Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
FASEB J ; 37(12): e23314, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37983660

RESUMO

Small extracellular vesicles (sEVs) from adipose-derived stem cells (ADSCs) have gained great attention and have been widely used in cell-free therapies for treating diabetic non-healing wounds in recent years. However, further clinical application of ADSC-sEVs have been limited due to their unsolvable defects, including cumbersome extraction procedure, high cost, low yield, etc. Thus, we urgently need to find one therapeutic reagent that could not only accelerate diabetic wound healing as ADSC-sEVs but also overcome these shortcomings. As the extraction process of adipose tissue-derived sEVs (AT-sEVs) is quite simple and labor saving, we put our focus on the efficiencies of white adipose tissue-derived sEVs (WAT-sEVs) and brown adipose tissue-derived sEVs (BAT-sEVs) in diabetic wound repair. After successfully isolating WAT-sEVs and BAT-sEVs by ultracentrifugation, we thoroughly characterized them and compared their diabetic wound healing capabilities both in vitro and in vivo. According to our study, AT-sEVs possess similar competence in diabetic wound healing as compared with ADSC-sEVs. While the effect of BAT-sEVs is not as stable as WAT-sEVs and ADSC-sEVs, the repair efficiency is also slightly lower than the other two sEVs in some cases. In summary, we are the first to discover that WAT-sEVs show great potential in diabetic wound repair. With advantages that are specific to tissue-derived sEVs (Ti-sEVs) such as time- and cost-saving, high-yield, and simple isolation procedure, we believe WAT-sEVs could serve as a novel reliable cell-free therapy for clinical diabetic wound treatment.


Assuntos
Diabetes Mellitus , Vesículas Extracelulares , Humanos , Cicatrização , Tecido Adiposo Branco , Tecido Adiposo Marrom
2.
Am J Physiol Cell Physiol ; 324(6): C1307-C1319, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37154491

RESUMO

It is a widespread and difficult problem that refractory diabetic wounds have a poor local environment and prolonged inflammatory irritation. Tumor cell-derived exosomes play an important role in the development of tumors, as they can promote tumor cell proliferation, migration, and invasion and enhance tumor cell activity. However, tumor tissue-derived exosomes (Ti-Exos) have been less studied, and it is unclear how they affect wound healing. In this study, we extracted Ti-Exos from human oral squamous carcinoma and paracancerous tissue by ultracentrifugation, size exclusion chromatography, and ultrafiltration and performed exosome characterization. In vitro, the oral squamous cell carcinoma tissue-derived exosomes (OSCC Ti-Exos) promoted the proliferation and migration of endothelial cells, keratinocytes, and fibroblasts. In addition, in vivo experiments showed that the OSCC Ti-Exos accelerated the healing of diabetic wounds and were safe in mice. In contrast, there was no promoting effect of paracancerous tissue-derived exosomes either in vivo or in vitro. In conclusion, OSCC Ti-Exos promoted the healing of diabetic wounds, demonstrated preliminary biosafety in mice, and have promise as therapeutic applications.NEW & NOTEWORTHY Diabetic wound healing has become a public health issue that lacks effective treatment. We collected oral squamous cell carcinoma samples and paracancerous tissue and extracted Ti-Exos for verification. In vitro assays revealed that OSCC Ti-EVs could enhance the proliferation and migration of endothelial cells, keratinocytes, and fibroblasts in diabetic cell model. In vivo assays also verified that OSCC Ti-Exos could promote diabetic wound healing, demonstrated preliminary biosafety in mice, and have promise as therapeutic applications.


Assuntos
Carcinoma de Células Escamosas , Diabetes Mellitus , Exossomos , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Humanos , Camundongos , Animais , Células Endoteliais , Carcinoma de Células Escamosas de Cabeça e Pescoço , Exossomos/química , Cicatrização , Proliferação de Células
3.
Macromol Rapid Commun ; 44(5): e2200753, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36377477

RESUMO

The power conversion efficiency (PCE) of all-polymer solar cells (all-PSCs) has ascended rapidly arising from the development of polymerized small-molecule acceptor materials. However, numerous insulating long alkyl chains, which ensure the solubility of the polymer, result in inferior aggregation and charge mobility. Herein, this study proposes a facile random copolymerization strategy of two small molecule acceptor units with different lengths of alkyl side chains and synthesizes a series of polymer acceptors PYT-EHx, where x is the percentage of the short alkyl chain units. The aggregation strength and charge mobility of the acceptors rise linearly with increasing the proportion of short alkyl chain units. Thus, the PYT-EH20 reaches balanced aggregation with the star polymer donor PBDB-T, resulting in optimal morphology, fastest carrier transport, and reduced recombination and energy loss. Consequently, the PYT-EH20-based device yields a 14.8% PCE, a 16% improvement over the control PYT-EH0-based device, accompanied by an increase in open-circuit voltage (Voc ), short-circuit current density (Jsc ), and fill factor (FF). This work demonstrates that the random copolymerization strategy with short alkyl chain insertion is an effective avenue for developing high-performance polymer acceptors, which facilitates further advances in the efficiency of all-PSCs.


Assuntos
Polímeros , Polimerização , Solubilidade
4.
J Nanobiotechnology ; 21(1): 189, 2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37308908

RESUMO

INTRODUCTION: Ischemic diseases caused by diabetes continue to pose a major health challenge and effective treatments are in high demand. Mesenchymal stem cells (MSCs) derived exosomes have aroused broad attention as a cell-free treatment for ischemic diseases. However, the efficacy of exosomes from adipose-derived mesenchymal stem cells (ADSC-Exos) in treating diabetic lower limb ischemic injury remains unclear. METHODS: Exosomes were isolated from ADSCs culture supernatants by differential ultracentrifugation and their effect on C2C12 cells and HUVECs was assessed by EdU, Transwell, and in vitro tube formation assays separately. The recovery of limb function after ADSC-Exos treatment was evaluated by Laser-Doppler perfusion imaging, limb function score, and histological analysis. Subsequently, miRNA sequencing and rescue experiments were performed to figure out the responsible miRNA for the protective role of ADSC-Exos on diabetic hindlimb ischemic injury. Finally, the direct target of miRNA in C2C12 cells was confirmed by bioinformatic analysis and dual-luciferase report gene assay. RESULTS: ADSC-Exos have the potential to promote proliferation and migration of C2C12 cells and to promote HUVECs angiogenesis. In vivo experiments have shown that ADSC-Exos can protect ischemic skeletal muscle, promote the repair of muscle injury, and accelerate vascular regeneration. Combined with bioinformatics analysis, miR-125b-5p may be a key molecule in this process. Transfer of miR-125b-5p into C2C12 cells was able to promote cell proliferation and migration by suppressing ACER2 overexpression. CONCLUSION: The findings revealed that miR-125b-5p derived from ADSC-Exos may play a critical role in ischemic muscle reparation by targeting ACER2. In conclusion, our study may provide new insights into the potential of ADSC-Exos as a treatment option for diabetic lower limb ischemia.


Assuntos
Diabetes Mellitus , Células-Tronco Mesenquimais , Animais , Ceramidase Alcalina , Isquemia , Membro Posterior
5.
Proc Natl Acad Sci U S A ; 117(35): 21147-21154, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32817532

RESUMO

Semitransparent organic photovoltaic cells (ST-OPVs) are emerging as a solution for solar energy harvesting on building facades, rooftops, and windows. However, the trade-off between power-conversion efficiency (PCE) and the average photopic transmission (APT) in color-neutral devices limits their utility as attractive, power-generating windows. A color-neutral ST-OPV is demonstrated by using a transparent indium tin oxide (ITO) anode along with a narrow energy gap nonfullerene acceptor near-infrared (NIR) absorbing cell and outcoupling (OC) coatings on the exit surface. The device exhibits PCE = 8.1 ± 0.3% and APT = 43.3 ± 1.2% that combine to achieve a light-utilization efficiency of LUE = 3.5 ± 0.1%. Commission Internationale d'eclairage chromaticity coordinates of (0.38, 0.39), a color-rendering index of 86, and a correlated color temperature of 4,143 K are obtained for simulated AM1.5 illumination transmitted through the cell. Using an ultrathin metal anode in place of ITO, we demonstrate a slightly green-tinted ST-OPV with PCE = 10.8 ± 0.5% and APT = 45.7 ± 2.1% yielding LUE = 5.0 ± 0.3% These results indicate that ST-OPVs can combine both efficiency and color neutrality in a single device.

6.
Angew Chem Int Ed Engl ; 62(45): e202302888, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37380618

RESUMO

The determination of molecular conformations of oligomeric acceptors (OAs) and their impact on molecular packing are crucial for understanding the photovoltaic performance of their resulting polymer solar cells (PSCs) but have not been well studied yet. Herein, we synthesized two dimeric acceptor materials, DIBP3F-Se and DIBP3F-S, which bridged two segments of Y6-derivatives by selenophene and thiophene, respectively. Theoretical simulation and experimental 1D and 2D NMR spectroscopic studies prove that both dimers exhibit O-shaped conformations other than S- or U-shaped counter-ones. Notably, this O-shaped conformation is likely governed by a distinctive "conformational lock" mechanism, arising from the intensified intramolecular π-π interactions among their two terminal groups within the dimers. PSCs based on DIBP3F-Se deliver a maximum efficiency of 18.09 %, outperforming DIBP3F-S-based cells (16.11 %) and ranking among the highest efficiencies for OA-based PSCs. This work demonstrates a facile method to obtain OA conformations and highlights the potential of dimeric acceptors for high-performance PSCs.

7.
Bioorg Med Chem Lett ; 77: 129036, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36280150

RESUMO

Mitomycin C (MMC) is a class of alkylating anticancer drug, which non-specifically interacts with nuclear DNA and cross-links guanine and cytosine of DNA, thereby affecting DNA replication and synthesis. However, toxic effects largely impeded MMC's clinical applications. In this study, triphenylphosphine groups (TPP+) were attached to MMC via the active aziridine amine with the aim to reduce its toxicity. MTT assay suggested that 5 possessed a good anticancer activity (IC50 = 1.09 µM, A549) with negligible effects on human normal cells (IC50 > 20 µM, L02 and HUVEC), while MMC exhibited IC50 values of less than 2.5 µM on the tested human normal cells. Dose range-finding experiments suggested that 5 had little effect on the body weight and tissues in mouse at a dose of 20 mg/kg, indicating significantly reduced toxicity as compared to MMC (LD50 < 2.5 mg/kg). Collectively, these data suggested that TPP+ group could be an effective vector to reduce toxicity of MMC.


Assuntos
DNA , Mitomicina , Camundongos , Humanos , Animais , Mitomicina/farmacologia
8.
Macromol Rapid Commun ; 43(22): e2200411, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35802865

RESUMO

Developing organic solar cells based on a ternary active layer is one of the most effective approaches to improve their photovoltaic performance. However, limited success has been achieved in all-polymer solar cells (all-PSCs). In this study, a ternary all-PSC with improved efficiency and stability is realized by using J71 as the third component to adjust the host system of PBDB-T:PG1. The deeper highest occupied molecular orbital (HOMO) energy level of J71 downshifts the mixed HOMO energy levels of donors. The two polymer donors (PD s) have good miscibility and present Förster resonance energy transfer. When blended with PG1, the optimized morphology is obtained, showing enhanced crystallinity but meanwhile slightly reduced phase separation with improved exciton dissociation and collection efficiency, suppressed charge recombination, and reduced energy loss (0.55 eV). Combining the benefits mentioned above, the ternary all-PSC exhibits an excellent efficiency of 12.8% with simultaneously elevated open-circuit voltage (0.96 V), short-circuit current density (18.4 mA cm-2 ), and fill factor (72.2%). Moreover, the optimized ternary all-PSC shows improved storage and thermal stability. This study demonstrates that the utilization of a ternary all-polymer system based on two well-miscible PD s is an effective strategy to enhance the photovoltaic performance and stability of all-PSCs.

9.
Int J Mol Sci ; 23(17)2022 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-36077476

RESUMO

We designed and synthesized an asymmetric non-fullerene small molecule acceptor (NF-SMA) IDT-TNIC with an A-D-π-A structure, based on an indacenodithiophene (IDT) central core, with a unidirectional non-fused alkylthio-thiophene (T) π-bridge, and 2-(3-oxo-2,3-dihydro-1H-cyclopenta[b]naphthalen-1-ylidene)malononitrile (NIC) extended terminal groups. IDT-TNIC molecules still maintain a good coplanar structure, which benefits from the non-covalent conformational locks (NCL) between O···S and S···S. The asymmetric structure increases the molecular dipole moment, and the extended terminal group broadens the absorption of the material, resulting in an excellent photovoltaic performance of IDT-TNIC. The photovoltaic device, based on PBDB-T:IDT-TNIC, exhibits an energetic PCE of 11.32% with a high Voc of 0.87 V, high Jsc of 19.85 mA cm-2, and a low energy loss of 0.57 eV. More importantly, IDT-TNICs with asymmetric structures show a superior property compared to symmetric IDT-Ns. The results demonstrate that it is an effectual strategy to enhance the properties of asymmetric A-D-π-A-based NF-SMAs with non-fused NCL π-bridges and extended terminal groups.


Assuntos
Tiofenos , Tiofenos/química
10.
Angew Chem Int Ed Engl ; 60(5): 2322-2329, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33058442

RESUMO

Regulating molecular structure to optimize the active layer morphology is of considerable significance for improving the power conversion efficiencies (PCEs) in organic solar cells (OSCs). Herein, we demonstrated a simple ternary copolymerization approach to develop a terpolymer donor PM6-Tz20 by incorporating the 5,5'-dithienyl-2,2'-bithiazole (DTBTz, 20 mol%) unit into the backbone of PM6 (PM6-Tz00). This method can effectively tailor the molecular orientation and aggregation of the polymer, and then optimize the active layer morphology and the corresponding physical processes of devices, ultimately boosting FF and then PCE. Hence, the PM6-Tz20: Y6-based OSCs achieved a PCE of up to 17.1% with a significantly enhanced FF of 0.77. Using Ag (220 nm) instead of Al (100 nm) as cathode, the champion PCE was further improved to 17.6%. This work provides a simple and effective molecular design strategy to optimize the active layer morphology of OSCs for improving photovoltaic performance.

11.
Angew Chem Int Ed Engl ; 60(27): 15054-15062, 2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-33872454

RESUMO

In non-fullerene-based photovoltaic devices, it is unclear how excitons efficiently dissociate into charge carriers under small driving force. Here, we developed a modified method to estimate dielectric constants of PM6 donor and non-fullerene acceptors. Surprisingly, most non-fullerene acceptors and blend films showed higher dielectric constants. Moreover, they exhibited larger dielectric constants differences at the optical frequency. These results are likely bound to reduced exciton binding energy and bimolecular recombination. Besides, the overlap between the emission spectrum of donor and absorption spectra of non-fullerene acceptors allowed the energy transfer from donor to acceptors. Hence, based on the synergistic effect of dielectric property and energy transfer resulting in efficient charge separation, our finding paves an alternative path to elucidate the physical working mechanism in non-fullerene-based photovoltaic devices.

12.
J Am Chem Soc ; 142(47): 20124-20133, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33170682

RESUMO

We designed and synthesized a series of fused-ring electron acceptors (FREAs) based on naphthalene-fused octacyclic cores end-capped by 3-(1,1-dicyanomethylene)-5,6-difluoro-1- indanone (NOICs) using a bottom-up approach. The NOIC series shares the same end groups and side chains, as well as similar fused-ring cores. The butterfly effects, arising from different methoxy positions in the starting materials, impact the design of the final FREAs, as well as their molecular packing, optical and electronic properties, charge transport, film morphology, and performance of organic solar cells. The binary-blend devices based on this NOIC series show power conversion efficiencies varying from 7.15% to 14.1%, due to the different intrinsic properties of the NOIC series, morphologies of blend films, and voltage losses of devices.

13.
Small ; 16(30): e2001942, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32602255

RESUMO

Understanding the conformation effect on molecular packing, miscibility, and photovoltaic performance is important to open a new avenue for small-molecule acceptor (SMA) design. Herein, two novel acceptor-(donor-acceptor1-donor)-acceptor (A-DA1D-A)-type asymmetric SMAs are developed, namely C-shaped BDTP-4F and S-shaped BTDTP-4F. The BDTP-4F-based polymer solar cells (PSCs) with PM6 as donor, yields a power conversion efficiency (PCE) of 15.24%, significantly higher than that of the BTDTP-4F-based device (13.12%). The better PCE for BDTP-4F-based device is mainly attributed to more balanced charge transport, weaker bimolecular recombination, and more favorable morphology. Additionally, two traditional A-D-A-type SMAs (IDTP-4F and IDTTP-4F) are also synthesized to investigate the conformation effect on morphology and device performance. Different from the device result above, here, IDTP-4F with S-shape conformation outperforms than IDTTP-4F with C-shape conformation. Importantly, it is found that for these two different types of SMA, the better performing binary blend has similar morphological characteristics. Specifically, both PM6:BDTP-4F and PM6:IDTP-4F blend exhibit perfect nanofibril network structure with proper domain size, obvious face-on orientation and enhance donor-acceptor interactions, thereby better device performance. This work indicates tuning molecular conformation plays pivotal role in morphology and device effciciency, shining a light on the molecular design of the SMAs.

14.
Soft Matter ; 16(10): 2581-2593, 2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-32083633

RESUMO

A simple and flexible strategy based on droplet microfluidics is developed for controllable fabrication of uniform magnetic SiO2 microparticles with highly-interconnected hierarchical porous structures for enhanced water decontamination. Uniform precursor water droplets containing surfactants and homogenized fine oil droplets with a relatively high volume ratio are generated from microfluidics as templates for microparticle synthesis via hydrolysis/condensation reaction. The SiO2 microparticles possess hierarchical porous structures, containing both mesopores with size of several nanometers, and well-controlled and highly-interconnected macropores with size of hundreds of nanometers. The SiO2 microparticles synergistically integrate fast mass transfer and large functional surface area for enhanced adsorption. To demonstrate the enhanced adsorption performances for organic dyes and toxic heavy metal ions, the microparticles are respectively used for removal of methylene blue in water, and modified with thiol-groups for removal of Pb2+ ions in water. Meanwhile, the microparticles can be easily recycled by magnetic field for reuse.

15.
BMC Neurol ; 20(1): 394, 2020 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-33121474

RESUMO

BACKGROUND: To investigate whether the administration of intravenous propofol before endotracheal suctioning (ES) in patients with severe brain disease can reduce the sputum suction response, improve prognosis, and accelerate recovery. METHODS: A total of 208 severe brain disease patients after craniocerebral surgery were enrolled in the study. The subjects were randomly assigned to the experimental group (n = 104) and the control group (n = 104). The experimental group was given intravenous propofol (10 ml propofol with 1 ml 2% lidocaine), 0.5-1 mg/kg, before ES, while the control group was subjected to ES only. Changes in vital signs, sputum suction effect, the fluctuation range of intracranial pressure (ICP) before and after ES, choking cough response, short-term complications, length of stay, and hospitalization cost were evaluated. Additionally, the Glasgow Outcome Scale (GOS) prognosis score was obtained at 6 months after the operation. RESULTS: At the baseline, the characteristics of the two groups were comparable (P > 0.05). The increase of systolic blood pressure after ES was higher in the control group than in the experimental group (P < 0.05). The average peak value of ICP in the experimental group during the suctioning (15.57 ± 12.31 mmHg) was lower than in the control group (18.24 ± 8.99 mmHg; P < 0.05). The percentage of patients experiencing cough reaction- during suctioning in the experimental group was lower than in the control group (P < 0.05), and the fluctuation range of ICP was increased (P < 0.0001). The effect of ES was achieved in both groups. The incidence of short-term complications in the two groups was comparable (P > 0.05). At 6 months after the surgery, the GOS scores were significantly higher in the experimental than in the control group (4-5 points, 51.54% vs. 32.64%; 1-3 points, 48.46% vs. 67.36%; P < 0.05). There was no significant difference in the length of stay and hospitalization cost between the two groups. CONCLUSIONS: Propofol sedation before ES could reduce choking cough response and intracranial hypertension response. The use of propofol was safe and improved the long-term prognosis. The study was registered in the Chinese Clinical Trial Registry on May 16, 2015 (ChiCTR-IOR-15006441).


Assuntos
Encefalopatias/fisiopatologia , Pressão Intracraniana/efeitos dos fármacos , Intubação Intratraqueal , Propofol/uso terapêutico , Sucção , Adulto , Feminino , Escala de Resultado de Glasgow , Humanos , Hipnóticos e Sedativos/uso terapêutico , Pressão Intracraniana/fisiologia , Masculino , Pessoa de Meia-Idade , Prognóstico , Sucção/efeitos adversos
16.
Macromol Rapid Commun ; 41(21): e2000170, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32776395

RESUMO

Two wide-bandgap (WBG) conjugated polymers (PBPD-p and PBPD-m) based on phenyl-substituted benzodithiophene (BDT) with the different substitution position of the alkyl side chain and benzodithiophene-4,8-dione (BDD) units are designed and synthesized to investigate the influence of alkyl substitution position on the photovoltaic performance of polymers in polymer solar cells (PSCs). The thermogravimetric analysis, absorption spectroscopy, molecular energy level, X-ray diffraction, charge transport and photovoltaic performance of the polymers are systematically studied. Compared with PBPD-p, PBPD-m exhibits a slight blue-shift but a deeper highest occupied molecular orbital (HOMO) energy level, a tighter alkyl chain packing and a higher hole mobility. The PBPD-m-based PSCs blended with acceptor IT-4F shows a higher power conversion efficiency (PCE) of 11.95% with a high open-circuit voltage (Voc ) of 0.88 V, a short-circuit current density (Jsc ) of 19.76 mA cm-2 and a fill factor (FF) of 68.7% when compared with the PCE of 6.97% with a Voc of 0.81 V, a Jsc of 15.97 mA cm-2 and an FF of 53.9% for PBPD-p. These results suggest that it is a feasible and effective strategy to optimize photovoltaic properties of WBG polymers by changing the substitution position of alkyl side chain in PSCs.


Assuntos
Energia Solar , Polímeros , Luz Solar
17.
Angew Chem Int Ed Engl ; 59(45): 19835-19840, 2020 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-32666653

RESUMO

A non-conjugated polymer acceptor PF1-TS4 was firstly synthesized by embedding a thioalkyl segment in the mainchain, which shows excellent photophysical properties on par with a fully conjugated polymer, with a low optical band gap of 1.58 eV and a high absorption coefficient >105  cm-1 , a high LUMO level of -3.89 eV, and suitable crystallinity. Matched with the polymer donor PM6, the PF1-TS4-based all-PSC achieved a power conversion efficiency (PCE) of 8.63 %, which is ≈45 % higher than that of a device based on the small molecule acceptor counterpart IDIC16. Moreover, the PF1-TS4-based all-PSC has good thermal stability with ≈70 % of its initial PCE retained after being stored at 85 °C for 180 h, while the IDIC16-based device only retained ≈50 % of its initial PCE when stored at 85 °C for only 18 h. Our work provides a new strategy to develop efficient polymer acceptor materials by linkage of conjugated units with non-conjugated thioalkyl segments.

18.
Chemphyschem ; 20(20): 2674-2682, 2019 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-31257670

RESUMO

To achieve high open-circuit voltage (Voc ) and low acceptor content, the molecular design of a small-molecule donor with low energy loss (Eloss ) is very important for solution-processable organic solar cells (OSCs). Herein, we designed and synthesized a new coplanar A-D-A structured organic small-molecule semiconductor with non-fused ring structure π-bridge, namely B2TPR, and applied it as donor material in OSCs. Owing to the strong electron-withdrawing effect of the end group and the coplanar π-bridge, B2TPR exhibits a low-lying highest occupied molecular orbital and strong crystallinity. Furthermore, benefiting from the coplanar molecular skeleton, the high hole mobility, balanced charge transport and reduced recombination were achieved, leading to a high fill factor (FF). The OSCs based on B2TPR : PC71 BM blend film (w/w=1 : 0.35) demonstrates a moderate power conversion efficiency (PCE) of 7.10 % with a remarkable Voc of 0.98 V and FF of 64 %, corresponding to a low fullerene content of 25.9 % and a low Eloss of 0.70 eV. These results demonstrate the great potential of small-molecule with structure of B2TPR for future low-cost organic photovoltaic applications.

19.
Macromol Rapid Commun ; 40(1): e1800660, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30350437

RESUMO

Nonfullerene polymer solar cells (PSCs) are developed based on a fluorinated thienyl-based wide-bandgap (WBG) polymer PBBF as the electron donor and nonfullerene small molecule IDIC as the electron acceptor. PBBF exhibits a strong absorption in the range of 300-605 nm with a wide optical bandgap of 2.05 eV, which is complementary with that of IDIC. Meanwhile, it possesses a deeper highest occupied molecular orbital energy level of  -5.52 eV and a higher hole mobility of 7.3 × 10-4  cm2 V-1  s-1 compared to the nonfluorinated polymer PBDTT. The PSCs based on PBBF:IDIC without extra treatment show a power conversion efficiency (PCE) of 8.5% with a V oc of 0.95 V, a J sc of 15.3 mA cm-2 , and an FF of 58.8%, which is much higher than that of the devices based on PBDTT:IDIC (a PCE of 5.3% with a V oc of 0.88 V, a J sc of 13.7 mA cm-2 , and an FF of 43.9%). These results indicate that PBBF is a promising WBG polymer donor material for the photovoltaic applications in nonfullerene PSCs.


Assuntos
Fontes de Energia Elétrica , Fulerenos/química , Polímeros/química , Energia Solar
20.
Phys Chem Chem Phys ; 21(20): 10660-10666, 2019 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-31080967

RESUMO

As promising candidates for future applications in building-integrated photovoltaics, semitransparent organic solar cells (ST-OSCs) have made tremendous progress. However, power conversion efficiency (PCE) of the ST-OSCs is limited by intrinsic narrow absorption spectra concentrated in the near infrared region (NIR), weak extinction coefficient, and mismatched molecular energy levels of thin active layers. Here, an efficient ST-OSC based on a donor/acceptor electron pair of a trifluorinated polymer donor PBFTT and a tetrachlorinated acceptor IT-4Cl was fabricated. Due to halogenation, photovoltaic materials show stronger extinction coefficient, improved crystallinity and higher charge carrier mobility; PBFTT shows lower electronic energy levels, and IT-4Cl shows a red-shifted absorption spectrum. As a result, the PBFTT:IT-4Cl pair shows matched energy levels, complementary absorption spectra in the NIR region and a good blend morphology. Hence, as-cast OSCs based on PBFTT:IT-4Cl achieved a high PCE of 11.1% with a high short-circuit current density of 19.7 mA cm-2 and a high fill factor of 73.9%. Owing to the complementary absorption spectra in the NIR region, high EQE values between 600 and 830 nm and a favourable transparency window between 400 and 600 nm, while the human eye has the highest sensitivity in the yellow-green wavelength region (500-600 nm), ST-OSCs using an ultra-thin (10-20 nm) Au cathode showed high PCEs of 7.9-9.1% at a high average visible transmittance of 37.3-27.6% in the photopic region. The PCE of 9.1% is one of the highest values reported in the literature for ST-OSCs without any extra treatment and with an AVT of more than 25% in the photopic region so far.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA