Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Molecules ; 29(16)2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39202927

RESUMO

Aqueous zinc ion batteries (AZIBs) have received a lot of attention in electrochemical energy storage systems for their low cost, environmental compatibility, and good safety. However, cathode materials still face poor material stability and conductivity, which cause poor reversibility and poor rate performance in AZIBs. Herein, a heterogeneous structure combined with cation pre-intercalation strategies was used to prepare a novel CaV6O16·3H2O@Ni0.24V2O5·nH2O material (CaNiVO) for high-performance Zn storage. Excellent energy storage performance was achieved via the wide interlayer conductive network originating from the interlayer-embedded metal ions and heterointerfaces of the two-phase CaNiVO. Furthermore, this unique structure further showed excellent structural stability and led to fast electron/ion transport dynamics. Benefiting from the heterogeneous structure and cation pre-intercalation strategies, the CaNiVO electrodes showed an impressive specific capacity of 334.7 mAh g-1 at 0.1 A g-1 and a rate performance of 110.3 mAh g-1 at 2 A g-1. Therefore, this paper provides a feasible strategy for designing and optimizing cathode materials with superior Zn ion storage performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA