RESUMO
BACKGROUND: With the introduction of Olaparib treatment for BRCA-deficient recurrent ovarian cancer, testing for somatic and/or germline mutations in BRCA1/2 genes in tumor tissues became essential for treatment decisions. In most cases only formalin-fixed paraffin-embedded (FFPE) samples, containing fragmented and chemically modified DNA of minor quality, are available. Thus, multiplex PCR-based sequencing is most commonly applied in routine molecular testing, which is predominantly focused on the identification of known hot spot mutations in oncogenes. METHODS: We compared the overall performance of an adjusted targeted capture-based enrichment protocol and a multiplex PCR-based approach for calling of pathogenic SNVs and InDels using DNA extracted from 13 FFPE tissue samples. We further applied both strategies to seven blood samples and five matched FFPE tumor tissues of patients with known germline exon-spanning deletions and gene-wide duplications in BRCA1/2 to evaluate CNV detection based solely on panel NGS data. Finally, we analyzed DNA from FFPE tissues of 11 index patients from families suspected of having hereditary breast and ovarian cancer, of whom no blood samples were available for testing, in order to identify underlying pathogenic germline BRCA1/2 mutations. RESULTS: The multiplex PCR-based protocol produced inhomogeneous coverage among targets of each sample and between samples as well as sporadic amplicon drop out, leading to insufficiently or non-covered nucleotides, which subsequently hindered variant detection. This protocol further led to detection of PCR-artifacts that could easily have been misinterpreted as pathogenic mutations. No such limitations were observed by application of an adjusted targeted capture-based protocol, which allowed for CNV calling with 86% sensitivity and 100% specificity. All pathogenic CNVs were confirmed in the five matched FFPE tumor samples from patients carrying known pathogenic germline mutations and we additionally identified somatic loss of the second allele in BRCA1/2. Furthermore we detected pathogenic BRCA1/2 variants in four the eleven FFPE samples from patients of whom no blood was available for analysis. CONCLUSIONS: We demonstrate that an adjusted targeted capture-based enrichment protocol is superior to commonly applied multiplex PCR-based protocols for reliable BRCA1/2 variant detection, including CNV-detection, using FFPE tumor samples.
Assuntos
Proteína BRCA1/genética , Proteína BRCA2/genética , Neoplasias da Mama/genética , Mutação em Linhagem Germinativa , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Neoplasias Ovarianas/genética , Neoplasias da Mama/sangue , Neoplasias da Mama/diagnóstico , Variações do Número de Cópias de DNA/genética , Feminino , Formaldeído/química , Humanos , Mutação INDEL , Masculino , Reação em Cadeia da Polimerase Multiplex/métodos , Neoplasias Ovarianas/sangue , Neoplasias Ovarianas/diagnóstico , Inclusão em Parafina , Linhagem , Reprodutibilidade dos Testes , Fixação de TecidosAssuntos
Neoplasias Meníngeas , Meningioma , Neoplasias da Medula Espinal , Feminino , Humanos , Neoplasias Meníngeas/genética , Neoplasias Meníngeas/patologia , Meningioma/genética , Meningioma/patologia , Proteínas Proto-Oncogênicas c-akt , Neoplasias da Medula Espinal/genética , Neoplasias da Medula Espinal/patologiaRESUMO
The term "pre-analytics" summarizes all procedures concerned with specimen collection or processing as well as logistical aspects like transport or storage of tissue specimens. All or these variables as well as tissue-specific characteristics affect sample quality. While certain parameters like warm ischemia or tissue-specific characteristics cannot be changed, other parameters can be assessed and optimized. The aim of this study was to determine RNA quality by assessing the RIN values of specimens from different organs and to assess the influence of vacuum preservation. Samples from the GI tract, in general, appear to have lower RNA quality when compared to samples from other organ sites. This may be due to the digestive enzymes or bacterial colonization. Processing time in pathology does not significantly influence RNA quality. Tissue preservation with a vacuum sealer leads to preserved RNA quality over an extended period of time and offers a feasible alternative to minimize the influence of transport time into pathology.
Assuntos
Neoplasias Gastrointestinais/patologia , Trato Gastrointestinal/patologia , RNA/química , Manejo de Espécimes/normas , Bancos de Tecidos/normas , Fracionamento Celular/métodos , Fracionamento Celular/normas , Congelamento , Neoplasias Gastrointestinais/química , Trato Gastrointestinal/química , Alemanha , Humanos , Período Intraoperatório , Especificidade de Órgãos , Período Perioperatório , RNA/isolamento & purificação , RNA/normas , Estudos Retrospectivos , Manejo de Espécimes/métodosRESUMO
OBJECTIVE: Foramen magnum (FM) meningiomas pose significant surgical challenges and have high morbidity and mortality rates. This study aimed to investigate the distribution of clinically actionable mutations in FM meningiomas and identify clinical characteristics associated with specific mutational profiles. METHODS: The authors conducted targeted next-generation sequencing of 62 FM meningiomas from three international institutions, covering all relevant meningioma genes (AKT1, KLF4, NF2, POLR2A, PIK3CA, SMO, TERT promoter, and TRAF7). Patients with a radiation-induced meningioma or neurofibromatosis type 2 (NF2) were excluded from the study. Additionally, patient and tumor characteristics, including age, sex, radiological features, and tumor location, were retrospectively collected and evaluated. RESULTS: The study cohort consisted of 46 female and 16 male patients. Clinically significant driver mutations were detected in 58 patients (93.5%). The most commonly observed alteration was TRAF7 mutations (26, 41.9%), followed by AKT1E17K mutations (19, 30.6%). Both mutations were significantly associated with an anterolateral tumor location relative to the brainstem (p = 0.0078). NF2 mutations were present in 11 cases (17.7%) and were associated with posterior tumor location, in contrast to tumors with TRAF7 and AKT1E17K mutations. Other common mutations in FM meningiomas included POLR2A mutations (8, 12.9%; 6 POLR2AQ403K and 2 POLR2AH439_L440del), KLF4K409Q mutations (7, 11.3%), and PIK3CA mutations (4, 6.5%; 2 PIK3CAH1047R and 2 PIK3CAE545K). POLR2A and KLF4 mutations exclusively occurred in female patients and showed no significant association with specific tumor locations. All tumors harboring AKT1E17K and POLR2A mutations displayed meningothelial histology. Ten tumors exhibited intratumoral calcification, which was significantly more frequent in NF2-mutant compared with AKT1-mutant FM meningiomas (p = 0.047). CONCLUSIONS: These findings provide important insights into the molecular genetics and clinicopathological characteristics of FM meningiomas. The identification of specific genetic alterations associated with tumor location, volume, calcification, histology, and sex at diagnosis may have implications for personalized treatment strategies in the future.
Assuntos
Forame Magno , Fator 4 Semelhante a Kruppel , Neoplasias Meníngeas , Meningioma , Mutação , Neurofibromina 2 , Humanos , Meningioma/genética , Meningioma/patologia , Masculino , Feminino , Pessoa de Meia-Idade , Neoplasias Meníngeas/genética , Neoplasias Meníngeas/patologia , Neoplasias Meníngeas/diagnóstico por imagem , Adulto , Idoso , Estudos Retrospectivos , Neurofibromina 2/genética , Peptídeos e Proteínas Associados a Receptores de Fatores de Necrose Tumoral/genética , Proteínas Proto-Oncogênicas c-akt/genética , RNA Polimerase III/genética , Classe I de Fosfatidilinositol 3-Quinases/genética , Sequenciamento de Nucleotídeos em Larga Escala , Fatores de Transcrição Kruppel-Like/genética , Receptor Smoothened/genética , Análise Mutacional de DNA , Adulto Jovem , TelomeraseRESUMO
The human epidermal growth factor receptor 2 (HER2) gene amplification status is a crucial marker for evaluating clinical therapies of breast or gastric cancer. We propose a deep learning-based pipeline for the detection, localization and classification of interphase nuclei depending on their HER2 gene amplification state in Fluorescence in situ hybridization (FISH) images. Our pipeline combines two RetinaNet-based object localization networks which are trained (1) to detect and classify interphase nuclei into distinct classes normal, low-grade and high-grade and (2) to detect and classify FISH signals into distinct classes HER2 or centromere of chromosome 17 (CEN17). By independently classifying each nucleus twice, the two-step pipeline provides both robustness and interpretability for the automated detection of the HER2 amplification status. The accuracy of our deep learning-based pipeline is on par with that of three pathologists and a set of 57 validation images containing several hundreds of nuclei are accurately classified. The automatic pipeline is a first step towards assisting pathologists in evaluating the HER2 status of tumors using FISH images, for analyzing FISH images in retrospective studies, and for optimizing the documentation of each tumor sample by automatically annotating and reporting of the HER2 gene amplification specificities.
Assuntos
Amplificação de Genes , Imageamento Tridimensional , Hibridização in Situ Fluorescente , Neoplasias/diagnóstico , Neoplasias/genética , Receptor ErbB-2/genética , Automação , Núcleo Celular/metabolismo , Aprendizado Profundo , Humanos , Gradação de Tumores , Neoplasias/patologia , Processamento de Sinais Assistido por ComputadorRESUMO
OBJECTIVE: Our objective was to improve molecular diagnostics in patients with hereditary pheochromocytoma and paraganglioma (PPGL) by using next-generation sequencing (NGS) multi-gene panel analysis. Derived from this study, we here present three cases that were diagnosed with NF1 germline mutations but did not have a prior clinical diagnosis of neurofibromatosis type 1 (NF1). DESIGN: We performed genetic analysis of known tumor predisposition genes, including NF1, using a multi-gene NGS enrichment-based panel applied to a total of 1029 PPGL patients. We did not exclude genes known to cause clinically defined syndromes such as NF1 based on missing phenotypic expression as is commonly practiced. METHODS: Genetic analysis was performed using NGS (TruSight Cancer Panel/customized panel by Illumina) for analyzing patients' blood and tumor samples. Validation was carried out by Sanger sequencing. RESULTS: Within our cohort, three patients, who were identified to carry pathogenic NF1 germline mutations, attracted attention, since none of the patients had a clinical suspicion of NF1 and one of them was initially suspected to have MEN2A syndrome due to co-occurrence of a medullary thyroid carcinoma. In these cases, one splice site, one stop and one frameshift mutation in NF1 were identified. CONCLUSIONS: Since phenotypical presentation of NF1 is highly variable, we suggest analysis of the NF1 gene also in PPGL patients who do not meet diagnostic NF1 criteria. Co-occurrence of medullary thyroid carcinoma and PPGL was found to be a clinical decoy in NF1 diagnostics. These observations underline the value of multi-gene panel NGS for PPGL patients.
Assuntos
Neoplasias das Glândulas Suprarrenais/genética , Mutação em Linhagem Germinativa/genética , Neurofibromatose 1/genética , Feocromocitoma/genética , Neoplasias das Glândulas Suprarrenais/diagnóstico , Neoplasias das Glândulas Suprarrenais/patologia , Adulto , Sequência de Bases , Carcinoma Neuroendócrino/genética , Códon sem Sentido , Epinefrina/urina , Feminino , Genes da Neurofibromatose 1 , Predisposição Genética para Doença/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Hipertensão , Masculino , Metanefrina/urina , Pessoa de Meia-Idade , Neoplasia Endócrina Múltipla Tipo 2a/genética , Normetanefrina/urina , Paraganglioma/genética , Linhagem , Feocromocitoma/diagnóstico , Feocromocitoma/patologia , Neoplasias da Próstata , Neoplasias da Glândula Tireoide/genéticaRESUMO
The European Commision (EC) recently approved osimertinib for the treatment of adult patients with locally advanced or metastatic non-small-cell lung cancer (NSCLC) harboring EGFR T790M mutations. Besides tissue-based testing, blood samples containing cell-free circulating tumor DNA (ctDNA) can be used to interrogate T790M status. Herein, we describe the conditions and results of a round robin trial (RRT) for T790M mutation testing in NSCLC tissue specimens and peripheral blood samples spiked with cell line DNA mimicking tumor-derived ctDNA. The underlying objectives of this two-staged external quality assessment (EQA) approach were (a) to evaluate the accuracy of T790M mutations testing across multiple centers and (b) to investigate if a liquid biopsy-based testing for T790M mutations in spiked blood samples is feasible in routine diagnostic. Based on a successfully completed internal phase I RRT, an open RRT for EGFR T790M mutation testing in tumor tissue and blood samples was initiated. In total, 48 pathology centers participated in the EQA. Of these, 47 (97.9%) centers submitted their analyses within the pre-defined time frame and 44 (tissue), respectively, 40 (plasma) successfully passed the test. The overall success rates in the RRT phase II were 91.7% (tissue) and 83.3% (blood), respectively. Thirty-eight out of 48 participants (79.2%) successfully passed both parts of the RRT. The RRT for blood-based EGFR testing initiated in Germany is, to the best of our knowledge, the first of his kind in Europe. In summary, our results demonstrate that blood-based genotyping for EGFR resistance mutations can be successfully integrated in routine molecular diagnostics complementing the array of molecular methods already available at pathology centers in Germany.
Assuntos
DNA Tumoral Circulante/análise , Análise Mutacional de DNA/normas , Receptores ErbB/análise , Técnicas de Genotipagem/normas , Garantia da Qualidade dos Cuidados de Saúde , Carcinoma Pulmonar de Células não Pequenas/sangue , Carcinoma Pulmonar de Células não Pequenas/genética , Receptores ErbB/genética , Alemanha , Humanos , Neoplasias Pulmonares/sangue , Neoplasias Pulmonares/genéticaRESUMO
Genetic heterogeneity between and within tumours is a major factor determining cancer progression and therapy response. Here we examined DNA sequence and DNA copy-number heterogeneity in colorectal cancer (CRC) by targeted high-depth sequencing of 100 most frequently altered genes. In 97 samples, with primary tumours and matched metastases from 27 patients, we observe inter-tumour concordance for coding mutations; in contrast, gene copy numbers are highly discordant between primary tumours and metastases as validated by fluorescent in situ hybridization. To further investigate intra-tumour heterogeneity, we dissected a single tumour into 68 spatially defined samples and sequenced them separately. We identify evenly distributed coding mutations in APC and TP53 in all tumour areas, yet highly variable gene copy numbers in numerous genes. 3D morpho-molecular reconstruction reveals two clusters with divergent copy number aberrations along the proximal-distal axis indicating that DNA copy number variations are a major source of tumour heterogeneity in CRC.