therapy is a game changer that results in durable and complete response rates in almost half of the patients with R/R DLBCL. Other emerging CD19-targeting therapies include monoclonal antibodies, bispecific antibodies and targeting antibody-drug conjugates, which also show encouraging results. However, the timing and sequencing of different anti-CD19-targeting agents and how they might interfere with subsequent CAR T cell treatment is still unclear. In this review, we summarize the results of the pivotal clinical trials as well as evidence from real-world series of the use of different CD19-targeting approved agents. We discuss the effect of various therapies on CD19 expression and its implications for treatment sequencing.


Assuntos
Linfoma Difuso de Grandes Células B , Linfoma não Hodgkin , Receptores de Antígenos Quiméricos , Humanos , Linfócitos T , Receptores de Antígenos Quiméricos/uso terapêutico , Recidiva Local de Neoplasia , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Linfoma Difuso de Grandes Células B/patologia , Antígenos CD19
4.
Mol Syst Biol ; 18(8): e10855, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35959629

RESUMO

The tumour microenvironment and genetic alterations collectively influence drug efficacy in cancer, but current evidence is limited and systematic analyses are lacking. Using chronic lymphocytic leukaemia (CLL) as a model disease, we investigated the influence of 17 microenvironmental stimuli on 12 drugs in 192 genetically characterised patient samples. Based on microenvironmental response, we identified four subgroups with distinct clinical outcomes beyond known prognostic markers. Response to multiple microenvironmental stimuli was amplified in trisomy 12 samples. Trisomy 12 was associated with a distinct epigenetic signature. Bromodomain inhibition reversed this epigenetic profile and could be used to target microenvironmental signalling in trisomy 12 CLL. We quantified the impact of microenvironmental stimuli on drug response and their dependence on genetic alterations, identifying interleukin 4 (IL4) and Toll-like receptor (TLR) stimulation as the strongest actuators of drug resistance. IL4 and TLR signalling activity was increased in CLL-infiltrated lymph nodes compared with healthy samples. High IL4 activity correlated with faster disease progression. The publicly available dataset can facilitate the investigation of cell-extrinsic mechanisms of drug resistance and disease progression.


Assuntos
Leucemia Linfocítica Crônica de Células B , Progressão da Doença , Humanos , Interleucina-4/genética , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/genética , Proteínas Nucleares/genética , Prognóstico , Fatores de Transcrição/genética , Trissomia , Microambiente Tumoral
5.
Blood ; 137(21): 2935-2946, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-33211804

RESUMO

B-cell receptor (BCR) signaling is crucial for chronic lymphocytic leukemia (CLL) biology. IGLV3-21-expressing B cells may acquire a single point mutation (R110) that triggers autonomous BCR signaling, conferring aggressive behavior. Epigenetic studies have defined 3 CLL subtypes based on methylation signatures reminiscent of naïve-like (n-CLL), intermediate (i-CLL), and memory-like (m-CLL) B cells with different biological features. i-CLL carries a borderline IGHV mutational load and significantly higher use of IGHV3-21/IGLV3-21. To determine the clinical and biological features of IGLV3-21R110 CLL and its relationship to these epigenetic subtypes, we characterized the immunoglobulin gene of 584 CLL cases using whole-genome/exome and RNA sequencing. IGLV3-21R110 was detected in 6.5% of cases: 30 (38%) of 79 i-CLLs, 5 (1.7%) of 291 m-CLLs, and 1 (0.5%) of 189 n-CLLs. All stereotype subset 2 cases carried IGLV3-21R110, whereas 62% of IGLV3-21R110 i-CLL cases had nonstereotyped BCR immunoglobulins. IGLV3-21R110 i-CLL had a significantly higher number of SF3B1 and ATM mutations and total number of driver alterations. However, the R110 mutation was the sole alteration in 1 i-CLL and was accompanied only by del(13q) in 3. Although IGHV mutational status varied, IGLV3-21R110 i-CLL transcriptomically resembled n-CLL/unmutated IGHV CLL with a specific signature including WNT5A/B overexpression. In contrast, i-CLL lacking IGLV3-21R110 mirrored m-CLL/mutated IGHV. Patients with IGLV3-21R110 i-CLL had a short time to first treatment and overall survival similar to those of n-CLL/unmutated IGHV patients, whereas patients with non-IGLV3-21R110 i-CLL had a good prognosis similar to that of patients with m-CLL/mutated IGHV. IGLV3-21R110 defines a CLL subgroup with specific biological features and an unfavorable prognosis independent of IGHV mutational status and epigenetic subtype.


Assuntos
Metilação de DNA , Genes de Cadeia Leve de Imunoglobulina/genética , Leucemia Linfocítica Crônica de Células B/genética , Mutação Puntual , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Linfócitos B/química , Feminino , Humanos , Leucemia Linfocítica Crônica de Células B/classificação , Leucemia Linfocítica Crônica de Células B/patologia , Masculino , Pessoa de Meia-Idade , Mutação , Adulto Jovem
6.
Blood ; 138(24): 2514-2525, 2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-34189564

RESUMO

Many functional consequences of mutations on tumor phenotypes in chronic lymphocytic leukemia (CLL) are unknown. This may be in part due to a scarcity of information on the proteome of CLL. We profiled the proteome of 117 CLL patient samples with data-independent acquisition mass spectrometry and integrated the results with genomic, transcriptomic, ex vivo drug response, and clinical outcome data. We found trisomy 12, IGHV mutational status, mutated SF3B1, trisomy 19, del(17)(p13), del(11)(q22.3), mutated DDX3X and MED12 to influence protein expression (false discovery rate [FDR] = 5%). Trisomy 12 and IGHV status were the major determinants of protein expression variation in CLL as shown by principal-component analysis (1055 and 542 differentially expressed proteins, FDR = 5%). Gene set enrichment analyses of CLL with trisomy 12 implicated B-cell receptor (BCR)/phosphatidylinositol 3-kinase (PI3K)/AKT signaling as a tumor driver. These findings were supported by analyses of protein abundance buffering and protein complex formation, which identified limited protein abundance buffering and an upregulated protein complex involved in BCR, AKT, MAPK, and PI3K signaling in trisomy 12 CLL. A survey of proteins associated with trisomy 12/IGHV-independent drug response linked STAT2 protein expression with response to kinase inhibitors, including Bruton tyrosine kinase and mitogen-activated protein kinase kinase (MEK) inhibitors. STAT2 was upregulated in unmutated IGHV CLL and trisomy 12 CLL and required for chemokine/cytokine signaling (interferon response). This study highlights the importance of protein abundance data as a nonredundant layer of information in tumor biology and provides a protein expression reference map for CLL.


Assuntos
Regulação Leucêmica da Expressão Gênica , Leucemia Linfocítica Crônica de Células B/genética , Mutação , Proteoma/genética , Transcriptoma , Linhagem Celular Tumoral , RNA Helicases DEAD-box/genética , Humanos , Cadeias Pesadas de Imunoglobulinas/genética , Região Variável de Imunoglobulina/genética , Fosfoproteínas/genética , Fatores de Processamento de RNA/genética , Trissomia/genética
7.
Haematologica ; 108(10): 2664-2676, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37226709

RESUMO

Understanding the molecular and phenotypic heterogeneity of cancer is a prerequisite for effective treatment. For chronic lymphocytic leukemia (CLL), recurrent genetic driver events have been extensively cataloged, but this does not suffice to explain the disease's diverse course. Here, we performed RNA sequencing on 184 CLL patient samples. Unsupervised analysis revealed two major, orthogonal axes of gene expression variation: the first one represented the mutational status of the immunoglobulin heavy variable (IGHV) genes, and concomitantly, the three-group stratification of CLL by global DNA methylation. The second axis aligned with trisomy 12 status and affected chemokine, MAPK and mTOR signaling. We discovered non-additive effects (epistasis) of IGHV mutation status and trisomy 12 on multiple phenotypes, including the expression of 893 genes. Multiple types of epistasis were observed, including synergy, buffering, suppression and inversion, suggesting that molecular understanding of disease heterogeneity requires studying such genetic events not only individually but in combination. We detected strong differentially expressed gene signatures associated with major gene mutations and copy number aberrations including SF3B1, BRAF and TP53, as well as del(17)(p13), del(13)(q14) and del(11)(q22.3) beyond dosage effect. Our study reveals previously underappreciated gene expression signatures for the major molecular subtypes in CLL and the presence of epistasis between them.


Assuntos
Leucemia Linfocítica Crônica de Células B , Humanos , Leucemia Linfocítica Crônica de Células B/genética , Transcriptoma , Trissomia , Prognóstico , Epistasia Genética , Mutação
8.
Haematologica ; 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37916396

RESUMO

Burkitt lymphoma cells (BL) exploit antigen-independent tonic signals transduced by the B cell antigen receptor (BCR) for their survival, but the molecular details of the rewired BLspecific BCR signal network remain unclear. A loss of function screen revealed the SH2 domain-containing 5`-inositol phosphatase 2 (SHIP2) as a potential modulator of BL fitness. We characterized the role of SHIP2 in BL survival in several BL cell models and show that perturbing SHIP2 function renders cells more susceptible to apoptosis, while attenuating proliferation in a BCR-dependent manner. Unexpectedly, SHIP2 deficiency did neither affect PI3K survival signals nor MAPK activity, but attenuated ATP production. We found that an efficient energy metabolism in BL cells requires phosphatidylinositol-3,4-bisphosphate (PI(3,4)P2), which is the enzymatic product of SHIP proteins. Consistently, interference with the function of SHIP1 and SHIP2 augments BL cell susceptibility to PI3K inhibition. Notably, we here provide a molecular basis of how tonic BCR signals are connected to energy supply, which is particularly important for such an aggressively growing neoplasia. These findings may help to improve therapies for the treatment of BL by limiting energy metabolism through the inhibition of SHIP proteins, which renders BL cells more susceptible to the targeting of survival signals.

9.
Ann Hematol ; 102(2): 403-406, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36494600

RESUMO

In classical hairy cell leukemia (HCL), standard treatments including purine analogs achieve a durable response (up to 90%), but lead to severe immunosuppression and long-lasting depletion of CD4 + T lymphocytes. The BRAF inhibitor vemurafenib is effective in HCL, but its use in first-line treatment is restricted to select clinical situations (e.g. active infection). Its impact on immune function or response to vaccines in HCL is unclear. We treated four HCL patients with vemurafenib during the COVID-19 pandemic and monitored immune reconstitution and response to SARS-CoV-2 immunization. All patients responded to HCL treatment with normalization of peripheral blood counts. No severe infections occurred. As an indication of limited immunosuppression by vemurafenib, stable CD4 + and CD8 + T lymphocyte counts and immunoglobulin levels were observed. Three out of four patients received SARS-CoV-2 vaccination (Pfizer-BioNTech) during treatment with vemurafenib. IgG antibody levels against the spike-protein of SARS-CoV-2 were detected (40-818 AE/ml). Our data suggest that vemurafenib has limited effects on cellular and humoral immune function in HCL, which allows for successful SARS-CoV-2 vaccination. These data support the use of BRAF inhibitors during the current pandemic where continued immune response is necessary for minimizing the COVID-19-related risk of non-vaccinated patients.


Assuntos
COVID-19 , Leucemia de Células Pilosas , Humanos , SARS-CoV-2 , Vemurafenib/uso terapêutico , COVID-19/prevenção & controle , Proteínas Proto-Oncogênicas B-raf , Vacinas contra COVID-19 , Leucemia de Células Pilosas/tratamento farmacológico , Pandemias , Inibidores de Proteínas Quinases , Vacinação , Anticorpos Antivirais
10.
PLoS Comput Biol ; 18(8): e1010438, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35994503

RESUMO

The development of cancer therapies may be improved by the discovery of tumor-specific molecular dependencies. The requisite tools include genetic and chemical perturbations, each with its strengths and limitations. Chemical perturbations can be readily applied to primary cancer samples at large scale, but mechanistic understanding of hits and further pharmaceutical development is often complicated by the fact that a chemical compound has affinities to multiple proteins. To computationally infer specific molecular dependencies of individual cancers from their ex vivo drug sensitivity profiles, we developed a mathematical model that deconvolutes these data using measurements of protein-drug affinity profiles. Through integrating a drug-kinase profiling dataset and several drug response datasets, our method, DepInfeR, correctly identified known protein kinase dependencies, including the EGFR dependence of HER2+ breast cancer cell lines, the FLT3 dependence of acute myeloid leukemia (AML) with FLT3-ITD mutations and the differential dependencies on the B-cell receptor pathway in the two major subtypes of chronic lymphocytic leukemia (CLL). Furthermore, our method uncovered new subgroup-specific dependencies, including a previously unreported dependence of high-risk CLL on Checkpoint kinase 1 (CHEK1). The method also produced a detailed map of the kinase dependencies in a heterogeneous set of 117 CLL samples. The ability to deconvolute polypharmacological phenotypes into underlying causal molecular dependencies should increase the utility of high-throughput drug response assays for functional precision oncology.


Assuntos
Leucemia Linfocítica Crônica de Células B , Leucemia Mieloide Aguda , Linhagem Celular Tumoral , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Mutação , Medicina de Precisão , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Quinases , Receptores de Antígenos de Linfócitos B/genética
11.
Blood ; 136(5): 585-595, 2020 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-32457988

RESUMO

Epigenetic changes during B-cell differentiation generate distinct DNA methylation signatures specific for B-cell subsets, including memory B cells (MBCs) and plasma cells (PCs). Waldenström macroglobulinemia (WM) is a B-cell malignancy uniquely comprising a mixture of lymphocytic and plasmacytic phenotypes. Here, we integrated genome-wide DNA methylation, transcriptome, mutation, and phenotypic features of tumor cells from 35 MYD88-mutated WM patients in relation to normal plasma and B-cell subsets. Patients naturally segregate into 2 groups according to DNA methylation patterns, related to normal MBC and PC profiles, and reminiscent of other memory and PC-derived malignancies. Concurrent analysis of DNA methylation changes in normal and WM development captured tumor-specific events, highlighting a selective reprogramming of enhancer regions in MBC-like WM and repressed and heterochromatic regions in PC-like WM. MBC-like WM hypomethylation was enriched in motifs belonging to PU.1, TCF3, and OCT2 transcription factors and involved elevated MYD88/TLR pathway activity. PC-like WM displayed marked global hypomethylation and selective overexpression of histone genes. Finally, WM subtypes exhibited differential genetic, phenotypic, and clinical features. MBC-like WM harbored significantly more clonal CXCR4 mutations (P = .015), deletion 13q (P = .006), splenomegaly (P = .02), and thrombocytopenia (P = .004), whereas PC-like WM harbored more deletion 6q (P = .012), gain 6p (P = .033), had increased frequencies of IGHV3 genes (P = .002), CD38 expression (P = 4.1e-5), and plasmacytic differentiation features (P = .008). Together, our findings illustrate a novel approach to subclassify WM patients using DNA methylation and reveal divergent molecular signatures among WM patients.


Assuntos
Subpopulações de Linfócitos B/imunologia , Metilação de DNA/genética , Plasmócitos/imunologia , Macroglobulinemia de Waldenstrom/genética , Macroglobulinemia de Waldenstrom/imunologia , Humanos , Macroglobulinemia de Waldenstrom/classificação
12.
Haematologica ; 107(3): 604-614, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33691380

RESUMO

Clonal evolution is involved in the progression of chronic lymphocytic leukemia (CLL). In order to link evolutionary patterns to different disease courses, we performed a long-term longitudinal mutation profiling study of CLL patients. Tracking somatic mutations and their changes in allele frequency over time and assessing the underlying cancer cell fraction revealed highly distinct evolutionary patterns. Surprisingly, in long-term stable disease and in relapse after long-lasting clinical response to treatment, clonal shifts are minor. In contrast, in refractory disease major clonal shifts occur although there is little impact on leukemia cell counts. As this striking pattern in refractory cases is not linked to a strong contribution of known CLL driver genes, the evolution is mostly driven by treatment-induced selection of sub-clones, underlining the need for novel, non-genotoxic treatment regimens.


Assuntos
Leucemia Linfocítica Crônica de Células B , Evolução Clonal/genética , Células Clonais , Humanos , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/genética , Estudos Longitudinais , Mutação
13.
Blood ; 134(8): 688-698, 2019 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-31292113

RESUMO

Alterations in global DNA methylation patterns are a major hallmark of cancer and represent attractive biomarkers for personalized risk stratification. Chronic lymphocytic leukemia (CLL) risk stratification studies typically focus on time to first treatment (TTFT), time to progression (TTP) after treatment, and overall survival (OS). Whereas TTFT risk stratification remains similar over time, TTP and OS have changed dramatically with the introduction of targeted therapies, such as the Bruton tyrosine kinase inhibitor ibrutinib. We have shown that genome-wide DNA methylation patterns in CLL are strongly associated with phenotypic differentiation and patient outcomes. Here, we developed a novel assay, termed methylation-iPLEX (Me-iPLEX), for high-throughput quantification of targeted panels of single cytosine guanine dinucleotides from multiple independent loci. Me-iPLEX was used to classify CLL samples into 1 of 3 known epigenetic subtypes (epitypes). We examined the impact of epitype in 1286 CLL patients from 4 independent cohorts representing a comprehensive view of CLL disease course and therapies. We found that epitype significantly predicted TTFT and OS among newly diagnosed CLL patients. Additionally, epitype predicted TTP and OS with 2 common CLL therapies: chemoimmunotherapy and ibrutinib. Epitype retained significance after stratifying by biologically related biomarkers, immunoglobulin heavy chain mutational status, and ZAP70 expression, as well as other common prognostic markers. Furthermore, among several biological traits enriched between epitypes, we found highly biased immunogenetic features, including IGLV3-21 usage in the poorly characterized intermediate-programmed CLL epitype. In summary, Me-iPLEX is an elegant method to assess epigenetic signatures, including robust classification of CLL epitypes that independently stratify patient risk at diagnosis and time of treatment.


Assuntos
Metilação de DNA , Leucemia Linfocítica Crônica de Células B/genética , Biomarcadores Tumorais/genética , Progressão da Doença , Epigênese Genética , Loci Gênicos , Testes Genéticos , Humanos , Leucemia Linfocítica Crônica de Células B/diagnóstico , Prognóstico
14.
Blood ; 134(21): 1821-1831, 2019 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-31527074

RESUMO

B-cell prolymphocytic leukemia (B-PLL) is a rare hematological disorder whose underlying oncogenic mechanisms are poorly understood. Our cytogenetic and molecular assessments of 34 patients with B-PLL revealed several disease-specific features and potential therapeutic targets. The karyotype was complex (≥3 abnormalities) in 73% of the patients and highly complex (≥5 abnormalities) in 45%. The most frequent chromosomal aberrations were translocations involving MYC [t(MYC)] (62%), deletion (del)17p (38%), trisomy (tri)18 (30%), del13q (29%), tri3 (24%), tri12 (24%), and del8p (23%). Twenty-six (76%) of the 34 patients exhibited an MYC aberration, resulting from mutually exclusive translocations or gains. Whole-exome sequencing revealed frequent mutations in TP53, MYD88, BCOR, MYC, SF3B1, SETD2, CHD2, CXCR4, and BCLAF1. The majority of B-PLL used the IGHV3 or IGHV4 subgroups (89%) and displayed significantly mutated IGHV genes (79%). We identified 3 distinct cytogenetic risk groups: low risk (no MYC aberration), intermediate risk (MYC aberration but no del17p), and high risk (MYC aberration and del17p) (P = .0006). In vitro drug response profiling revealed that the combination of a B-cell receptor or BCL2 inhibitor with OTX015 (a bromodomain and extra-terminal motif inhibitor targeting MYC) was associated with significantly lower viability of B-PLL cells harboring a t(MYC). We concluded that cytogenetic analysis is a useful diagnostic and prognostic tool in B-PLL. Targeting MYC may be a useful treatment option in this disease.


Assuntos
Leucemia Prolinfocítica Tipo Células B/genética , Proteínas Proto-Oncogênicas c-myc/genética , Proteína Supressora de Tumor p53/genética , Idoso , Idoso de 80 Anos ou mais , Aberrações Cromossômicas , Análise Citogenética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico
15.
Blood ; 132(25): 2670-2683, 2018 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-30333121

RESUMO

Forkhead box class O1 (FOXO1) acts as a tumor suppressor in solid tumors. The oncogenic phosphoinositide-3-kinase (PI3K) pathway suppresses FOXO1 transcriptional activity by enforcing its nuclear exclusion upon AKT-mediated phosphorylation. We show here abundant nuclear expression of FOXO1 in Burkitt lymphoma (BL), a germinal center (GC) B-cell-derived lymphoma whose pathogenesis is linked to PI3K activation. Recurrent FOXO1 mutations, which prevent AKT targeting and lock the transcription factor in the nucleus, are used by BL to circumvent mutual exclusivity between PI3K and FOXO1 activation. Using genome editing in human and mouse lymphomas in which MYC and PI3K cooperate synergistically in tumor development, we demonstrate proproliferative and antiapoptotic activity of FOXO1 in BL and identify its nuclear localization as an oncogenic event in GC B-cell-derived lymphomagenesis.


Assuntos
Linfócitos B , Linfoma de Burkitt , Núcleo Celular , Transformação Celular Neoplásica , Proteína Forkhead Box O1 , Centro Germinativo , Animais , Linfócitos B/metabolismo , Linfócitos B/patologia , Linfoma de Burkitt/genética , Linfoma de Burkitt/metabolismo , Linfoma de Burkitt/patologia , Linhagem Celular Tumoral , Núcleo Celular/genética , Núcleo Celular/metabolismo , Núcleo Celular/patologia , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Edição de Genes , Centro Germinativo/metabolismo , Centro Germinativo/patologia , Humanos , Camundongos , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo
16.
Blood ; 131(25): 2789-2802, 2018 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-29653964

RESUMO

Tumors accumulate high levels of mutant p53 (mutp53), which contributes to mutp53 gain-of-function properties. The mechanisms that underlie such excessive accumulation are not fully understood. To discover regulators of mutp53 protein accumulation, we performed a large-scale RNA interference screen in a Burkitt lymphoma cell line model. We identified transformation/transcription domain-associated protein (TRRAP), a constituent of several histone acetyltransferase complexes, as a critical positive regulator of both mutp53 and wild-type p53 levels. TRRAP silencing attenuated p53 accumulation in lymphoma and colon cancer models, whereas TRRAP overexpression increased mutp53 levels, suggesting a role for TRRAP across cancer entities and p53 mutations. Through clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 screening, we identified a 109-amino-acid region in the N-terminal HEAT repeat region of TRRAP that was crucial for mutp53 stabilization and cell proliferation. Mass spectrometric analysis of the mutp53 interactome indicated that TRRAP silencing caused degradation of mutp53 via the MDM2-proteasome axis. This suggests that TRRAP is vital for maintaining mutp53 levels by shielding it against the natural p53 degradation machinery. To identify drugs that alleviated p53 accumulation similarly to TRRAP silencing, we performed a small-molecule drug screen and found that inhibition of histone deacetylases (HDACs), specifically HDAC1/2/3, decreased p53 levels to a comparable extent. In summary, here we identify TRRAP as a key regulator of p53 levels and link acetylation-modifying complexes to p53 protein stability. Our findings may provide clues for therapeutic targeting of mutp53 in lymphoma and other cancers.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Linfoma/metabolismo , Proteínas Nucleares/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Acetilação , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Humanos , Linfoma/genética , Mutação , Proteínas Nucleares/química , Proteínas Nucleares/genética , Domínios Proteicos , Estabilidade Proteica , Transporte Proteico , Proteólise , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteína Supressora de Tumor p53/genética , Ubiquitinação
17.
Haematologica ; 105(4): 1042-1054, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31289209

RESUMO

In chronic lymphocytic leukemia (CLL), the hypoxia-inducible factor 1 (HIF-1) regulates the response of tumor cells to hypoxia and their protective interactions with the leukemic microenvironment. In this study, we demonstrate that CLL cells from TP53-disrupted (TP53 dis) patients have constitutively higher expression levels of the α-subunit of HIF-1 (HIF-1α) and increased HIF-1 transcriptional activity compared to the wild-type counterpart. In the TP53 dis subset, HIF-1α upregulation is due to reduced expression of the HIF-1α ubiquitin ligase von Hippel-Lindau protein (pVHL). Hypoxia and stromal cells further enhance HIF-1α accumulation, independently of TP53 status. Hypoxia acts through the downmodulation of pVHL and the activation of the PI3K/AKT and RAS/ERK1-2 pathways, whereas stromal cells induce an increased activity of the RAS/ERK1-2, RHOA/RHOA kinase and PI3K/AKT pathways, without affecting pVHL expression. Interestingly, we observed that higher levels of HIF-1A mRNA correlate with a lower susceptibility of leukemic cells to spontaneous apoptosis, and associate with the fludarabine resistance that mainly characterizes TP53 dis tumor cells. The HIF-1α inhibitor BAY87-2243 exerts cytotoxic effects toward leukemic cells, regardless of the TP53 status, and has anti-tumor activity in Em-TCL1 mice. BAY87-2243 also overcomes the constitutive fludarabine resistance of TP53 dis leukemic cells and elicits a strongly synergistic cytotoxic effect in combination with ibrutinib, thus providing preclinical evidence to stimulate further investigation into use as a potential new drug in CLL.


Assuntos
Leucemia Linfocítica Crônica de Células B , Animais , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/genética , Camundongos , Fosfatidilinositol 3-Quinases/genética , Microambiente Tumoral , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor Von Hippel-Lindau
19.
Mol Syst Biol ; 14(6): e8124, 2018 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-29925568

RESUMO

Multi-omics studies promise the improved characterization of biological processes across molecular layers. However, methods for the unsupervised integration of the resulting heterogeneous data sets are lacking. We present Multi-Omics Factor Analysis (MOFA), a computational method for discovering the principal sources of variation in multi-omics data sets. MOFA infers a set of (hidden) factors that capture biological and technical sources of variability. It disentangles axes of heterogeneity that are shared across multiple modalities and those specific to individual data modalities. The learnt factors enable a variety of downstream analyses, including identification of sample subgroups, data imputation and the detection of outlier samples. We applied MOFA to a cohort of 200 patient samples of chronic lymphocytic leukaemia, profiled for somatic mutations, RNA expression, DNA methylation and ex vivo drug responses. MOFA identified major dimensions of disease heterogeneity, including immunoglobulin heavy-chain variable region status, trisomy of chromosome 12 and previously underappreciated drivers, such as response to oxidative stress. In a second application, we used MOFA to analyse single-cell multi-omics data, identifying coordinated transcriptional and epigenetic changes along cell differentiation.


Assuntos
Biologia Computacional/métodos , Conjuntos de Dados como Assunto , Antineoplásicos/uso terapêutico , Simulação por Computador , Humanos , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/genética , Modelos Estatísticos , Estresse Oxidativo , Software , Transcriptoma
20.
Blood ; 129(5): 598-608, 2017 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-28064214

RESUMO

Burkitt lymphoma (BL) is an aggressive B-cell neoplasm that is currently treated by intensive chemotherapy in combination with anti-CD20 antibodies. Because of their toxicity, current treatment regimens are often not suitable for elderly patients or for patients in developing countries where BL is endemic. Targeted therapies for BL are therefore needed. In this study, we performed a compound screen in 17 BL cell lines to identify small molecule inhibitors affecting cell survival. We found that inhibitors of heat shock protein 90 (HSP90) induced apoptosis in BL cells in vitro at concentrations that did not affect normal B cells. By global proteomic and phosphoproteomic profiling, we show that, in BL, HSP90 inhibition compromises the activity of the pivotal B-cell antigen receptor (BCR)-proximal effector spleen tyrosine kinase (SYK), which we identified as an HSP90 client protein. Consistently, expression of constitutively active TEL-SYK counteracted the apoptotic effect of HSP90 inhibition. Together, our results demonstrate that HSP90 inhibition impairs BL cell survival by interfering with tonic BCR signaling, thus providing a molecular rationale for the use of HSP90 inhibitors in the treatment of BL.


Assuntos
Linfoma de Burkitt/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Receptores de Antígenos de Linfócitos B/metabolismo , Transdução de Sinais , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linfócitos B/efeitos dos fármacos , Linfócitos B/metabolismo , Linfócitos B/patologia , Linfoma de Burkitt/tratamento farmacológico , Linfoma de Burkitt/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Humanos , Proteínas de Fusão Oncogênica/metabolismo , Transdução de Sinais/efeitos dos fármacos , Quinase Syk/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA