Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 17.219
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Annu Rev Immunol ; 42(1): 647-677, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38424658

RESUMO

Lymphocytes spanning the entire innate-adaptive spectrum can stably reside in tissues and constitute an integral component of the local defense network against immunological challenges. In tight interactions with the epithelium and endothelium, tissue-resident lymphocytes sense antigens and alarmins elicited by infectious microbes and abiotic stresses at barrier sites and mount effector responses to restore tissue homeostasis. Of note, such a host cell-directed immune defense system has been recently demonstrated to surveil epithelial cell transformation and carcinoma development, as well as cancer cell metastasis at selected distant organs, and thus represents a primordial cancer immune defense module. Here we review how distinct lineages of tissue-resident innate lymphoid cells, innate-like T cells, and adaptive T cells participate in a form of multilayered cancer immunity in murine models and patients, and how their convergent effector programs may be targeted through both shared and private regulatory pathways for cancer immunotherapy.


Assuntos
Imunidade Inata , Neoplasias , Humanos , Animais , Neoplasias/imunologia , Neoplasias/terapia , Linfócitos/imunologia , Linfócitos/metabolismo , Microambiente Tumoral/imunologia , Imunidade Adaptativa , Imunoterapia/métodos
2.
Cell ; 187(1): 184-203.e28, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38181741

RESUMO

We performed comprehensive proteogenomic characterization of small cell lung cancer (SCLC) using paired tumors and adjacent lung tissues from 112 treatment-naive patients who underwent surgical resection. Integrated multi-omics analysis illustrated cancer biology downstream of genetic aberrations and highlighted oncogenic roles of FAT1 mutation, RB1 deletion, and chromosome 5q loss. Two prognostic biomarkers, HMGB3 and CASP10, were identified. Overexpression of HMGB3 promoted SCLC cell migration via transcriptional regulation of cell junction-related genes. Immune landscape characterization revealed an association between ZFHX3 mutation and high immune infiltration and underscored a potential immunosuppressive role of elevated DNA damage response activity via inhibition of the cGAS-STING pathway. Multi-omics clustering identified four subtypes with subtype-specific therapeutic vulnerabilities. Cell line and patient-derived xenograft-based drug tests validated the specific therapeutic responses predicted by multi-omics subtyping. This study provides a valuable resource as well as insights to better understand SCLC biology and improve clinical practice.


Assuntos
Neoplasias Pulmonares , Proteogenômica , Carcinoma de Pequenas Células do Pulmão , Humanos , Linhagem Celular , Neoplasias Pulmonares/química , Neoplasias Pulmonares/genética , Carcinoma de Pequenas Células do Pulmão/química , Carcinoma de Pequenas Células do Pulmão/genética , Xenoenxertos , Biomarcadores Tumorais/análise
3.
Cell ; 184(11): 2843-2859.e20, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-33991488

RESUMO

Since establishment of the first embryonic stem cells (ESCs), in vitro culture of totipotent cells functionally and molecularly comparable with in vivo blastomeres with embryonic and extraembryonic developmental potential has been a challenge. Here we report that spliceosomal repression in mouse ESCs drives a pluripotent-to-totipotent state transition. Using the splicing inhibitor pladienolide B, we achieve stable in vitro culture of totipotent ESCs comparable at molecular levels with 2- and 4-cell blastomeres, which we call totipotent blastomere-like cells (TBLCs). Mouse chimeric assays combined with single-cell RNA sequencing (scRNA-seq) demonstrate that TBLCs have a robust bidirectional developmental capability to generate multiple embryonic and extraembryonic cell lineages. Mechanically, spliceosomal repression causes widespread splicing inhibition of pluripotent genes, whereas totipotent genes, which contain few short introns, are efficiently spliced and transcriptionally activated. Our study provides a means for capturing and maintaining totipotent stem cells.


Assuntos
Células-Tronco Totipotentes/citologia , Células-Tronco Totipotentes/metabolismo , Animais , Blastômeros/citologia , Diferenciação Celular/genética , Linhagem Celular , Linhagem da Célula/genética , Embrião de Mamíferos/citologia , Células-Tronco Embrionárias/citologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Totipotentes/fisiologia
4.
Cell ; 180(6): 1144-1159.e20, 2020 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-32169217

RESUMO

In eukaryotic cells, organelle biogenesis is pivotal for cellular function and cell survival. Chloroplasts are unique organelles with a complex internal membrane network. The mechanisms of the migration of imported nuclear-encoded chloroplast proteins across the crowded stroma to thylakoid membranes are less understood. Here, we identified two Arabidopsis ankyrin-repeat proteins, STT1 and STT2, that specifically mediate sorting of chloroplast twin arginine translocation (cpTat) pathway proteins to thylakoid membranes. STT1 and STT2 form a unique hetero-dimer through interaction of their C-terminal ankyrin domains. Binding of cpTat substrate by N-terminal intrinsically disordered regions of STT complex induces liquid-liquid phase separation. The multivalent nature of STT oligomer is critical for phase separation. STT-Hcf106 interactions reverse phase separation and facilitate cargo targeting and translocation across thylakoid membranes. Thus, the formation of phase-separated droplets emerges as a novel mechanism of intra-chloroplast cargo sorting. Our findings highlight a conserved mechanism of phase separation in regulating organelle biogenesis.


Assuntos
Arabidopsis/metabolismo , Transporte Proteico/fisiologia , Sistema de Translocação de Argininas Geminadas/metabolismo , Proteínas de Cloroplastos/metabolismo , Cloroplastos/metabolismo , Membranas Intracelulares/metabolismo , Proteínas de Membrana/metabolismo , Biogênese de Organelas , Organelas/metabolismo , Transição de Fase , Proteínas de Plantas/metabolismo , Tilacoides/metabolismo , Sistema de Translocação de Argininas Geminadas/fisiologia
5.
Nat Immunol ; 23(6): 904-915, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35618834

RESUMO

Malignancy can be suppressed by the immune system. However, the classes of immunosurveillance responses and their mode of tumor sensing remain incompletely understood. Here, we show that although clear cell renal cell carcinoma (ccRCC) was infiltrated by exhaustion-phenotype CD8+ T cells that negatively correlated with patient prognosis, chromophobe RCC (chRCC) had abundant infiltration of granzyme A-expressing intraepithelial type 1 innate lymphoid cells (ILC1s) that positively associated with patient survival. Interleukin-15 (IL-15) promoted ILC1 granzyme A expression and cytotoxicity, and IL-15 expression in chRCC tumor tissue positively tracked with the ILC1 response. An ILC1 gene signature also predicted survival of a subset of breast cancer patients in association with IL-15 expression. Notably, ILC1s directly interacted with cancer cells, and IL-15 produced by cancer cells supported the expansion and anti-tumor function of ILC1s in a murine breast cancer model. Thus, ILC1 sensing of cancer cell IL-15 defines an immunosurveillance mechanism of epithelial malignancies.


Assuntos
Neoplasias da Mama , Interleucina-15/metabolismo , Animais , Neoplasias da Mama/genética , Linfócitos T CD8-Positivos , Feminino , Granzimas , Humanos , Imunidade Inata , Linfócitos , Camundongos
6.
Nature ; 631(8021): 678-685, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38961301

RESUMO

Pericentric heterochromatin is a critical component of chromosomes marked by histone H3 K9 (H3K9) methylation1-3. However, what recruits H3K9-specific histone methyltransferases to pericentric regions in vertebrates remains unclear4, as does why pericentric regions in different species share the same H3K9 methylation mark despite lacking highly conserved DNA sequences2,5. Here we show that zinc-finger proteins ZNF512 and ZNF512B specifically localize at pericentric regions through direct DNA binding. Notably, both ZNF512 and ZNF512B are sufficient to initiate de novo heterochromatin formation at ectopically targeted repetitive regions and pericentric regions, as they directly recruit SUV39H1 and SUV39H2 (SUV39H) to catalyse H3K9 methylation. SUV39H2 makes a greater contribution to H3K9 trimethylation, whereas SUV39H1 seems to contribute more to silencing, probably owing to its preferential association with HP1 proteins. ZNF512 and ZNF512B from different species can specifically target pericentric regions of other vertebrates, because the atypical long linker residues between the zinc-fingers of ZNF512 and ZNF512B offer flexibility in recognition of non-consecutively organized three-nucleotide triplets targeted by each zinc-finger. This study addresses two long-standing questions: how constitutive heterochromatin is initiated and how seemingly variable pericentric sequences are targeted by the same set of conserved machinery in vertebrates.


Assuntos
Centrômero , Evolução Molecular , Heterocromatina , Histona-Lisina N-Metiltransferase , Histonas , Motivos de Nucleotídeos , Animais , Humanos , Camundongos , Centrômero/genética , Centrômero/metabolismo , Galinhas , Homólogo 5 da Proteína Cromobox , Inativação Gênica , Heterocromatina/metabolismo , Heterocromatina/química , Heterocromatina/genética , Histona-Lisina N-Metiltransferase/metabolismo , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/química , Histonas/metabolismo , Histonas/química , Anfioxos , Metilação , Petromyzon , Proteínas Repressoras/metabolismo , Proteínas Repressoras/química , Proteínas Repressoras/genética , Serpentes , Xenopus laevis , Peixe-Zebra , Dedos de Zinco
7.
Nature ; 626(8001): 990-998, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38383782

RESUMO

Electrode-based electrical stimulation underpins several clinical bioelectronic devices, including deep-brain stimulators1,2 and cardiac pacemakers3. However, leadless multisite stimulation is constrained by the technical difficulties and spatial-access limitations of electrode arrays. Optogenetics offers optically controlled random access with high spatiotemporal capabilities, but clinical translation poses challenges4-6. Here we show tunable spatiotemporal photostimulation of cardiac systems using a non-genetic platform based on semiconductor-enabled biomodulation interfaces. Through spatiotemporal profiling of photoelectrochemical currents, we assess the magnitude, precision, accuracy and resolution of photostimulation in four leadless silicon-based monolithic photoelectrochemical devices. We demonstrate the optoelectronic capabilities of the devices through optical overdrive pacing of cultured cardiomyocytes (CMs) targeting several regions and spatial extents, isolated rat hearts in a Langendorff apparatus, in vivo rat hearts in an ischaemia model and an in vivo mouse heart model with transthoracic optical pacing. We also perform the first, to our knowledge, optical override pacing and multisite pacing of a pig heart in vivo. Our systems are readily adaptable for minimally invasive clinical procedures using our custom endoscopic delivery device, with which we demonstrate closed-thoracic operations and endoscopic optical stimulation. Our results indicate the clinical potential of the leadless, lightweight and multisite photostimulation platform as a pacemaker in cardiac resynchronization therapy (CRT), in which lead-placement complications are common.


Assuntos
Terapia de Ressincronização Cardíaca , Desenho de Equipamento , Marca-Passo Artificial , Silício , Animais , Camundongos , Ratos , Terapia de Ressincronização Cardíaca/métodos , Endoscopia , Coração , Procedimentos Cirúrgicos Minimamente Invasivos , Isquemia Miocárdica/cirurgia , Isquemia Miocárdica/terapia , Miócitos Cardíacos , Semicondutores , Suínos , Modelos Animais
8.
Nature ; 630(8016): 346-352, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38811731

RESUMO

Vertical three-dimensional integration of two-dimensional (2D) semiconductors holds great promise, as it offers the possibility to scale up logic layers in the z axis1-3. Indeed, vertical complementary field-effect transistors (CFETs) built with such mixed-dimensional heterostructures4,5, as well as hetero-2D layers with different carrier types6-8, have been demonstrated recently. However, so far, the lack of a controllable doping scheme (especially p-doped WSe2 (refs. 9-17) and MoS2 (refs. 11,18-28)) in 2D semiconductors, preferably in a stable and non-destructive manner, has greatly impeded the bottom-up scaling of complementary logic circuitries. Here we show that, by bringing transition metal dichalcogenides, such as MoS2, atop a van der Waals (vdW) antiferromagnetic insulator chromium oxychloride (CrOCl), the carrier polarity in MoS2 can be readily reconfigured from n- to p-type via strong vdW interfacial coupling. The consequential band alignment yields transistors with room-temperature hole mobilities up to approximately 425 cm2 V-1 s-1, on/off ratios reaching 106 and air-stable performance for over one year. Based on this approach, vertically constructed complementary logic, including inverters with 6 vdW layers, NANDs with 14 vdW layers and SRAMs with 14 vdW layers, are further demonstrated. Our findings of polarity-engineered p- and n-type 2D semiconductor channels with and without vdW intercalation are robust and universal to various materials and thus may throw light on future three-dimensional vertically integrated circuits based on 2D logic gates.

9.
Nat Immunol ; 18(10): 1128-1138, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28846085

RESUMO

The transcription factor RORγt regulates differentiation of the TH17 subset of helper T cells, thymic T cell development and lymph-node genesis. Although elimination of RORγt prevents TH17 cell-mediated experimental autoimmune encephalomyelitis (EAE), it also disrupts thymocyte development, which could lead to lethal thymic lymphoma. Here we identified a two-amino-acid substitution in RORγt (RORγtM) that 'preferentially' disrupted TH17 differentiation but not thymocyte development. Mice expressing RORγtM were resistant to EAE associated with defective TH17 differentiation but maintained normal thymocyte development and normal lymph-node genesis, except for Peyer's patches. RORγtM showed less ubiquitination at Lys69 that was selectively required for TH17 differentiation but not T cell development. This study will inform the development of treatments that selectively target TH17 cell-mediated autoimmunity but do not affect thymocyte development or induce lymphoma.


Assuntos
Substituição de Aminoácidos , Diferenciação Celular/genética , Mutação , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Células Th17/citologia , Células Th17/metabolismo , Timócitos/citologia , Timócitos/metabolismo , Animais , Biomarcadores , Diferenciação Celular/imunologia , Análise por Conglomerados , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Imunofenotipagem , Linfonodos/imunologia , Linfonodos/metabolismo , Camundongos , Camundongos Knockout , Nódulos Linfáticos Agregados/imunologia , Nódulos Linfáticos Agregados/metabolismo , Subpopulações de Linfócitos T/citologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Células Th17/imunologia , Timócitos/imunologia , Ubiquitinação
11.
Cell ; 157(4): 979-991, 2014 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-24813617

RESUMO

The reprogramming of parental methylomes is essential for embryonic development. In mammals, paternal 5-methylcytosines (5mCs) have been proposed to be actively converted to oxidized bases. These paternal oxidized bases and maternal 5mCs are believed to be passively diluted by cell divisions. By generating single-base resolution, allele-specific DNA methylomes from mouse gametes, early embryos, and primordial germ cell (PGC), as well as single-base-resolution maps of oxidized cytosine bases for early embryos, we report the existence of 5hmC and 5fC in both maternal and paternal genomes and find that 5mC or its oxidized derivatives, at the majority of demethylated CpGs, are converted to unmodified cytosines independent of passive dilution from gametes to four-cell embryos. Therefore, we conclude that paternal methylome and at least a significant proportion of maternal methylome go through active demethylation during embryonic development. Additionally, all the known imprinting control regions (ICRs) were classified into germ-line or somatic ICRs.


Assuntos
Metilação de DNA , Desenvolvimento Embrionário , Regulação da Expressão Gênica no Desenvolvimento , Impressão Genômica , 5-Metilcitosina/metabolismo , Animais , Ilhas de CpG , Citosina/análogos & derivados , Citosina/metabolismo , Embrião de Mamíferos/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Regiões Promotoras Genéticas
12.
Nature ; 615(7951): 231-236, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36813971

RESUMO

Observation of strong correlations and superconductivity in twisted-bilayer graphene1-4 has stimulated tremendous interest in fundamental and applied physics5-8. In this system, the superposition of two twisted honeycomb lattices, generating a moiré pattern, is the key to the observed flat electronic bands, slow electron velocity and large density of states9-12. Extension of the twisted-bilayer system to new configurations is highly desired, which can provide exciting prospects to investigate twistronics beyond bilayer graphene. Here we demonstrate a quantum simulation of superfluid to Mott insulator transition in twisted-bilayer square lattices based on atomic Bose-Einstein condensates loaded into spin-dependent optical lattices. The lattices are made of two sets of laser beams that independently address atoms in different spin states, which form the synthetic dimension accommodating the two layers. The interlayer coupling is highly controllable by a microwave field, which enables the occurrence of a lowest flat band and new correlated phases in the strong coupling limit. We directly observe the spatial moiré pattern and the momentum diffraction, which confirm the presence of two forms of superfluid and a modified superfluid to insulator transition in twisted-bilayer lattices. Our scheme is generic and can be applied to different lattice geometries and for both boson and fermion systems. This opens up a new direction for exploring moiré physics in ultracold atoms with highly controllable optical lattices.

13.
Nature ; 619(7970): 616-623, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37380769

RESUMO

In metazoan organisms, cell competition acts as a quality control mechanism to eliminate unfit cells in favour of their more robust neighbours1,2. This mechanism has the potential to be maladapted, promoting the selection of aggressive cancer cells3-6. Tumours are metabolically active and are populated by stroma cells7,8, but how environmental factors affect cancer cell competition remains largely unknown. Here we show that tumour-associated macrophages (TAMs) can be dietarily or genetically reprogrammed to outcompete MYC-overexpressing cancer cells. In a mouse model of breast cancer, MYC overexpression resulted in an mTORC1-dependent 'winner' cancer cell state. A low-protein diet inhibited mTORC1 signalling in cancer cells and reduced tumour growth, owing unexpectedly to activation of the transcription factors TFEB and TFE3 and mTORC1 in TAMs. Diet-derived cytosolic amino acids are sensed by Rag GTPases through the GTPase-activating proteins GATOR1 and FLCN to control Rag GTPase effectors including TFEB and TFE39-14. Depletion of GATOR1 in TAMs suppressed the activation of TFEB, TFE3 and mTORC1 under the low-protein diet condition, causing accelerated tumour growth; conversely, depletion of FLCN or Rag GTPases in TAMs activated TFEB, TFE3 and mTORC1 under the normal protein diet condition, causing decelerated tumour growth. Furthermore, mTORC1 hyperactivation in TAMs and cancer cells and their competitive fitness were dependent on the endolysosomal engulfment regulator PIKfyve. Thus, noncanonical engulfment-mediated Rag GTPase-independent mTORC1 signalling in TAMs controls competition between TAMs and cancer cells, which defines a novel innate immune tumour suppression pathway that could be targeted for cancer therapy.


Assuntos
Competição entre as Células , Técnicas de Reprogramação Celular , Imunidade Inata , Neoplasias , Macrófagos Associados a Tumor , Animais , Camundongos , Aminoácidos/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Competição entre as Células/genética , Competição entre as Células/imunologia , Proteínas Alimentares/farmacologia , Modelos Animais de Doenças , GTP Fosfo-Hidrolases/metabolismo , Lisossomos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Neoplasias/genética , Neoplasias/imunologia , Neoplasias/metabolismo , Neoplasias/patologia , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/metabolismo
14.
Nature ; 618(7966): 799-807, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37316670

RESUMO

Plants deploy receptor-like kinases and nucleotide-binding leucine-rich repeat receptors to confer host plant resistance (HPR) to herbivores1. These gene-for-gene interactions between insects and their hosts have been proposed for more than 50 years2. However, the molecular and cellular mechanisms that underlie HPR have been elusive, as the identity and sensing mechanisms of insect avirulence effectors have remained unknown. Here we identify an insect salivary protein perceived by a plant immune receptor. The BPH14-interacting salivary protein (BISP) from the brown planthopper (Nilaparvata lugens Stål) is secreted into rice (Oryza sativa) during feeding. In susceptible plants, BISP targets O. satvia RLCK185 (OsRLCK185; hereafter Os is used to denote O. satvia-related proteins or genes) to suppress basal defences. In resistant plants, the nucleotide-binding leucine-rich repeat receptor BPH14 directly binds BISP to activate HPR. Constitutive activation of Bph14-mediated immunity is detrimental to plant growth and productivity. The fine-tuning of Bph14-mediated HPR is achieved through direct binding of BISP and BPH14 to the selective autophagy cargo receptor OsNBR1, which delivers BISP to OsATG8 for degradation. Autophagy therefore controls BISP levels. In Bph14 plants, autophagy restores cellular homeostasis by downregulating HPR when feeding by brown planthoppers ceases. We identify an insect saliva protein sensed by a plant immune receptor and discover a three-way interaction system that offers opportunities for developing high-yield, insect-resistant crops.


Assuntos
Hemípteros , Proteínas de Insetos , Oryza , Defesa das Plantas contra Herbivoria , Proteínas de Plantas , Animais , Hemípteros/imunologia , Hemípteros/fisiologia , Leucina/metabolismo , Nucleotídeos/metabolismo , Oryza/crescimento & desenvolvimento , Oryza/imunologia , Oryza/metabolismo , Oryza/fisiologia , Defesa das Plantas contra Herbivoria/imunologia , Defesa das Plantas contra Herbivoria/fisiologia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Proteínas de Insetos/metabolismo , Autofagia
15.
Nature ; 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37019149

RESUMO

SARS-CoV-2, the causative agent of COVID-19, emerged in December 2019. Its origins remain uncertain. It has been reported that a number of the early human cases had a history of contact with the Huanan Seafood Market. Here we present the results of surveillance for SARS-CoV-2 within the market. From January 1st 2020, after closure of the market, 923 samples were collected from the environment. From 18th January, 457 samples were collected from 18 species of animals, comprising of unsold contents of refrigerators and freezers, swabs from stray animals, and the contents of a fish tank. Using RT-qPCR, SARS-CoV-2 was detected in 73 environmental samples, but none of the animal samples. Three live viruses were successfully isolated. The viruses from the market shared nucleotide identity of 99.99% to 100% with the human isolate HCoV-19/Wuhan/IVDC-HB-01/2019. SARS-CoV-2 lineage A (8782T and 28144C) was found in an environmental sample. RNA-seq analysis of SARS-CoV-2 positive and negative environmental samples showed an abundance of different vertebrate genera at the market. In summary, this study provides information about the distribution and prevalence of SARS-CoV-2 in the Huanan Seafood Market during the early stages of the COVID-19 outbreak.

16.
Mol Cell ; 81(20): 4147-4164.e7, 2021 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-34453890

RESUMO

Missense mutations of the tumor suppressor Neurofibromin 2 (NF2/Merlin/schwannomin) result in sporadic to frequent occurrences of tumorigenesis in multiple organs. However, the underlying pathogenicity of NF2-related tumorigenesis remains mostly unknown. Here we found that NF2 facilitated innate immunity by regulating YAP/TAZ-mediated TBK1 inhibition. Unexpectedly, patient-derived individual mutations in the FERM domain of NF2 (NF2m) converted NF2 into a potent suppressor of cGAS-STING signaling. Mechanistically, NF2m gained extreme associations with IRF3 and TBK1 and, upon innate nucleic acid sensing, was directly induced by the activated IRF3 to form cellular condensates, which contained the PP2A complex, to eliminate TBK1 activation. Accordingly, NF2m robustly suppressed STING-initiated antitumor immunity in cancer cell-autonomous and -nonautonomous murine models, and NF2m-IRF3 condensates were evident in human vestibular schwannomas. Our study reports phase separation-mediated quiescence of cGAS-STING signaling by a mutant tumor suppressor and reveals gain-of-function pathogenesis for NF2-related tumors by regulating antitumor immunity.


Assuntos
Imunidade Inata , Proteínas de Membrana/metabolismo , Mutação de Sentido Incorreto , Neoplasias/metabolismo , Neurofibromina 2/metabolismo , Nucleotidiltransferases/metabolismo , Evasão Tumoral , Animais , Feminino , Regulação Neoplásica da Expressão Gênica , Células HCT116 , Células HEK293 , Humanos , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/metabolismo , Macrófagos Peritoneais/imunologia , Macrófagos Peritoneais/metabolismo , Masculino , Melanoma Experimental/genética , Melanoma Experimental/imunologia , Melanoma Experimental/metabolismo , Melanoma Experimental/patologia , Proteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neoplasias/genética , Neoplasias/imunologia , Neoplasias/patologia , Neurofibromina 2/genética , Nucleotidiltransferases/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais
17.
Cell ; 152(1-2): 68-81, 2013 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-23332747

RESUMO

The majority of riboswitches are regulatory RNAs that regulate gene expression by binding small-molecule metabolites. Here we report the discovery of an aminoglycoside-binding riboswitch that is widely distributed among antibiotic-resistant bacterial pathogens. This riboswitch is present in the leader RNA of the resistance genes that encode the aminoglycoside acetyl transferase (AAC) and aminoglycoside adenyl transferase (AAD) enzymes that confer resistance to aminoglycoside antibiotics through modification of the drugs. We show that expression of the AAC and AAD resistance genes is regulated by aminoglycoside binding to a secondary structure in their 5' leader RNA. Reporter gene expression, direct measurements of drug RNA binding, chemical probing, and UV crosslinking combined with mutational analysis demonstrate that the leader RNA functions as an aminoglycoside-sensing riboswitch in which drug binding to the leader RNA leads to the induction of aminoglycosides antibiotic resistance.


Assuntos
Aminoglicosídeos/farmacologia , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Bactérias/genética , RNA Bacteriano/metabolismo , Riboswitch , Regiões 5' não Traduzidas , Acetiltransferases/genética , Acinetobacter baumannii/genética , Sequência de Bases , Escherichia coli , Metiltransferases/genética , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Nucleotidiltransferases/genética , RNA Bacteriano/química , RNA Bacteriano/genética
18.
Cell ; 153(4): 773-84, 2013 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-23663777

RESUMO

5-methylcytosine is a major epigenetic modification that is sometimes called "the fifth nucleotide." However, our knowledge of how offspring inherit the DNA methylome from parents is limited. We generated nine single-base resolution DNA methylomes, including zebrafish gametes and early embryos. The oocyte methylome is significantly hypomethylated compared to sperm. Strikingly, the paternal DNA methylation pattern is maintained throughout early embryogenesis. The maternal DNA methylation pattern is maintained until the 16-cell stage. Then, the oocyte methylome is gradually discarded through cell division and is progressively reprogrammed to a pattern similar to that of the sperm methylome. The passive demethylation rate and the de novo methylation rate are similar in the maternal DNA. By the midblastula stage, the embryo's methylome is virtually identical to the sperm methylome. Moreover, inheritance of the sperm methylome facilitates the epigenetic regulation of embryogenesis. Therefore, besides DNA sequences, sperm DNA methylome is also inherited in zebrafish early embryos.


Assuntos
Metilação de DNA , Embrião não Mamífero/metabolismo , Oócitos/metabolismo , Espermatozoides/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/genética , 5-Metilcitosina/análise , Animais , Epigênese Genética , Feminino , Células Germinativas/metabolismo , Masculino , Peixe-Zebra/metabolismo
19.
Nature ; 605(7908): 139-145, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35444279

RESUMO

Cellular transformation induces phenotypically diverse populations of tumour-infiltrating T cells1-5, and immune checkpoint blockade therapies preferentially target T cells that recognize cancer cell neoantigens6,7. Yet, how other classes of tumour-infiltrating T cells contribute to cancer immunosurveillance remains elusive. Here, in a survey of T cells in mouse and human malignancies, we identified a population of αß T cell receptor (TCR)-positive FCER1G-expressing innate-like T cells with high cytotoxic potential8 (ILTCKs). These cells were broadly reactive to unmutated self-antigens, arose from distinct thymic progenitors following early encounter with cognate antigens, and were continuously replenished by thymic progenitors during tumour progression. Notably, expansion and effector differentiation of intratumoural ILTCKs depended on interleukin-15 (IL-15) expression in cancer cells, and inducible activation of IL-15 signalling in adoptively transferred ILTCK progenitors suppressed tumour growth. Thus, the antigen receptor self-reactivity, unique ontogeny, and distinct cancer cell-sensing mechanism distinguish ILTCKs from conventional cytotoxic T cells, and define a new class of tumour-elicited immune response.


Assuntos
Imunidade Inata , Interleucina-15 , Neoplasias , Animais , Diferenciação Celular , Camundongos , Neoplasias/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T Citotóxicos/metabolismo
20.
Immunol Rev ; 323(1): 150-163, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38506480

RESUMO

Cancer progression can be restrained by tumor-infiltrating lymphocytes in a process termed cancer immunosurveillance. Based on how lymphocytes are activated and recruited to the tumor tissue, cancer immunity is either pre-wired, in which innate lymphocytes and innate-like T cells are directly recruited to and activated in tumors following their differentiation in primary lymphoid organs; or priming-dependent, in which conventional adaptive T cells are first primed by cognate antigens in secondary lymphoid organs before homing to and reactivated in tumors. While priming-dependent cancer immunity has been a focus of cancer immunology research for decades, in part due to historical preconception of cancer theory and tumor model choice as well as clinical success of conventional adaptive T cell-directed therapeutic programs, recent studies have revealed that pre-wired cancer immunity mediated by tissue-resident type 1 innate lymphoid cells (ILC1s) and killer innate-like T cells (ILTCKs) is an integral component of the cancer immunosurveillance process. Herein we review the distinct ontogenies and cancer-sensing mechanisms of ILC1s and ILTCKs in murine genetic cancer models as well as the conspicuously conserved responses in human malignancies. How ILC1s and ILTCKs may be targeted to broaden the scope of cancer immunotherapy beyond conventional adaptive T cells is also discussed.


Assuntos
Imunidade Inata , Neoplasias , Humanos , Animais , Neoplasias/imunologia , Neoplasias/terapia , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Células Matadoras Naturais/imunologia , Vigilância Imunológica , Microambiente Tumoral/imunologia , Camundongos , Linfócitos/imunologia , Ativação Linfocitária/imunologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA