Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 298
Filtrar
1.
Cell ; 187(1): 184-203.e28, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38181741

RESUMO

We performed comprehensive proteogenomic characterization of small cell lung cancer (SCLC) using paired tumors and adjacent lung tissues from 112 treatment-naive patients who underwent surgical resection. Integrated multi-omics analysis illustrated cancer biology downstream of genetic aberrations and highlighted oncogenic roles of FAT1 mutation, RB1 deletion, and chromosome 5q loss. Two prognostic biomarkers, HMGB3 and CASP10, were identified. Overexpression of HMGB3 promoted SCLC cell migration via transcriptional regulation of cell junction-related genes. Immune landscape characterization revealed an association between ZFHX3 mutation and high immune infiltration and underscored a potential immunosuppressive role of elevated DNA damage response activity via inhibition of the cGAS-STING pathway. Multi-omics clustering identified four subtypes with subtype-specific therapeutic vulnerabilities. Cell line and patient-derived xenograft-based drug tests validated the specific therapeutic responses predicted by multi-omics subtyping. This study provides a valuable resource as well as insights to better understand SCLC biology and improve clinical practice.


Assuntos
Neoplasias Pulmonares , Proteogenômica , Carcinoma de Pequenas Células do Pulmão , Humanos , Linhagem Celular , Neoplasias Pulmonares/química , Neoplasias Pulmonares/genética , Carcinoma de Pequenas Células do Pulmão/química , Carcinoma de Pequenas Células do Pulmão/genética , Xenoenxertos , Biomarcadores Tumorais/análise
2.
Blood ; 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38635773

RESUMO

Pseudouridine is the most prevalent RNA modification, and its aberrant function is implicated in various human diseases. However, the specific impact of pseudouridylation on hematopoiesis remains poorly understood. In this study, we investigated the role of tRNA pseudouridylation in erythropoiesis and its association with mitochondrial myopathy, lactic acidosis, and sideroblastic anemia syndrome (MLASA) pathogenesis. By utilizing patient-specific induced pluripotent stem cells (iPSCs) carrying a genetic PUS1 mutation and a corresponding mutant mouse model, we demonstrated impaired erythropoiesis in MLASA iPSCs and anemia in the MLASA mouse model. Both MLASA iPSCs and mouse erythroblasts exhibited compromised mitochondrial function and impaired protein synthesis. Mechanistically, we revealed that PUS1 deficiency resulted in reduced mitochondrial tRNA levels due to pseudouridylation loss, leading to aberrant mitochondrial translation. Screening of mitochondrial supplements aimed at enhancing respiration or heme synthesis showed limited effect in promoting erythroid differentiation. Interestingly, the mTOR inhibitor rapamycin facilitated erythroid differentiation in MLASA-iPSCs by suppressing mTOR signaling and protein synthesis, and consistent results were observed in the MLASA mouse model. Importantly, rapamycin treatment effectively ameliorated anemia phenotypes in the MLASA patient. Our findings provide novel insights into the crucial role of mitochondrial tRNA pseudouridylation in governing erythropoiesis and present potential therapeutic strategies for anemia patients facing challenges related to protein translation.

3.
FASEB J ; 38(11): e23681, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38814725

RESUMO

Ischemia-reperfusion (IR) injury is primarily characterized by the restoration of blood flow perfusion and oxygen supply to ischemic tissue and organs, but it paradoxically leads to tissue injury aggravation. IR injury is a challenging pathophysiological process that is difficult to avoid clinically and frequently occurs during organ transplantation, surgery, shock resuscitation, and other processes. The major causes of IR injury include increased levels of free radicals, calcium overload, oxidative stress, and excessive inflammatory response. Ghrelin is a newly discovered brain-intestinal peptide with anti-inflammatory and antiapoptotic effects that improve blood supply. The role and mechanism of ghrelin in intestinal ischemia-reperfusion (IIR) injury remain unclear. We hypothesized that ghrelin could attenuate IIR-induced oxidative stress and apoptosis. To investigate this, we established IIR by using a non-invasive arterial clip to clamp the root of the superior mesenteric artery (SMA) in mice. Ghrelin was injected intraperitoneally at a dose of 50 µg/kg 20 min before IIR surgery, and [D-Lys3]-GHRP-6 was injected intraperitoneally at a dose of 12 nmol/kg 20 min before ghrelin injection. We mimicked the IIR process with hypoxia-reoxygenation (HR) in Caco-2 cells, which are similar to intestinal epithelial cells in structure and biochemistry. Our results showed that ghrelin inhibited IIR/HR-induced oxidative stress and apoptosis by activating GHSR-1α. Moreover, it was found that ghrelin activated the GHSR-1α/Sirt1/FOXO1 signaling pathway. We further inhibited Sirt1 and found that Sirt1 was critical for ghrelin-mediated mitigation of IIR/HR injury. Overall, our data suggest that pretreatment with ghrelin reduces oxidative stress and apoptosis to attenuate IIR/HR injury by binding with GHSR-1α to further activate Sirt1.


Assuntos
Apoptose , Proteína Forkhead Box O1 , Grelina , Camundongos Endogâmicos C57BL , Estresse Oxidativo , Receptores de Grelina , Traumatismo por Reperfusão , Sirtuína 1 , Grelina/farmacologia , Grelina/metabolismo , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/tratamento farmacológico , Sirtuína 1/metabolismo , Animais , Camundongos , Receptores de Grelina/metabolismo , Humanos , Masculino , Proteína Forkhead Box O1/metabolismo , Apoptose/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Intestinos/efeitos dos fármacos , Células CACO-2
4.
Am J Transplant ; 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38878865

RESUMO

Cold and ischemia/reperfusion (IR)-associated injuries are seemingly inevitable during liver transplantation and hepatectomy. As Syrian hamsters demonstrate intrinsic tolerance to transplantation-like stimuli, cross-species comparative metabolomic analyses were conducted with hamster, rat and donor liver samples to seek hepatic cold and IR-adaptive mechanisms. Lower hepatic phosphocholine contents were found in early graft-dysfunctioned recipients with virus-caused cirrhosis or high MELD scores (≥30). Choline/phosphocholine deficiency in cultured human THLE-2 hepatocytes and animal models weakened hepatocellular cold tolerance and recovery of glutathione and ATP production, which was rescued by phosphocholine supplements. Among the biological processes impacted by choline/phosphocholine deficiency, three lipid-related metabolic processes were downregulated, whilst phosphocholine elevated the expression of genes in methylation processes. Consistently, in THLE-2, phosphocholine enhanced the overall RNA m6A methylation, among which the transcript stability of Fatty acid desaturase 6 (FADS6) was improved. FADS6 functioned as a key phosphocholine effector in the production of polyunsaturated fatty acids, which may facilitate the hepatocellular recovery of energy and redox homeostasis. Thus, our study reveals the choline-phosphocholine metabolism and its downstream FADS6 functions in hepatic adaptation to cold and IR, which may inspire new strategies to monitor donor liver quality and improve recipient recovery from the LT process.

5.
Opt Express ; 32(9): 16371-16397, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38859266

RESUMO

Chlorophyll a (Chl-a) in lakes serves as an effective marker for assessing algal biomass and the nutritional level of lakes, and its observation is feasible through remote sensing methods. HJ-1 (Huanjing-1) satellite, deployed in 2008, incorporates a CCD capable of a 30 m resolution and has a revisit interval of 2 days, rendering it a superb choice or supplemental sensor for monitoring trophic state of lakes. For effective long-term and regional-scale mapping, both the imagery and the evaluation of machine learning algorithms are essential. The several typical machine learning algorithms, i.e., Support Vector Regression (SVR), Gradient Boosting Decision Trees (GBDT), XGBoost (XGB), Random Forest (RF), K-Nearest Neighbor (KNN), Kernel Ridge Regression (KRR), and Multi-Layer Perception Network (MLP), were developed using our in-situ measured Chl-a. A cross-validation grid to identify the most effective hyperparameter combinations for each algorithm was used, as well as the selected optimal superparameter combinations. In Chl-a mapping of three typical lakes, the R2 of GBDT, XGB, RF, and KRR all reached 0.90, while XGB algorithm also exhibited stable performance with the smallest error (RMSE = 3.11 µg/L). Adjustments were made to align the Chl-a spatial-temporal patterns with past data, utilizing HJ1-A/B CCD images mapping through XGB algorithm, which demonstrates its stability. Our results highlight the considerable effectiveness and utility of HJ-1 A/B CCD imagery for evaluation and monitoring trophic state of lakes in a cold arid region, providing the application cases contribute to the ongoing efforts to monitor water qualities.


Assuntos
Algoritmos , Clorofila A , Monitoramento Ambiental , Lagos , Aprendizado de Máquina , Lagos/análise , Clorofila A/análise , Monitoramento Ambiental/métodos , Clorofila/análise , Imagens de Satélites/métodos , Tecnologia de Sensoriamento Remoto/métodos
6.
Cell Biol Int ; 48(4): 389-403, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38317355

RESUMO

Degeneration of intervertebral discs is considered one of the most important causes of low back pain and disability. The intervertebral disc (IVD) is characterized by its susceptibility to various stressors that accelerate the senescence and apoptosis of nucleus pulposus cells, resulting in the loss of these cells and dysfunction of the intervertebral disc. Therefore, how to reduce the loss of nucleus pulposus cells under stress environment is the main problem in treating intervertebral disc degeneration. Autophagy is a kind of programmed cell death, which can provide energy by recycling substances in cells. It is considered to be an effective method to reduce the senescence and apoptosis of nucleus pulposus cells under stress. However, further research is needed on the mechanisms by which autophagy of nucleus pulposus cells is regulated under stress environments. M6A methylation, as the most extensive RNA modification in eukaryotic cells, participates in various cellular biological functions and is believed to be related to the regulation of autophagy under stress environments, may play a significant role in nucleus pulposus responding to stress. This article first summarizes the effects of various stressors on the death and autophagy of nucleus pulposus cells. Then, it summarizes the regulatory mechanism of m6A methylation on autophagy-related genes under stress and the role of these autophagy genes in nucleus pulposus cells. Finally, it proposes that the methylation modification of autophagy-related genes regulated by m6A may become a new treatment approach for intervertebral disc degeneration, providing new insights and ideas for the clinical treatment of intervertebral disc degeneration.


Assuntos
Adenina/análogos & derivados , Degeneração do Disco Intervertebral , Disco Intervertebral , Núcleo Pulposo , Humanos , Degeneração do Disco Intervertebral/metabolismo , Disco Intervertebral/metabolismo , Núcleo Pulposo/metabolismo , Autofagia , Apoptose , Metilação
7.
Surg Endosc ; 38(1): 460-468, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37985489

RESUMO

BACKGROUND: Large artificial gastric mucosal defects are always left unclosed for natural healing due to technique difficulties in closure. This study aims to evaluate the feasibility and safety of a new Twin-grasper Assisted Mucosal Inverted Closure (TAMIC) technique in closing large artificial gastric mucosal defects. METHODS: Endoscopic submucosal dissection (ESD) was performed in fifteen pigs to create large gastric mucosal defects. The mucosal defects were then either left unclosed or closed with metallic clips using TAMIC technique. Successful closure rate and the wound outcomes were assessed. RESULTS: Two mucosal defects with size of about 4.0 cm were left unclosed and healed two months after surgery. Thirteen large gastric mucosal defects were created by ESD with a medium size of 5.9 cm and were successfully closed with the TAMIC technique (100%), even in a mucosal defect with a width up to 8.5 cm. The mean closure time was 59.0 min. Wounds in eight stomachs remained completely closed 1 week after surgery (61.5%), while closure in the other five stomachs had partial wound dehiscence (38.5%). Four weeks later, all the closed defects healed well and 61.5% of the wounds still remained completely closed during healing. There was no delayed perforation or bleeding after surgery. In addition, there was less granulation in the submucosal layer of the closed wound sites than those under natural healing. CONCLUSIONS: The present study suggests that TAMIC is feasible and safe in closing large artificial gastric mucosal defects and could improve mucosal recovery compared to natural healing process.


Assuntos
Ressecção Endoscópica de Mucosa , Técnicas de Fechamento de Ferimentos , Suínos , Animais , Mucosa Gástrica/cirurgia , Complicações Pós-Operatórias , Instrumentos Cirúrgicos , Resultado do Tratamento
8.
BMC Pregnancy Childbirth ; 24(1): 1, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38166707

RESUMO

BACKGROUND: Preeclampsia is a life-threatening disease of pregnancy that lacks effective pharmaceuticals which can target its pathogenesis. Since preeclampsia involves complex pathological processes, including autophagy, this study aims to explore autophagy-related mechanisms of preeclampsia and to screen potential drugs. METHODS: Firstly, the datasets GSE75010, GSE24129, GSE66273, and autophagic genes lists were downloaded from public databases. Then, a weighted gene co-expression network analysis (WGCNA) was applied to filter autophagic-related hub genes of preeclampsia. The differential expression levels of the hub genes were validated with datasets GSE24129 and GSE66273. Next, the GO and KEGG enrichment, protein-protein interacting (PPI) network, as well as the downstream pathways was analyzed via the starBase, STRING and Cytoscape to determine the functions and regulatory network of the hub genes. Additionally, the immune microenvironment of preeclampsia was investigated by the CIBERSORTX database. Finally, three herb ingredients, berberine, baicalein, and luteolin were screened by molecular docking in comparison to pravastatin, metformin, and aspirin, to predict potential drugs for treating preeclampsia. RESULTS: A total of 54 autophagy-related genes were filtered by WGCNA. After filtering with |GS| > 0.5 and |MM| > 0.8, three hub genes, namely PKM, LEP, and HK2, were identified and validated. Among these genes, PKM and LEP were overexpressed in women older than 35 years old ( p<0.05; p<0.05); the expression of PKM, LEP, and HK2 differed remarkably in women with different BMI (all p<0.05); PKM overexpressed in women with hypertension (p<0.05). The regulatory network of hub genes demonstrated that they were mainly enriched in metabolic pathways, including the AMPK signaling pathway, glucagon signaling pathway, adipocytokine signaling pathway, and central carbon metabolism. Then, immune microenvironment analysis turned out that M2 macrophages were reduced in preeclampsia women (p<0.0001) and were negatively correlated with the expression of PKM (r=-0.2, p<0.05), LEP (r=-0.4, p<0.0001), and HK2 (r=-0.3, p<0.001). Lastly, molecular docking showed baicalein and luteolin could bind intimately to hub genes. CONCLUSION: PKM, LEP, and HK2 could be promising biomarkers for preeclampsia, which might regulate the pathogenesis of preeclampsia via metabolism pathways and immune microenvironment. Baicalein and luteolin could be potential therapeutics for preeclampsia.


Assuntos
Pré-Eclâmpsia , Adulto , Feminino , Humanos , Gravidez , Autofagia/genética , Biomarcadores , Luteolina , Simulação de Acoplamento Molecular , Pré-Eclâmpsia/tratamento farmacológico , Pré-Eclâmpsia/genética
9.
Gerontology ; 70(1): 59-75, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37827130

RESUMO

INTRODUCTION: Osteoarthritis (OA) is the most prevalent and debilitating joint disease without an effective therapeutic option. Multiple risk factors for OA have been identified, including abnormal chondrocyte miRNA secretion and circadian rhythms disruption, both of which have been found to cause progressive damage and loss of articular cartilage. Environmental disruption of circadian rhythms in mice predisposes animals to cartilage injury and OA. METHODS: The role of miR-195/497 cluster during OA progression was verified by mouse OA model with intra-articular injection of Agomir and Antagomir. We performed micro-CT analysis, Osteoarthritis Research Society International scores, and histological analysis in mouse knee joints. RNA sequencing was performed on the mouse cartilage cell line to explore the molecular mechanism of the miR-195/497 cluster and proteins in signaling pathway were evaluated using Western blot. Senescence-associated phenotypes were detected by Western blot, senescence ß-galactosidase staining, and immunofluorescence. RESULTS: This study demonstrated that miR-195/497-5p expression is disrupted in OA with senescent chondrocytes. In addition, miR-195/497-5p influenced the circadian rhythm of mice chondrocytes by modulating the expression of the Per2 protein, resulting in the gradual degradation of articular cartilage. We found that the miR-195/497 cluster targets DUSP3 expression. The deletion of the miR-195/497 cluster increased the level of DUSP3 expression and decreased the levels of phosphorylated ERK 1/2 and CREB. Per2 transcription is upregulated by stimulating CREB and ERK 1/2 phosphorylation. CONCLUSION: Our findings identify a regulatory mechanism connecting chondrocyte miR-195/497-5p to cartilage maintenance and repair and imply that circadian rhythm disturbances affected by miR-195/497-5p are risk factors for age-related joint diseases such as OA.


Assuntos
Cartilagem Articular , Relógios Circadianos , MicroRNAs , Osteoartrite , Camundongos , Animais , Relógios Circadianos/genética , MicroRNAs/genética , Osteoartrite/genética , Osteoartrite/metabolismo , Condrócitos/metabolismo , Cartilagem Articular/metabolismo , Modelos Animais de Doenças
10.
BMC Public Health ; 24(1): 519, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38373928

RESUMO

BACKGROUND: The emergence of the COVID-19 pandemic towards the end of 2019 triggered a relentless spread of online misinformation, which significantly impacted societal stability, public perception, and the effectiveness of measures to prevent and control the epidemic. Understanding the complex dynamics and characteristics that determine the duration of rumors is crucial for their effective management. In response to this urgent requirement, our study takes survival analysis method to analyze COVID-19 rumors comprehensively and rigorously. Our primary aim is to clarify the distribution patterns and key determinants of their persistence. Through this exploration, we aim to contribute to the development of robust rumor management strategies, thereby reducing the adverse effects of misinformation during the ongoing pandemic. METHODS: The dataset utilized in this research was sourced from Tencent's "Jiao Zhen" Verification Platform's "Real-Time Debunking of Novel Coronavirus Pneumonia" system. We gathered a total of 754 instances of rumors from January 18, 2020, to January 17, 2023. The duration of each rumor was ascertained using the Baidu search engine. To analyze these rumors, survival analysis techniques were applied. The study focused on examining various factors that might influence the rumors' longevity, including the theme of the content, emotional appeal, the credibility of the source, and the mode of presentation. RESULTS: Our study's results indicate that a rumor's lifecycle post-emergence typically progresses through three distinct phases: an initial rapid decline phase (0-25 days), followed by a stable phase (25-1000 days), and ultimately, an extinction phase (beyond 1000 days). It is observed that half of the rumors fade within the first 25 days, with an average duration of approximately 260.15 days. When compared to the baseline category of prevention and treatment rumors, the risk of dissipation is markedly higher in other categories: policy measures rumors are 3.58 times more likely to perish, virus information rumors have a 0.52 times higher risk, epidemic situation rumors are 4.86 times more likely to die out, and social current affairs rumors face a 2.02 times increased risk. Additionally, in comparison to wish rumors, bogie rumors and aggression rumors have 0.26 and 0.27 times higher risks of dying, respectively. In terms of presentation, graphical and video rumors share similar dissolution risks, whereas textual rumors tend to have a longer survival time. Interestingly, the credibility of the rumor's source does not significantly impact its longevity. CONCLUSION: The survival time of rumors is strongly linked to their content theme and emotional appeal, whereas the credibility of the source and the format of presentation have a more auxiliary influence. This study recommends that government agencies should adopt specific strategies to counter rumors. Experts and scholars are encouraged to take an active role in spreading health knowledge. It's important for the public to proactively seek trustworthy sources for accurate information. Media platforms are advised to maintain journalistic integrity, verify the accuracy of information, and guide the public towards improved media literacy. These actions, collectively, can foster a collaborative alliance between the government and the media, effectively combating misinformation.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , Pandemias , SARS-CoV-2 , Comunicação , Emoções
11.
BMC Musculoskelet Disord ; 25(1): 253, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561728

RESUMO

BACKGROUND: The characteristics and therapeutic potential of subtypes of bone marrow mesenchymal stem cells (BMSCs) are largely unknown. Also, the application of subpopulations of BMSCs in cartilage regeneration remains poorly characterized. The aim of this study was to explore the regenerative capacity of CD146-positive subpopulations of BMSCs for repairing cartilage defects. METHODS: CD146-positive BMSCs (CD146 + BMSCs) were sorted by self-developed CD146-specific lipid magnetic spheres (CD146-LMS). Cell surface markers, viability, and proliferation were evaluated in vitro. CD146 + BMSCs were subjected to in vitro chondrogenic induction and evaluated for chondrogenic properties by detecting mRNA and protein expression. The role of the CD146 subpopulation of BMSCs in cartilage damage repair was assessed by injecting CD146 + BMSCs complexed with sodium alginate gel in the joints of a mouse cartilage defect model. RESULTS: The prepared CD146-LMS had an average particle size of 193.7 ± 5.24 nm, an average potential of 41.9 ± 6.21 mv, and a saturation magnetization intensity of 27.2 Am2/kg, which showed good stability and low cytotoxicity. The sorted CD146 + BMSCs highly expressed stem cell and pericyte markers with good cellular activity and cellular value-added capacity. Cartilage markers Sox9, Collagen II, and Aggrecan were expressed at both protein and mRNA levels in CD146 + BMSCs cells after chondrogenic induction in vitro. In a mouse cartilage injury model, CD146 + BMSCs showed better function in promoting the repair of articular cartilage injury. CONCLUSION: The prepared CD146-LMS was able to sort out CD146 + BMSCs efficiently, and the sorted subpopulation of CD146 + BMSCs had good chondrogenic differentiation potential, which could efficiently promote the repair of articular cartilage injury, suggesting that the sorted CD146 + BMSCs subpopulation is a promising seed cell for cartilage tissue engineering.


Assuntos
Cartilagem Articular , Células-Tronco Mesenquimais , Animais , Camundongos , Cartilagem Articular/metabolismo , Antígeno CD146/metabolismo , Diferenciação Celular , Células Cultivadas , Células-Tronco Mesenquimais/metabolismo , Células da Medula Óssea/metabolismo , Condrogênese , RNA Mensageiro/metabolismo , Fenômenos Magnéticos , Lipídeos
12.
Proc Natl Acad Sci U S A ; 118(24)2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34099558

RESUMO

Cytosolic DNA activates cGAS (cytosolic DNA sensor cyclic AMP-GMP synthase)-STING (stimulator of interferon genes) signaling, which triggers interferon and inflammatory responses that help defend against microbial infection and cancer. However, aberrant cytosolic self-DNA in Aicardi-Goutière's syndrome and constituently active gain-of-function mutations in STING in STING-associated vasculopathy with onset in infancy (SAVI) patients lead to excessive type I interferons and proinflammatory cytokines, which cause difficult-to-treat and sometimes fatal autoimmune disease. Here, in silico docking identified a potent STING antagonist SN-011 that binds with higher affinity to the cyclic dinucleotide (CDN)-binding pocket of STING than endogenous 2'3'-cGAMP. SN-011 locks STING in an open inactive conformation, which inhibits interferon and inflammatory cytokine induction activated by 2'3'-cGAMP, herpes simplex virus type 1 infection, Trex1 deficiency, overexpression of cGAS-STING, or SAVI STING mutants. In Trex1-/- mice, SN-011 was well tolerated, strongly inhibited hallmarks of inflammation and autoimmunity disease, and prevented death. Thus, a specific STING inhibitor that binds to the STING CDN-binding pocket is a promising lead compound for STING-driven disease.


Assuntos
Proteínas de Membrana/antagonistas & inibidores , Nucleotídeos Cíclicos/metabolismo , Animais , Sítios de Ligação , Biotinilação , Morte Celular , Exodesoxirribonucleases/deficiência , Humanos , Inflamação/patologia , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Simulação de Acoplamento Molecular , Mutação/genética , Fosfoproteínas/deficiência , Domínios Proteicos , Transdução de Sinais
13.
Int Wound J ; 21(3): e14741, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38414304

RESUMO

At present, it is still controversial whether patients in intensive care unit (ICU) use tracheal intubation with or without cuff. This paper evaluates the effect of tracheal intubation with and without cuff on overall complication rate of patients with intubation in ICU. The database of PubMed, Embase, Conchrane Library and Web of Science was searched by computer, and the clinical research on intubation with and without cuff in ICU was collected. The time range was from the database establishment to November 2023. Literature was independently screened, information was extracted, and quality was assessed by two researchers. Finally, there were nine studies included, with 11 068 patients (7391 in cuff group and 3677 in non-cuff group). The results showed that the overall complication rate of cuff group was significantly lower than that of non-cuff group, and that of cuff group (RR = 0.53, p < 0.01). In addition, compared with the non-cuff group, the cuff group had a lower number of tracheal intubation changes [RR = 0.05, p < 0.01] and a lower incidence of aspiration pneumonia (RR = 0.45, p = 0.01). Compared with the non-cuff group, the cuff group had a higher incidence of oral mucosal ulcers and pharyngitis (RR = 1.99, p = 0.04), while the cuff group had a lower incidence of laryngeal edema (RR = 0.39, p < 0.01). In ICU intubation patients, the use of cuffs reduces overall complication rate in comparison to patients without cuffs. Therefore, patients with intubation in ICU can recommend tracheal intubation with cuff.


Assuntos
Cuidados Críticos , Intubação Intratraqueal , Humanos , Incidência , Intubação Intratraqueal/efeitos adversos , Unidades de Terapia Intensiva
14.
Am J Physiol Cell Physiol ; 325(5): C1212-C1227, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37721001

RESUMO

Ferroptosis has been proven critical for survival following bone marrow mesenchymal stem cells (BMSCs) explantation. Suppression of ferroptosis in BMSCs will be a valid tactic to elevate the therapeutic potential of engrafted BMSCs. Prominin2 is a pentaspanin protein involved in mediating iron efflux and thus modulates resistance to ferroptosis, but its role in tert-butyl hydroperoxide (TBHP)-induced BMSCs ferroptosis remains elusive. We examined the biological effect of prominin2 in vitro and in vivo by using cell proliferation assay, iron assay, reactive oxygen species (ROS) examination, malondialdehyde assay, glutathione (GSH) examination, Western blot, quantitative reverse transcription-PCR, immunofluorescence staining assay, gene expression inhibition and activation, co-immunoprecipitation (CO-IP) assay, radiographic analysis, and histopathological analysis. Our study demonstrated that prominin2 activity was impaired in TBHP-induced BMSCs ferroptosis. We found that PROM2 (encoding the protein prominin2) activation delayed the onset of ferroptosis and PROM2 knockdown deteriorated the course of ferroptosis. CO-IP, Western blot, and immunofluorescence demonstrated that prominin2 exerts antiferroptosis effects by inhibiting BTB and CNC homology 1 (BACH1) that promotes ROS generation, and thus exerts potent antioxidant effects in oxidative stress (OS)-induced BMSCs ferroptosis, including elevating BMSCs' survival rate and enhancing GSH contents. BMSCs with PROM2 overexpression also partially delayed the progression of intervertebral disk degeneration in vivo, as illustrated by less loss of disk height and lower histological scores. Our findings revealed a mechanism that the prominin2/BACH1/ROS axis participates in BMSCs ferroptosis and the strengthening of this axis is promising to maintain BMSCs' survival after explantation.NEW & NOTEWORTHY We found that prominin2 might be a potential biomarker and is expected to be utilized to augment engrafted bone marrow mesenchymal stem cells (BMSCs) survival rate. The prominin2/BTB and CNC homology 1 (BACH1)/reactive oxygen species (ROS) axis, which participates in the regulation of BMSCs ferroptosis induced by tert-butyl hydroperoxide (TBHP), is uncovered in our study. The therapeutic targeting of the prominin2/BACH1/ROS axis components is promising to elevate the survival of transplanted BMSCs in clinical practice.

15.
Cancer Immunol Immunother ; 72(12): 4235-4247, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37932425

RESUMO

BACKGROUND: Neoadjuvant immunotherapy has been demonstrated to be effective and safe in resectable non-small cell lung cancer (NSCLC) patients. However, the presence of different oncogenic driver mutations may affect the tumor microenvironment and consequently influence the clinical benefit from immunotherapy. METHODS: This retrospective study included consecutive NSCLC patients (stage IIA to IIIB) who underwent radical surgery after receiving neoadjuvant immunotherapy at a single high-volume center between December 2019 and August 2022. Pathological response and long-term outcomes were compared based on the driver oncogene status, and RNA sequencing analysis was conducted to investigate the transcriptomic characteristics before and after treatment. RESULTS: Of the 167 patients included in this study, 47 had oncogenic driver mutations. KRAS driver mutations were identified in 28 patients, representing 59.6% of oncogenic driver mutations. Of these, 17 patients had a major pathological response, which was significantly higher than in the non-KRAS driver mutation group (60.7% vs. 31.6%, P = 0.049). Multivariate Cox regression analysis further revealed that the KRAS driver mutation group was an independent prognostic factor for prolonged disease-free survival (hazard ratio: 0.10, P = 0.032). The median proportion of CD8+ T cells was significantly higher in the KRAS driver mutation NSCLCs than in the non-driver mutation group (18% vs. 13%, P = 0.030). Furthermore, immune-related pathways were enriched in the KRAS driver mutation NSCLCs and activated after immunotherapy. CONCLUSION: Our study suggests that NSCLC patients with KRAS driver mutations have a superior response to neoadjuvant immunotherapy, possibly due to their higher immunogenicity. The findings highlight the importance of considering oncogenic driver mutations in selecting neoadjuvant treatment strategies for NSCLC patients.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/terapia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/tratamento farmacológico , Terapia Neoadjuvante , Estudos Retrospectivos , Linfócitos T CD8-Positivos/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Mutação , Imunoterapia , Microambiente Tumoral
17.
PLoS Pathog ; 17(3): e1009401, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33720974

RESUMO

The cytosolic DNA sensor cyclic GMP-AMP (cGAMP) synthetase (cGAS) has emerged as a fundamental component fueling the anti-pathogen immunity. Because of its pivotal role in initiating innate immune response, the activity of cGAS must be tightly fine-tuned to maintain immune homeostasis in antiviral response. Here, we reported that neddylation modification was indispensable for appropriate cGAS-STING signaling activation. Blocking neddylation pathway using neddylation inhibitor MLN4924 substantially impaired the induction of type I interferon and proinflammatory cytokines, which was selectively dependent on Nedd8 E2 enzyme Ube2m. We further found that deficiency of the Nedd8 E3 ligase Rnf111 greatly attenuated DNA-triggered cGAS activation while not affecting cGAMP induced activation of STING, demonstrating that Rnf111 was the Nedd8 E3 ligase of cGAS. By performing mass spectrometry, we identified Lys231 and Lys421 as essential neddylation sites in human cGAS. Mechanistically, Rnf111 interacted with and polyneddylated cGAS, which in turn promoted its dimerization and enhanced the DNA-binding ability, leading to proper cGAS-STING pathway activation. In the same line, the Ube2m or Rnf111 deficiency mice exhibited severe defects in innate immune response and were susceptible to HSV-1 infection. Collectively, our study uncovered a vital role of the Ube2m-Rnf111 neddylation axis in promoting the activity of the cGAS-STING pathway and highlighted the importance of neddylation modification in antiviral defense.


Assuntos
Imunidade Inata/imunologia , Nucleotidiltransferases/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Viroses/imunologia , Animais , Humanos , Camundongos , Processamento de Proteína Pós-Traducional , Transdução de Sinais/imunologia
18.
Cancer Cell Int ; 23(1): 138, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37452331

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is the second malignancy worldwide. POLA2 initiates DNA replication, regulates cell cycle and gene repair that promote tumorigenesis and disease progression. However, the prognostic and biological function roles of POLA2 in HCC had not been conclusively determined. METHODS: The expression levels and prognosis role of POLA1 and POLA2 in HCC were analyzed based on TCGA-LIHC database and recruited 24 HCC patients. Gene mutations were analyzed using "maftools" package. POLA2 and immune cells correlations were analyzed by TIMER. POLA2 co-expressed genes functional enrichment were evaluated using Metascape. The mRNA and protein level of POLA2 was detected in HCC cells and tissues. Cell migration, invasion, proliferation, cell cycle and HCC cell lines derived xenograft model were performed to investigate POLA2 biological function. RESULTS: POLA2 was significantly high expressed in HCC than in normal liver tissue in both TCGA-LIHC and our collected HCC samples. In validation cohort, POLA2 significantly related to tumor differentiation, tumor size and Ki-67 (p < 0.05). In TCGA-LIHC cohort, overexpression of POLA2 predicted a low OS and associated with different clinical stages. Multivariate Cox regression showed overexpression of POLA2 effectively distinguished the prognosis at different T, N, M, stages and grades of HCC. POLA2 expression correlated with mutation burden, immune cells infiltration and immune-associated genes expression of HCC. Functional enrichment revealed that POLA2 co-expressed genes were linked to cellular activity, plasma membrane protein complex and leukocyte activity, immune response-regulated cell surface receptor signaling pathway, and immune response-regulated signaling pathway. Moreover, POLA2 was also positively co-expressed with some immune checkpoints (CD274, CTL-4, HAVCR2, PDCD1, PDCD1LG2, TIGIT, and LAG3) (p < 0.001). Gene knockdown revealed that POLA2 promoted proliferation, migration, invasion, and cell cycle of SMMC-7721 and HepG2. The HCC xenograft tumor model also demonstrated remarkably tumor size inhibition, tumor proliferation inhibtion and tumor necrosis promotion when POLA2 knockdown. CONCLUSIONS: POLA2 influenced immune microenvironment and tumor progression of HCC indicated that it might be a potential molecular marker for prognostic evaluation or a therapeutic target for HCC.

19.
FASEB J ; 36(8): e22465, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35867072

RESUMO

Anlotinib has been demonstrated to be effective in advanced non-small cell lung cancer (NSCLC) patients. The response stratification of anlotinib remains unclear. In this study, plasma samples from 28 anlotinib-treated NSCLC patients (discovery cohort: 14 responders and 14 non-responders) were subjected to proteomic analysis, and plasma samples from 35 anlotinib-treated NSCLC patients (validation cohort) were subjected to validation analysis. Liquid chromatography-tandem mass spectrometry analysis was performed on samples with different time points, namely baseline (BL), best response (BR), and progression disease (PD). Bioinformatics analysis was performed to screen for the underlying differential proteins. Enzyme-linked immunosorbent assay was performed to detect plasma ARHGDIB, FN1, CDH1, and KNG1 levels respectively. The Kaplan-Meier survival analysis was used for biomarker-based responsive stratification. Our results indicated that differential proteins between responders and non-responders showed that proteomic technology potentially contributes to biomarker screening in plasma samples at BL. Furthermore, our results suggested that the detection of plasma ARHGDIB, FN1, CDH1, and KNG1 levels have potential predictive value for anlotinib response both in the discovery cohort and validation cohort. Collectively, this study offers novel insights into the value of plasma biomarker screening via proteomic examination and suggests that plasma ARHGDIB, FN1, CDH1, and KNG1 levels could be used as biomarkers for anlotinib stratification in NSCLC patients.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Quinolinas , Biomarcadores , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Detecção Precoce de Câncer , Humanos , Indóis , Neoplasias Pulmonares/tratamento farmacológico , Proteômica , Quinolinas/uso terapêutico , Inibidor beta de Dissociação do Nucleotídeo Guanina rho
20.
Ann Hematol ; 102(3): 529-539, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36680600

RESUMO

Aplastic anemia (AA) is an auto-activated T cell-mediated bone marrow failure. Cyclosporine is often used to treat non-severe AA, which demonstrates a more heterogeneous condition than severe AA. The response rate to cyclosporine is only around 50% in non-severe AA. To better predict response to cyclosporine and pinpoint who is the appropriate candidate for cyclosporine, we performed phenotypic and functional T cell immune signature at single cell level by mass cytometry from 30 patients with non-severe AA. Unexpectedly, non-significant differences of T cell subsets were observed between AA and healthy control or cyclosporine-responder and non-responders. Interestingly, when screening the expression of co-inhibitory molecules, T cell trafficking mediators, and cytokines, we found an increase of cytotoxic T lymphocyte antigen 4 (CTLA-4) on T cells in response to cyclosporine and a lower level of CTLA-4 on CD8+ T cells was correlated to hematologic response. Moreover, a decreased expression of sphingosine-1-phosphate receptor 1 (S1P1) on naive T cells and a lower level of interleukin-9 (IL-9) on T helpers also predicted a better response to cyclosporine, respectively. Therefore, the T cell immune signature, especially in CTAL-4, S1P1, and IL-9, has a predictive value for response to cyclosporine. Collectively, our study implies that immune signature analysis of T cell by mass cytometry is a useful tool to make a strategic decision on cyclosporine treatment of AA.


Assuntos
Anemia Aplástica , Linfócitos T , Humanos , Anemia Aplástica/diagnóstico , Linfócitos T CD8-Positivos/metabolismo , Antígeno CTLA-4/metabolismo , Ciclosporina , Interleucina-9/metabolismo , Linfócitos T/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA