Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
J Thorac Oncol ; 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38583771

RESUMO

INTRODUCTION: Recent insights regarding mechanisms mediating stemness, heterogeneity, and metastatic potential of lung cancers have yet to be fully translated to effective regimens for the treatment of these malignancies. This study sought to identify novel targets for lung cancer therapy. METHODS: Transcriptomes and DNA methylomes of 14 SCLC and 10 NSCLC lines were compared with normal human small airway epithelial cells (SAECs) and induced pluripotent stem cell (iPSC) clones derived from SAEC. SCLC lines, lung iPSC (Lu-iPSC), and SAEC were further evaluated by DNase I hypersensitive site sequencing (DHS-seq). Changes in chromatin accessibility and depths of transcription factor (TF) footprints were quantified using Bivariate analysis of Genomic Footprint. Standard techniques were used to evaluate growth, tumorigenicity, and changes in transcriptomes and glucose metabolism of SCLC cells after NFIC knockdown and to evaluate NFIC expression in SCLC cells after exposure to BET inhibitors. RESULTS: Considerable commonality of transcriptomes and DNA methylomes was observed between Lu-iPSC and SCLC; however, this analysis was uninformative regarding pathways unique to lung cancer. Linking results of DHS-seq to RNA sequencing enabled identification of networks not previously associated with SCLC. When combined with footprint depth, NFIC, a transcription factor not previously associated with SCLC, had the highest score of occupancy at open chromatin sites. Knockdown of NFIC impaired glucose metabolism, decreased stemness, and inhibited growth of SCLC cells in vitro and in vivo. ChIP-seq analysis identified numerous sites occupied by BRD4 in the NFIC promoter region. Knockdown of BRD4 or treatment with Bromodomain and extra-terminal domain (BET) inhibitors (BETis) markedly reduced NFIC expression in SCLC cells and SCLC PDX models. Approximately 8% of genes down-regulated by BETi treatment were repressed by NFIC knockdown in SCLC, whereas 34% of genes repressed after NFIC knockdown were also down-regulated in SCLC cells after BETi treatment. CONCLUSIONS: NFIC is a key TF and possible mediator of transcriptional regulation by BET family proteins in SCLC. Our findings highlight the potential of genome-wide chromatin accessibility analysis for elucidating mechanisms of pulmonary carcinogenesis and identifying novel targets for lung cancer therapy.

2.
J Thorac Cardiovasc Surg ; 165(4): 1554-1564, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37608989

RESUMO

Objective: Resected stage IA lung adenocarcinoma (LUAD) has a reported 5-year recurrence free survival (RFS) of 63-81%. A unique gene signature stratifying patients with early stage LUAD as high or low-risk of recurrence would be valuable. Methods: GEO datasets combining European and North American LUAD patients (n=684) were filtered for stage IA (n=105) to develop a robust signature for recurrence (RFSscore). Univariate Cox proportional hazard regression model was used to assess associations of gene expression with RFS and OS. Leveraging a bootstrap approach of these identified upregulated genes allowed construction of a model which was evaluated by Area Under the Received Operating Characteristics. The optimal signature has RFSscore calculated via a linear combination of expression of selected genes weighted by the corresponding Cox regression derived coefficients. Log-rank analysis calculated RFS and OS. Results were validated using the LUAD TCGA transcriptomic NGS based dataset. Results: Rigorous bioinformatic analysis identified a signature of 4 genes: KNSTRN, PAFAH1B3, MIF, CHEK1. Kaplan-Meier analysis of stage IA LUAD with this signature resulted in 5-year RFS for low-risk of 90% compared to 53% for high-risk (HR 6.55, 95%CI 2.65-16.18, p-value <0.001), confirming the robustness of the gene signature with its clinical significance. Validation of the signature using TCGA dataset resulted in an AUC of 0.797 and 5-year RFS for low and high-risk stage IA patients being 91% and 67%, respectively (HR 3.44, 95%CI 1.16-10.23, p-value=0.044). Conclusions: This 4 gene signature stratifies European and North American patients with pathologically confirmed stage IA LUAD into low and high-risk groups for OS and more importantly RFS.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/cirurgia , Relevância Clínica , Biologia Computacional , Perfilação da Expressão Gênica , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/cirurgia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA