Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Langmuir ; 40(1): 818-826, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38146702

RESUMO

It is significant to understand the adsorption mechanisms of shale gas (CH4) and CO2 in shale formations to enhance CH4 recovery rates and enable geological CO2 storage. This study provides a comprehensive investigation into the adsorption behaviors of CO2 and CH4 within dry and hydrous calcite nanopores, utilizing a combination of grand canonical Monte Carlo simulations, molecular dynamics simulations, and density functional theory calculations. In dry calcite slits, the calculated results for the adsorption capacity, density profile, and isosteric heat of CO2 and CH4 reveal that CO2 possesses a stronger adsorption affinity, making it preferentially adsorb on the pore surface compared to CH4. In hydrous calcite slits, calculating the adsorption capacity and density profile of CO2 and CH4, the results show that the gas adsorption sites become progressively occupied by H2O molecules, leading to a substantial decrease in the adsorption capacity of CO2 and CH4. Furthermore, by analysis of the adsorption energy and electronic structure, the reason for the reduction of gas adsorption capacity caused by H2O is further revealed. This work has a deep understanding of the adsorption mechanisms of shale gas and CO2 in calcite and can offer valuable theoretical insights for the development of a CO2-enhanced shale gas recovery technology.

2.
ACS Omega ; 4(21): 19193-19198, 2019 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-31763543

RESUMO

We first report three reliable analytical expressions of the entropy, enthalpy and Gibbs free energy of carbon dioxide (CO2) and perform predictions of these three thermodynamic quantities on the basis of the proposed analytical expressions and in terms of experimental values of five molecular constants for CO2. The average relative deviations of the calculated values from the National Institute of Standards and Technology database over the temperature range from 300 to 6000 K are merely 0.053, 0.95, and 0.070%, respectively, for the entropy, enthalpy, and Gibbs free energy. The present predictive expressions are away from the utilization of plenty of experimental spectroscopy data and are applicable to treat CO2 capture and storage processes.

3.
ACS Omega ; 4(22): 20000-20004, 2019 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-31788634

RESUMO

Many chemical and physical equilibrium conditions can be determined from minimizing the Gibbs free energies of the system. Efficient analytical representations of the entropy and Gibbs free energy of carbonyl sulfide remain elusive in the communality of science and engineering. Here, we report two analytical representations of the entropy and Gibbs free energy for carbonyl sulfide, and the prediction procedures only involve six molecular constants of the carbonyl sulfide molecule. In the temperature range from 300 to 6000 K, the average relative deviations of the predicted molar entropy and reduced Gibbs free energy values of carbonyl sulfide from the National Institute of Standards and Technology database are arrived at 0.150 and 0.189%, respectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA