Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 427
Filtrar
1.
Nano Lett ; 24(25): 7716-7723, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38848111

RESUMO

Mixed-dimensional heterostructures integrate materials of diverse dimensions with unique electronic functionalities, providing a new platform for research in electron transport and optoelectronic detection. Here, we report a novel covalently bonded one-dimensional/two-dimensional (1D/2D) homojunction structure with robust junction contacts, which exhibits wide-spectrum (from the visible to near-infrared regions), self-driven photodetection, and polarization-sensitive photodetection capabilities. Benefiting from the ultralow dark current at zero bias voltage, the on/off ratio and detectivity of the device reach 1.5 × 103 and 3.24 × 109 Jones, respectively. Furthermore, the pronounced anisotropy of the WSe2 1D/2D homojunction is attributed to its low symmetry, enabling polarization-sensitive detection. In the absence of any external bias voltage, the device exhibits strong linear dichroism for wavelengths of 638 and 808 nm, with anisotropy ratios of 2.06 and 1.96, respectively. These results indicate that such mixed-dimensional structures can serve as attractive building blocks for novel optoelectronic detectors.

2.
BMC Immunol ; 25(1): 41, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38972998

RESUMO

BACKGROUND: Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by disturbance of pro-inflammatory and anti-inflammatory lymphocytes. Growing evidence shown that gut microbiota participated in the occurrence and development of SLE by affecting the differentiation and function of intestinal immune cells. The purpose of this study was to investigate the changes of gut microbiota in SLE and judge its associations with peripheral T lymphocytes. METHODS: A total of 19 SLE patients and 16 HCs were enrolled in this study. Flow cytometry was used to detect the number of peripheral T lymphocyte subsets, and 16 s rRNA was used to detect the relative abundance of gut microbiota. Analyzed the correlation between gut microbiota with SLEDAI, ESR, ds-DNA and complement. SPSS26.0 software was used to analyze the experimental data. Mann-Whitney U test was applied to compare T lymphocyte subsets. Spearman analysis was used for calculating correlation. RESULTS: Compared with HCs, the proportions of Tregs (P = 0.001), Tfh cells (P = 0.018) and Naïve CD4 + T cells (P = 0.004) significantly decreased in SLE patients, and proportions of Th17 cells (P = 0.020) and γδT cells (P = 0.018) increased in SLE. The diversity of SLE patients were significantly decreased. Addition, there were 11 species of flora were discovered to be distinctly different in SLE group (P < 0.05). In the correlation analysis of SLE, Tregs were positively correlated with Ruminococcus2 (P = 0.042), Th17 cells were positively correlated with Megamonas (P = 0.009), γδT cells were positively correlated with Megamonas (P = 0.003) and Streptococcus (P = 0.004), Tfh cells were positively correlated with Bacteroides (P = 0.040), and Th1 cells were negatively correlated with Bifidobacterium (P = 0.005). As for clinical indicators, the level of Tregs was negatively correlated with ESR (P = 0.031), but not with C3 and C4, and the remaining cells were not significantly correlated with ESR, C3 and C4. CONCLUSION: Gut microbiota and T lymphocyte subsets of SLE changed and related to each other, which may break the immune balance and affect the occurrence and development of SLE. Therefore, it is necessary to pay attention to the changes of gut microbiota and provide new ideas for the treatment of SLE.


Assuntos
Microbioma Gastrointestinal , Lúpus Eritematoso Sistêmico , Subpopulações de Linfócitos T , Humanos , Lúpus Eritematoso Sistêmico/imunologia , Lúpus Eritematoso Sistêmico/microbiologia , Microbioma Gastrointestinal/imunologia , Feminino , Adulto , Masculino , Subpopulações de Linfócitos T/imunologia , Pessoa de Meia-Idade , Linfócitos T Reguladores/imunologia , Adulto Jovem , Células Th17/imunologia
3.
Gastroenterology ; 164(2): 272-288, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36155191

RESUMO

BACKGROUND & AIMS: We investigate interrelationships between gut microbes, metabolites, and cytokines that characterize COVID-19 and its complications, and we validate the results with follow-up, the Japanese 4D (Disease, Drug, Diet, Daily Life) microbiome cohort, and non-Japanese data sets. METHODS: We performed shotgun metagenomic sequencing and metabolomics on stools and cytokine measurements on plasma from 112 hospitalized patients with SARS-CoV-2 infection and 112 non-COVID-19 control individuals matched by important confounders. RESULTS: Multiple correlations were found between COVID-19-related microbes (eg, oral microbes and short-chain fatty acid producers) and gut metabolites (eg, branched-chain and aromatic amino acids, short-chain fatty acids, carbohydrates, neurotransmitters, and vitamin B6). Both were also linked to inflammatory cytokine dynamics (eg, interferon γ, interferon λ3, interleukin 6, CXCL-9, and CXCL-10). Such interrelationships were detected highly in severe disease and pneumonia; moderately in the high D-dimer level, kidney dysfunction, and liver dysfunction groups; but rarely in the diarrhea group. We confirmed concordances of altered metabolites (eg, branched-chain amino acids, spermidine, putrescine, and vitamin B6) in COVID-19 with their corresponding microbial functional genes. Results in microbial and metabolomic alterations with severe disease from the cross-sectional data set were partly concordant with those from the follow-up data set. Microbial signatures for COVID-19 were distinct from diabetes, inflammatory bowel disease, and proton-pump inhibitors but overlapping for rheumatoid arthritis. Random forest classifier models using microbiomes can highly predict COVID-19 and severe disease. The microbial signatures for COVID-19 showed moderate concordance between Hong Kong and Japan. CONCLUSIONS: Multiomics analysis revealed multiple gut microbe-metabolite-cytokine interrelationships in COVID-19 and COVID-19related complications but few in gastrointestinal complications, suggesting microbiota-mediated immune responses distinct between the organ sites. Our results underscore the existence of a gut-lung axis in COVID-19.


Assuntos
COVID-19 , Microbioma Gastrointestinal , Humanos , Microbioma Gastrointestinal/genética , Estudos Transversais , SARS-CoV-2 , Fezes/química , Imunidade , Citocinas , Vitamina B 6/análise
4.
Small ; : e2311969, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38529775

RESUMO

Two-dimensional (2D) halide perovskites (HPs) are of significant interest to researchers because of their natural structural frameworks and intriguing optoelectronic properties. However, the direct fabrication of ordered mixed-spacer quasi-2D HPs remains challenging. Herein, a synthetic strategy inspired by the principle of supramolecular synthons is employed for the self-assembly of a series of ordered mixed-spacer bilayered HPs. The key innovation involves the introduction of intermolecular hydrogen bonds using a bifunctional 3-aminopropionitrile cation. Three homogeneous n = 2 structures are obtained, with a subtly ordered perovskite connected by two distinct types of organic cation layers, resulting in a recurrent ABAB' stacking sequence. These three compounds exhibit attractive semiconducting properties. Moderate bandgaps in the range of 2.70 to 2.76 eV with an absorption wavelength range of 448-459 nm exhibit excellent photoelectric response. Moreover, the ordered structures facilitate excellent polarization-sensitive photodetection, with an impressive on/off ratio of 103. The response speed ranged from 298 to 381 µs, and the out-of-plane polarization-related dichroism ratio is determined to be 1.19. Such ordered mixed-spacer bilayered perovskites have not been reported. These results enrich the HPs system and play a significant role in the direct assembly of novel perovskites with ordered structures.

5.
Chemistry ; 30(9): e202303092, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38057492

RESUMO

While great achievements have been made in the development of mechanically robust nanocomposite hydrogels, incorporating multiple interactions on the bases of two demensional inorganic cross-linkers to construct self-strengthening hydrogels has rarely been investigated. To this end, we propose here a new method for the coupling the dynamic covalent bonds and non-covalent interactions within a pseudo double-network system. The pseudo first network, formed through the Schiff Base reation between Tris-modified layered double hydroxides (Tris-LDHs) and oxidized dextran (ODex), is linked to the second network built upon non-covalent interactions between Tris-LDHs and poly(acrylamide-co-2-acrylamido-2-methyl-propanesulfonate) (p-(AM-co-AMPS). The swelling and mechanical properties of the resulting hydrogels have been investigated as a function of the ODex and AMPS contents. The as-prepared hydrogel can swell to 420 times of its original size and retain more than 99.9 wt.% of water. Mechanical tests show that the hydrogel can bear 90 % of compression and is able to be stretched to near 30 times of its original length. Cyclic tensile tests reveal that the hydrogels are capable of self-strengthening after mechanical training. The unique energy dissipation mechanism based on the dynamic covalent and non-covalent interactions is considered to be responsible for the outstanding swelling and mechanical performances.

6.
Inorg Chem ; 63(4): 2275-2281, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38226409

RESUMO

In recent years, there has been a surge in research enthusiasm on searching for solid-state nonlinear optical (NLO) switching materials in halide perovskites owing to their exceptional structural flexibility, compositional diversity, and broad property tenability. However, the majority of reported halide perovskite NLO switching materials contain toxic elements (e.g., Pb), which raise significant environmental concerns. Herein, we present a novel lead-free multilayered halide perovskite NLO switching material, (BA)2(EA)2Sn3Br10 (1, where BA is butylammonium and EA is ethylammonium). Driven by the stereochemically active lone-pair electrons of the Sn2+ cation and the cage-confined effect of EA rotators, 1 undergoes a phase transition with symmetry breaking from P4/mnc to Cmc21, which gives rise to a highly efficient modulation of the quadratic NLO property (0.7 times that of KH2PO4) at a high temperature of 353 K. Furthermore, crystallographic investigation combined with theoretical calculations reveals that the efficient modulation of NLO properties in 1 stems from the synergistic effects between stereochemically active lone pair-induced octahedral distortions and order/disorder transformation of organic cations. This study opens up an instructive avenue for designing and advancing environmentally friendly solid-state NLO switches in halide perovskites.

7.
BMC Infect Dis ; 24(1): 567, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38844850

RESUMO

This study investigates the longitudinal dynamic changes in immune cells in COVID-19 patients over an extended period after recovery, as well as the interplay between immune cells and antibodies. Leveraging single-cell mass spectrometry, we selected six COVID-19 patients and four healthy controls, dissecting the evolving landscape within six months post-viral RNA clearance, alongside the levels of anti-spike protein antibodies. The T cell immunophenotype ascertained via single-cell mass spectrometry underwent validation through flow cytometry in 37 samples. Our findings illuminate that CD8 + T cells, gamma-delta (gd) T cells, and NK cells witnessed an increase, in contrast to the reduction observed in monocytes, B cells, and double-negative T (DNT) cells over time. The proportion of monocytes remained significantly elevated in COVID-19 patients compared to controls even after six-month. Subpopulation-wise, an upsurge manifested within various T effector memory subsets, CD45RA + T effector memory, gdT, and NK cells, whereas declines marked the populations of DNT, naive and memory B cells, and classical as well as non-classical monocytes. Noteworthy associations surfaced between DNT, gdT, CD4 + T, NK cells, and the anti-S antibody titer. This study reveals the changes in peripheral blood mononuclear cells of COVID-19 patients within 6 months after viral RNA clearance and sheds light on the interactions between immune cells and antibodies. The findings from this research contribute to a better understanding of immune transformations during the recovery from COVID-19 and offer guidance for protective measures against reinfection in the context of viral variants.


Assuntos
COVID-19 , Citometria de Fluxo , Leucócitos Mononucleares , RNA Viral , SARS-CoV-2 , Humanos , COVID-19/imunologia , COVID-19/sangue , COVID-19/virologia , Leucócitos Mononucleares/virologia , Leucócitos Mononucleares/imunologia , SARS-CoV-2/imunologia , Masculino , Feminino , Pessoa de Meia-Idade , RNA Viral/sangue , Adulto , Estudos Longitudinais , Análise de Célula Única/métodos , Células Matadoras Naturais/imunologia , Anticorpos Antivirais/sangue , Imunofenotipagem , Idoso
8.
Environ Res ; 249: 118417, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38316385

RESUMO

The impact of drought on terrestrial ecosystems is increasing, and the spatiotemporal heterogeneity of drought changes exacerbates the difficulty of determining ecosystem responses, especially in arid regions far from oceans. Tree rings have been widely used to understand how forest ecosystems respond to drought. However, the link between local hydroclimate variations related to tree rings and large-scale climate changes is not clear in the Qilian Mountains. Here, we used the tree ring width index to analyze the trend of Picea crassifolia growth and its relationship with climate in the middle Qilian Mountains. The results showed that the radial growth trend of Picea crassifolia is synchronized in the middle Qilian Mountains by calculating the Gleichläufigkeit index (GLK). Our analyses indicated that tree radial growth is positively correlated with drought during the growing season. Tree growth responds stably to drought (scPDSI and SPEI) and precipitation but unstably to temperature during 1950-2019. We further traced the meteorological factors that cause regional drought changes associated with radial growth. An increased total precipitation and decreased evaporation contribute to drought alleviation, favoring an increased tree radial growth. The increased total precipitation is mainly due to increased large-scale precipitation, which is related to water vapor transport changes. This study attempts to explore the influence of large-scale meteorology on regional drought change and its related tree radial growth response, which helps us to better understand the changes in forest ecosystems under climate change.


Assuntos
Mudança Climática , Secas , Árvores , Árvores/crescimento & desenvolvimento , Chuva , Picea/crescimento & desenvolvimento , China , Clima Desértico , Florestas
9.
Biochem Genet ; 62(2): 1379-1395, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37610692

RESUMO

Circular RNAs (circRNAs) are reported to be involved in the tumorigenesis of lung adenocarcinoma (LUAD). Here, this study focused on studying the function and mechanism of circHSPB6 in LUAD progression. Levels of genes and proteins were tested using qRT-PCR and western blotting analyses. The 5-ethynyl-2'-deoxyuridine (EdU), colony formation, flow cytometry, and transwell assays were adopted for in vitro assays. In vivo assay was conducted using mouse xenograft models. The binding between let-7a-2-3p and circHSPB6 or CCL2 was validated using RIP and dual-luciferase reporter assays. The M2 polarization of tumor-associated macrophages (TAMs) was analyzed by flow cytometry. LUAD tissues and cells showed high circHSPB6 expression, knockdown of circHSPB6-suppressed LUAD cell proliferation, migration, invasion, and induced cell apoptosis in vitro, as well as hindered tumor growth in vivo. Mechanistically, circHSPB6/let-7a-2-3p/CCL2 forms a feedback loop. CircHSPB6 could regulate CCL2 expression via sponging let-7a-2-3p. Further rescue assays showed that the effects of circHSPB6 silencing on LUAD cells were reversed by let-7a-2-3p inhibition or CCL2 overexpression. Moreover, circHSPB6 promoted the M2 polarization and infiltration of TAMs by CCL2. Functionally, circHSPB6 knockdown in A549 and H1299 cells inhibited TAM M2 polarization and then suppressed cell proliferation, migration, invasion, and emergency medical technicians (EMT) progression, while these effects were reversed by CCL2 up-regulation CircHSPB6 induced TAM M2 polarization to promote LUAD cell proliferation, migration, invasion, and EMT progression through let-7a-2-3p/CCL2 axis.

10.
Int J Mol Sci ; 25(4)2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38396927

RESUMO

Melatonin, a pleiotropic small molecule, is employed in horticultural crops to delay senescence and preserve postharvest quality. In this study, 100 µM melatonin treatment delayed a decline in the color difference index h* and a*, maintaining the content of chlorophyll and carotenoids, thereby delaying the yellowing and senescence of Chinese kale. Transcriptome analysis unequivocally validates melatonin's efficacy in delaying leaf senescence in postharvest Chinese kale stored at 20 °C. Following a three-day storage period, the melatonin treatment group exhibited 1637 differentially expressed genes (DEGs) compared to the control group. DEG analysis elucidated that melatonin-induced antisenescence primarily governs phenylpropanoid biosynthesis, lipid metabolism, plant signal transduction, and calcium signal transduction. Melatonin treatment up-regulated core enzyme genes associated with general phenylpropanoid biosynthesis, flavonoid biosynthesis, and the α-linolenic acid biosynthesis pathway. It influenced the redirection of lignin metabolic flux, suppressed jasmonic acid and abscisic acid signal transduction, and concurrently stimulated auxin signal transduction. Additionally, melatonin treatment down-regulated RBOH expression and up-regulated genes encoding CaM, thereby influencing calcium signal transduction. This study underscores melatonin as a promising approach for delaying leaf senescence and provides insights into the mechanism of melatonin-mediated antisenescence in postharvest Chinese kale.


Assuntos
Brassica , Melatonina , Humanos , Brassica/genética , Brassica/metabolismo , Melatonina/farmacologia , Melatonina/metabolismo , Senescência Vegetal , Cálcio/metabolismo , Atraso no Tratamento , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Transcriptoma
11.
Int J Mol Sci ; 25(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38339079

RESUMO

In China, cadmium (Cd) stress has a significant role in limiting the development and productivity of purple flowering stalks (Brassica campestris var. purpuraria). Exogenous selenium supplementation has been demonstrated in earlier research to mitigate the effects of Cd stress in a range of plant species; nevertheless, the physiological and molecular processes by which exogenous selenium increases vegetable shoots' resistance to Cd stress remain unclear. Purple flowering stalks (Brassica campestris var. purpuraria) were chosen as the study subject to examine the effects of treatment with sodium selenite (Na2SeO3) on the physiology and transcriptome alterations of cadmium stress. Purple flowering stalk leaves treated with exogenous selenium had higher glutathione content, photosynthetic capacity, and antioxidant enzyme activities compared to the leaves treated with Cd stress alone. Conversely, the contents of proline, soluble proteins, soluble sugars, malondialdehyde, and intercellular CO2 concentration tended to decrease. Transcriptome analysis revealed that 2643 differentially expressed genes (DEGs) were implicated in the response of exogenous selenium treatment to Cd stress. The metabolic pathways associated with flavonoid production, carotenoid synthesis, glutathione metabolism, and glucosinolate biosynthesis were among those enriched in these differentially expressed genes. Furthermore, we discovered DEGs connected to the production route of glucosinolates. This work sheds fresh light on how purple flowering stalks' tolerance to cadmium stress is improved by exogenous selenium.


Assuntos
Brassica , Selênio , Selênio/farmacologia , Selênio/metabolismo , Cádmio/metabolismo , Brassica/metabolismo , Antioxidantes/farmacologia , Glutationa/metabolismo , Perfilação da Expressão Gênica , Transcriptoma
12.
Molecules ; 29(6)2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38543000

RESUMO

In recent years, oxygen vacancy (VO) engineering has become a research hotspot in the field of photocatalysis. Herein, an efficient GQDs/BiOCl-VO heterojunction photocatalyst was fabricated by loading graphene quantum dots (GQDs) onto BiOCl nanosheets containing oxygen vacancies. ESR and XPS characterizations confirmed the formation of oxygen vacancy. Combining experimental analysis and DFT calculations, it was found that oxygen vacancy promoted the chemical adsorption of O2, while GQDs accelerated electron transfer. Benefiting from the synergistic effect of oxygen vacancy, GQDs, and dye sensitization, the as-prepared GQDs/BiOCl-VO sample exhibited improved efficiency for RhB degradation under visible-light irradiation. A 2 wt% GQDs/BiOCl-VO composite effectively degraded 98% of RhB within 20 min. The main active species were proven to be hole (h+) and superoxide radical (·O2-) via ESR analysis and radical trapping experiments. This study provided new insights into the effective removal of organic pollutants from water by combining defect engineering and quantum dot doping techniques in heterojunction catalysts.

13.
Pak J Med Sci ; 40(4): 572-576, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38544999

RESUMO

Objective: To explore the effects of serum glycated serum protein (GSP), homocysteine (Hcy) and cystatin-C (Cys-C) levels on pregnancy outcomes in patients with gestational diabetes mellitus (GDM). Methods: Retrospective selection of 247 pregnant women who underwent normal prenatal examinations in The Yan'an People's Hospital from January 2020 to May 2022 were included in this retrospective study. Among them, 119 were pregnant women with diabetes (GDM-group) and 128 were pregnant women with normal blood glucose (Normal-group). The levels of serum GSP, HCY, CYS-C, and incidence of adverse pregnancy outcomes were compared between the two groups. The clinical value of levels of serum GSP, Hcy, and Cys-C in predicting adverse pregnancy outcomes were analyzed. Results: Compared with the Normal-group, the overall incidence of adverse pregnancy outcomes, serum GSP, Hcy, and Cys-C levels in the GDM-group were significantly higher (p<0.05). Logistic regression analysis showed that the levels of GSP, Hcy, and Cys-C were independent risk factors for adverse pregnancy outcomes in the GDM-group (p<0.05). Receiver operating characteristic (ROC) curve showed that the area under the curve (AUC) for diagnosing adverse pregnancy outcomes in pregnant women with GDM using serum GSP, Hcy, and CysC levels alone were 0.817, 0.843, and 0.775, respectively. The AUC of the three indicators combined was 0.921, indicating that this combination has a good predictive value for diagnosing adverse outcomes in GDM-complicated pregnancies. Conclusions: GDM is associated with a high risk of adverse pregnancy outcomes. Levels of serum GSP, Hcy, and Cys-C are higher in patients with GDM. The higher the levels of GSP, Hcy, and Cys-C, the greater the risk of adverse pregnancy outcomes. Combining these three indicators can effectively predict maternal pregnancy outcomes.

14.
Gastroenterology ; 162(2): 548-561.e4, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34687739

RESUMO

BACKGROUND AND AIMS: Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is associated with altered gut microbiota composition. Phylogenetic groups of gut bacteria involved in the metabolism of short chain fatty acids (SCFAs) were depleted in SARS-CoV-2-infected patients. We aimed to characterize a functional profile of the gut microbiome in patients with COVID-19 before and after disease resolution. METHODS: We performed shotgun metagenomic sequencing on fecal samples from 66 antibiotics-naïve patients with COVID-19 and 70 non-COVID-19 controls. Serial fecal samples were collected (at up to 6 times points) during hospitalization and beyond 1 month after discharge. We assessed gut microbial pathways in association with disease severity and blood inflammatory markers. We also determined changes of microbial functions in fecal samples before and after disease resolution and validated these functions using targeted analysis of fecal metabolites. RESULTS: Compared with non-COVID-19 controls, patients with COVID-19 with severe/critical illness showed significant alterations in gut microbiome functionality (P < .001), characterized by impaired capacity of gut microbiome for SCFA and L-isoleucine biosynthesis and enhanced capacity for urea production. Impaired SCFA and L-isoleucine biosynthesis in gut microbiome persisted beyond 30 days after recovery in patients with COVID-19. Targeted analysis of fecal metabolites showed significantly lower fecal concentrations of SCFAs and L-isoleucine in patients with COVID-19 before and after disease resolution. Lack of SCFA and L-isoleucine biosynthesis significantly correlated with disease severity and increased plasma concentrations of CXCL-10, NT- proB-type natriuretic peptide, and C-reactive protein (all P < .05). CONCLUSIONS: Gut microbiome of patients with COVID-19 displayed impaired capacity for SCFA and L-isoleucine biosynthesis that persisted even after disease resolution. These 2 microbial functions correlated with host immune response underscoring the importance of gut microbial functions in SARS-CoV-2 infection pathogenesis and outcome.


Assuntos
COVID-19/microbiologia , Ácidos Graxos Voláteis/biossíntese , Microbioma Gastrointestinal/genética , Imunidade/fisiologia , Isoleucina/biossíntese , Adulto , Biomarcadores/sangue , Estudos de Casos e Controles , Fezes/microbiologia , Feminino , Humanos , Masculino , Metagenômica , Pessoa de Meia-Idade , Filogenia , SARS-CoV-2 , Índice de Gravidade de Doença
15.
J Antimicrob Chemother ; 78(3): 747-756, 2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36659862

RESUMO

OBJECTIVES: The genus Streptococcus contains species of important zoonotic pathogens such as those that cause bovine mastitis. Unfortunately, many Streptococcus species have developed antibiotic resistance. Phage lysins are considered promising alternatives to antibiotics because it is difficult for bacteria to develop lysin resistance. However, there remains a lack of phage lysin resources for the treatment of streptococci-induced mastitis. METHODS: We identified the prophage lysin Lys0859 from the genome of the Streptococcus suis SS0859 strain. Lys0859 was subsequently characterized to determine its host range, MIC, bactericidal activity in milk, and ability to clear biofilms in vitro. Finally, to determine the effects of Lys0859 on the treatment of both bovine mastitis and S. suis infection in vivo, we established models of Streptococcus agalactiae ATCC 13813-induced mastitis and S. suis serotype 2 SC19 systemic infection. RESULTS: Our results demonstrate that Lys0859 possesses broad-spectrum lytic activity against Streptococcus and Staphylococcus species isolated from animals with bovine mastitis and 15 serotypes of S. suis isolated from swine. Intramammary and intramuscular injection of Lys0859 reduced the number of bacteria in mammary tissue by 3.75 and 1.45 logs compared with the PBS group, respectively. Furthermore, 100 µg/mouse of Lys0859 administered intraperitoneally at 1 h post-infection protected 83.3% (5/6) of mice from a lethal dose of S. suis infection. CONCLUSIONS: Overall, our results enhance the understanding and development of new strategies to combat both streptococci-induced mastitis and S. suis infection.


Assuntos
Bacteriófagos , Mastite Bovina , Infecções Estreptocócicas , Fagos de Streptococcus , Streptococcus suis , Feminino , Bovinos , Animais , Suínos , Camundongos , Humanos , Prófagos/genética , Mastite Bovina/tratamento farmacológico , Antibacterianos/farmacologia , Infecções Estreptocócicas/microbiologia
16.
J Med Virol ; 95(5): e28767, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37212341

RESUMO

This study aimed to evaluate the effects of different vaccine regimens on mild and asymptomatic infections with SARS-CoV-2 Omicron BA.2 variant in Shanghai. All asymptomatic patients and those with mild symptoms of Omicron infections were recruited from three major Fangcang shelter hospitals between March 26, 2022 and May 20, 2022. Nucleic acid for SARS-CoV-2 by real-time reverse-transcription polymerase chain reaction methods in nasopharyngeal swabs was assessed every day during the hospitalization. The value of cycle threshold lower than 35 was considered as positive result of SARS-CoV-2. A total of 214 592 cases were included in this study. The proportion of the asymptomatic patients was 76.90% and 23.10% of the recruited patients had mild symptoms. The median (interquartile range [IQR]: 25-75) duration of viral shedding (DVS) was 7 (5-10) days among all participants. The DVS varied greatly among different age groups. Children and the elderly had longer DVS compared with the adults. The booster shot of inactivated vaccine contributed to the shorter DVS in patients aged ≥70 years compared with the unvaccinated patients (8 [6-11] vs. 9 [6-12] days, p = 0.002]. Full inactivated vaccine regimen contributed to the shorter DVS in patients aged 3-6 years (7 [5-9] vs. 8 [5-10] days, p = 0.001]. In conclusion, the full inactivated vaccine regimen on children aged 3-6 years and booster inactivated vaccine regimen on the elderly aged ≥70 years appeared to be effective in reducing DVS. The booster vaccine regimen should be rigorously promoted and implemented.


Assuntos
Infecções Assintomáticas , COVID-19 , Adulto , Criança , Idoso , Humanos , Infecções Assintomáticas/epidemiologia , COVID-19/epidemiologia , COVID-19/prevenção & controle , SARS-CoV-2/genética , China/epidemiologia , Vacinação
17.
Blood ; 138(6): 452-463, 2021 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-33728448

RESUMO

Current prognostic scoring systems based on clinicopathologic variables are inadequate in predicting the survival and treatment response of extranodal natural killer/T-cell lymphoma (ENKTL) patients undergoing nonanthracyline-based treatment. We aimed to construct a classifier based on single-nucleotide polymorphisms (SNPs) for improving predictive accuracy and guiding clinical decision making. Data from 722 patients with ENKTL from international centers were analyzed. A 7-SNP-based classifier was constructed using LASSO Cox regression in the training cohort (n = 336) and further validated in the internal testing cohort (n = 144) and in 2 external validation cohorts (n = 142 and n = 100). The 7-SNP-based classifier showed good prognostic predictive efficacy in the training cohort and the 3 validation cohorts. Patients with high- and low-risk scores calculated by the classifier exhibited significantly different progression-free survival (PFS) and overall survival (OS) (all P < .001). The 7-SNP-based classifier was further proved to be an independent prognostic factor by multivariate analysis, and its predictive accuracy was significantly better than clinicopathological risk variables. Application of the 7-SNP-based classifier was not affected by sample types. Notably, chemotherapy combined with radiotherapy significantly improved PFS and OS vs radiotherapy alone in high-risk Ann Arbor stage I patients, whereas there was no statistical difference between the 2 therapeutic modalities among low-risk patients. A nomogram was constructed comprising the classifier and clinicopathological variables; it showed remarkably better predictive accuracy than either variable alone. The 7-SNP-based classifier is a complement to existing risk-stratification systems in ENKTL, which could have significant implications for clinical decision making for patients with ENKTL.


Assuntos
Linfoma Extranodal de Células T-NK , Polimorfismo de Nucleotídeo Único , Intervalo Livre de Doença , Feminino , Humanos , Linfoma Extranodal de Células T-NK/genética , Linfoma Extranodal de Células T-NK/mortalidade , Linfoma Extranodal de Células T-NK/radioterapia , Masculino , Pessoa de Meia-Idade , Taxa de Sobrevida
18.
Exp Cell Res ; 413(2): 113052, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35122827

RESUMO

Nuclear factor of activated T cells 1 (NFATc1) is mainly expressed in tumor microenvironment, especially in macrophages. However, whether NFATc1 is involved in the polarization of tumor associated macrophages (TAMs) and tumor progression in cervical cancer (CC) remains unclear. Immunofluorescence staining was used to detect the expression of CD68 and NFATc1 in CC tissues or adjacent normal tissues of patients. RT-qPCR, flow cytometry, ELISA, and inhibitors treatment were used to observe the effect of NFATc1 on TAMs polarization. Clonal formation, scratch, and transwell assays were used to examine the effects of NFATc1-transfected macrophages or NFATc1-transfected TAM on tumor proliferation, migration, and invasion. Further, a xenograft model was established to confirm the roles of NFATc1+ TAM in CC tumorigenesis. NFATc1+CD68+/CD68+ TAMs ratio was significantly increased in CC tissues compared with the normal tissue, and NFATc1+ TAM showed an M2-like TAM subtype. NFATc1 induced macrophages to secrete IL-10, which further induced M2 polarization of macrophages. Mechanically, the c-myc-PKM2 pathway mediated the expression of IL-10 in NFATc1-induced macrophages. Functionally, NFATc1 induced M2 macrophages promoted the proliferation, migration, and invasion of CC cells, and the knockout of NFATc1 in TAMs significantly inhibited the tumor-promoting function of TAMs. Further, the tumorigenesis test in nude mice confirmed that NFATc1+ TAM promoted the tumorigenicity of CC cells in vivo. In conclusion, NFATc1 mediated IL-10 secretion by regulating the c-myc/PKM2 pathway, thereby inducing M2 polarization of TAMs and promoting the progression of CC.


Assuntos
Macrófagos Associados a Tumor , Neoplasias do Colo do Útero , Animais , Carcinogênese/genética , Carcinogênese/metabolismo , Linhagem Celular Tumoral , Feminino , Humanos , Interleucina-10/metabolismo , Macrófagos/metabolismo , Camundongos , Camundongos Nus , Fatores de Transcrição NFATC/genética , Fatores de Transcrição NFATC/metabolismo , Linfócitos T , Microambiente Tumoral , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/metabolismo
19.
Environ Res ; 227: 115799, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37015300

RESUMO

Veterinary antibiotics (VAs) are emerging contaminants in soils as they may pose high risks to the ecosystem and human health. Identifying VAs accumulation in soils is essential for assessing their potential risks. Therefore, we investigated the distribution of VAs in soils from vegetable fields and evaluated their potential ecological and antimicrobial resistance risks in the Chongqing region of the Three Gorges Reservoir area, China. Results indicated that twenty-six species of VAs, including nine sulfonamides (SAs), seven quinolones (QNs), four tetracyclines (TCs), four macrolides (MLs), and two other species of VAs were detected in soils, with their accumulative levels ranging from 1.4 to 3145.7 µg kg-1. TCs and QNs were the dominant VAs species in soils with high detection frequencies (100% TCs and 80.6% for QNs) and accumulative concentration (up to 1195 µg kg-1 for TCs and up to 485 µg kg-1 for QNs). Risk assessment indices showed that VAs (specifically SAs, TCs, and QNs) in most vegetable soils would pose a medium to high risk to the ecosystem and antimicrobial resistance. Mixture of VAs posed a higher risk to soil organisms, antimicrobial resistance, and plants than to aquatic organisms. Modeling analysis indicated that socioeconomic conditions, farmers' education levels, agricultural practices, and soil properties were the main factors governing VAs accumulation and environmental risks. Farmers with a high educational level owned large-scale farms and were more willing to use organic fertilizers for vegetable production, which eventually led to high VAs accumulation in vegetable soil. These findings would provide a reference for sustainable agricultural and environmental production under the current scenario of chemical fertilizer substitution by organic products and green agricultural development.


Assuntos
Quinolonas , Poluentes do Solo , Humanos , Antibacterianos/análise , Solo/química , Verduras/química , Ecossistema , Poluentes do Solo/análise , Monitoramento Ambiental/métodos , Tetraciclinas/análise , Sulfanilamida/análise , China , Medição de Risco , Fertilizantes/análise
20.
Mediators Inflamm ; 2023: 5380764, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37181812

RESUMO

Background: Matrix metalloproteinase-7 (MMP7) is markedly expressed in patients with chronic kidney disease; its expression in dialysate and role in patients undergoing peritoneal dialysis (PD) have not been well established. Methods: Participants undergoing PD from June 1st, 2015, to June 30th, 2020, were involved and were followed up every 3 months for the first year and every 6 months thereafter until death, PD withdrawal, or the end of the study. Data at each follow-up point were collected and analyzed for the association with congestive heart failure (CHF), PD withdrawal, and combined endpoint. Results: A total of 283 participants were included in this study. During a median follow-up of 21 months, 20 (7%) participants died, 93 (33%) withdrew from PD, and 105 (37%) developed CHF. A significantly increased level of serum and dialysate MMP7 was observed at baseline. Dialysate MMP7 presented a good linearity with serum MMP7. Baseline serum and dialysate MMP7 levels were associated with CHF in multivariable Cox proportional hazards regression models. After categorization, participants with high baseline MMP7 levels had a higher incidence of CHF (42%), and the hazard ratios (95% confidence intervals) were 1.595 (1.023-2.488). Interestingly, participants with higher serum MMP7 levels were trended to use dialysate with higher glucose concentration. However, the ultrafiltration volumes were not significantly increased. Higher MMP7 levels were also positively associated with PD withdrawal and combined endpoint. Conclusions: The expression of MMP7 in serum and dialysate was markedly increased and was tightly associated with the risk of CHF in PD patients. This finding suggests that the measurement of MMP7 may inform strategies for managing CHF at an earlier stage.


Assuntos
Insuficiência Cardíaca , Falência Renal Crônica , Diálise Peritoneal , Humanos , Metaloproteinase 7 da Matriz , Estudos Prospectivos , Falência Renal Crônica/terapia , Falência Renal Crônica/complicações , Diálise Peritoneal/efeitos adversos , Soluções para Diálise , Insuficiência Cardíaca/complicações
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA