Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Chemistry ; : e202401830, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39037552

RESUMO

The catalytic direct hydroarylation of alkynamides is a highly efficient approach for accessing functionalized trisubstituted arylalkenes with amide groups. Herein, we report a rhodium-catalyzed pyridylation of alkynamides with pyridylboronic acids, yielding diverse primary, secondary, and tertiary enamides in good to excellent yields (up to 94%). This reaction demonstrates broad tolerance towards various alkyl and aryl functional groups, providing convenient access to a diverse array of alkenylpyridine derivatives. To demonstrate potential applications in late-stage hydropyridylation, we synthesized α,ß-unsaturated ketones, aldehydes, and esters with high yields from the pyridylation product of Weinreb amides. This indirect expansion of the substrate scope enhances the practicality of this strategy. Additionally, the α,ß-unsaturated ketone obtained can be further reduced to yield a chiral alcohol with a 99% ee, further demonstrating the versatility and potential utility of this approach.

2.
Pharmacol Res ; 206: 107288, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38977208

RESUMO

Cancer is a serious global public health issue, and a great deal of research has been made to treat cancer. Of these, discovery of promising compounds that effectively fight cancer always has been the main point of interest in pharmaceutical research. Carnosic acid (CA) is a phenolic diterpenoid compound widely present in Lamiaceae plants such as Rosemary (Rosmarinus officinalis L.). In recent years, there has been increasing evidence that CA has significant anti-cancer activity, such as leukaemia, colorectal cancer, breast cancer, lung cancer, liver cancer, pancreatic cancer, stomach cancer, lymphoma, prostate cancer, oral cancer, etc. The potential mechanisms involved by CA, including inhibiting cell proliferation, inhibiting metastasis, inducing cell apoptosis, stimulating autophagy, regulating the immune system, reducing inflammation, regulating the gut microbiota, and enhancing the effects of other anti-cancer drugs. This article reviews the biosynthesis, pharmacokinetics and metabolism, safety and toxicity, as well as the molecular mechanisms and signaling pathways of the anticancer activity of CA. This will contribute to the development of CA or CA-containing functional foods for the prevention and treatment of cancer, providing important advances in the advancement of cancer treatment strategies.


Assuntos
Abietanos , Antineoplásicos Fitogênicos , Neoplasias , Transdução de Sinais , Humanos , Abietanos/uso terapêutico , Abietanos/farmacologia , Animais , Neoplasias/tratamento farmacológico , Neoplasias/prevenção & controle , Neoplasias/metabolismo , Transdução de Sinais/efeitos dos fármacos , Antineoplásicos Fitogênicos/uso terapêutico , Antineoplásicos Fitogênicos/farmacologia
3.
Ecotoxicol Environ Saf ; 278: 116434, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38728944

RESUMO

The growing use of nanomaterials has sparked significant interest in assessing the insect toxicities of nanoparticles. The silkworm, as an economically important insect, serves as a promising model for studying how insects respond to harmful substances. Here, we conducted a comprehensive investigation on the impact of graphene oxide (GO) on silkworms using a combination of physiological and transcriptome analyses. GO can enter the midguts and posterior silk glands of silkworms. High GO concentrations (> 25 mg/L) significantly (P < 0.01) inhibited larval growth. Additionally, GO (> 5 mg/L) significantly reduced the cocooning rate, and GO (> 15 mg/L) hindered oviduct development and egg laying in silkworms. GO increased the reactive oxygen species content and regulated catalase activity, suggesting that it may affect insect growth by regulating reactive oxygen detoxification. The transcriptome data analysis showed that 35 metabolism-related genes and 20 ribosome biogenesis-related genes were differentially expressed in response to GO, and their expression levels were highly correlated. Finally, we propose that a Ribosome biogenesis-Metabolic signaling network is involved in responses to GO. The research provides a new perspective on the molecular responses of insects to GO.


Assuntos
Bombyx , Grafite , Larva , Espécies Reativas de Oxigênio , Transcriptoma , Animais , Grafite/toxicidade , Bombyx/efeitos dos fármacos , Bombyx/genética , Bombyx/crescimento & desenvolvimento , Transcriptoma/efeitos dos fármacos , Larva/efeitos dos fármacos , Larva/genética , Espécies Reativas de Oxigênio/metabolismo , Feminino , Perfilação da Expressão Gênica
4.
Molecules ; 29(7)2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38611851

RESUMO

This research centers on the development and synthesis of a longwave fluorescence probe, labeled as 60T, designed for the simultaneous detection of hydrogen sulfide, cysteine/homocysteine, and glutathione. The probe showcases a swift response, good linearity range, and heightened sensitivity, boasting that the detection limits of the probe for Cys, Hcy, GSH and H2S were 0.140, 0.202, 0.259 and 0.396 µM, respectively. Notably, its efficacy in monitoring thiol status changes in live MCF-7 cells is underscored by a substantial decrease in fluorescence intensity upon exposure to the thiol trapping reagent, N-ethyl maleimide (NEM). With an impressive red emission signal at 630 nm and a substantial Stokes shift of 80 nm, this probe exhibits remarkable sensitivity and selectivity for biothiols and H2S, indicating promising applications in the diagnosis and surgical navigation of relevant cancers.


Assuntos
Sulfeto de Hidrogênio , Corantes Fluorescentes , Diagnóstico por Imagem , Cisteína , Glutationa , Homocisteína , Compostos de Sulfidrila
5.
Mol Neurobiol ; 61(8): 5699-5717, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38224443

RESUMO

Neurons and microglia are sensitive to cerebral microcirculation and their responses play a crucial part in the pathological processes, while they are also the main target cells of many drugs used to treat brain diseases. Rapamycin exhibits beneficial effects in many diseases; however, whether it can affect neuronal injury or alter the microglial activation after global cerebral ischemia remains unclear. In this study, we performed global cerebral ischemia combined with rapamycin treatment in CX3CR1GFP/+ mice and explored the effects of rapamycin on neuronal deficit and microglial activation. Our results showed that rapamycin reduced neuronal loss, neurodegeneration, and ultrastructural damage after ischemia by histological staining and transmission electron microscopy (TEM). Interestingly, rapamycin suppressed de-ramification and proliferation of microglia and reduced the density of microglia. Immunofluorescence staining indicated that rapamycin skewed microglial polarization toward an anti-inflammatory state. Furthermore, rapamycin as well suppressed the activation of astrocytes. Meanwhile, quantitative real-time polymerase chain reaction (qRT-PCR) analyses revealed a significant reduction of pro-inflammatory factors as well as an elevation of anti-inflammatory factors upon rapamycin treatment. As a result of these effects, behavioral tests showed that rapamycin significantly alleviated the brain injury after stroke. Together, our study suggested that rapamycin attenuated neuronal injury, altered microglial activation state, and provided a more beneficial immune microenvironment for the brain, which could be used as a promising therapeutic approach to treat ischemic cerebrovascular diseases.


Assuntos
Isquemia Encefálica , Camundongos Endogâmicos C57BL , Microglia , Neurônios , Sirolimo , Animais , Sirolimo/farmacologia , Microglia/efeitos dos fármacos , Microglia/metabolismo , Microglia/patologia , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/patologia , Isquemia Encefálica/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Masculino , Camundongos , Camundongos Transgênicos , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Astrócitos/patologia
6.
J Neuroimmune Pharmacol ; 19(1): 43, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39141019

RESUMO

Recent studies have demonstrated the interaction between gut microbiota and brain on ischemic stroke, but the roles of gut microbiota in the pathophysiology of ischemic stroke remain largely unclear. In this study, we detected a significant increase of intestinal Akkermansia muciniphila (AKK) following ischemic stroke by a rose bengal photothrombosis model. To investigate the function and mechanism of AKK on ischemic stroke, we performed the AKK administration prior to stroke surgery. The results showed that mice treated with AKK gained significantly higher body weight and behaved better than those in PBS group at 3 days after ischemic stroke. Consistently, AKK administration remarkably decreased the infarct volumes as well as the density of degenerating neurons and apoptotic cells after ischemic stroke. Notably, AKK is a potential therapeutic target in immune-related disorders connected to the microbiota, and inflammation is crucially involved in the pathophysiological process of ischemic stroke. For the determination of underlying mechanisms of this protective effect, we investigated whether there are associations between AKK and neuroinflammation following ischemic stroke. The results suggested that AKK administration significantly reduced the activation of astrocytes and microglia but up-regulated multiple anti-inflammatory factors following ischemic stroke. Therefore, our study highlighted the beneficial roles of intestinal AKK on ischemic stroke and provided a new perspective for the treatment of ischemic stroke.


Assuntos
Akkermansia , Microbioma Gastrointestinal , AVC Isquêmico , Recuperação de Função Fisiológica , Animais , Masculino , Camundongos , Microbioma Gastrointestinal/fisiologia , Camundongos Endogâmicos C57BL , Recuperação de Função Fisiológica/fisiologia , Verrucomicrobia
7.
Fitoterapia ; 177: 106095, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38942299

RESUMO

Peptidyl arginine deiminase 4 (PAD4) is a promising target for the treatment of metabolic diseases associated with autoimmune and central nervous system disease. By now there are limited numbers of PAD4 inhibitors, and no one is ready for clinical use. This study aims to find efficient and specific PAD4 inhibitors from traditional herbal medicines and to investigate their inhibitory mechanisms. The inhibitory effects of forty-eight extracts from sixteen traditional herbal medicines which are widely used in traditional herbal medicines were investigated. Salvia miltiorrhiza was found to have the most potent PAD4 inhibitory activity. After that, a practical bioactivity-guided fractionation coupling with a chemical profiling strategy was used to identify the fractions from Salvia miltiorrhiza with strong PAD4 inhibition activity, and the major constituents in these bioactive fractions were characterized by LC-MS/MS. Seven compounds were found to have inhibition on PAD4 with IC50 values ranging from 33.52 µM to 667 µM, in which salvianolic acid A showed the most potent inhibitory activity, with an IC50 value of 33.52 µM. Inhibition kinetic analyses indicated that salvianolic acid A effectively inhibited PAD4 in a mixed inhibitory manner, and computer simulation analyses demonstrated that salvianolic acid A binds to PAD4 mainly using hydrogen bonding. Overall, our results suggest that salvianolic acid A from Salvia miltiorrhiza is a potent inhibitor of PAD4, and that salvianolic acid A can be used as a promising lead compound for the development of more potent PAD4 inhibitors.


Assuntos
Simulação de Acoplamento Molecular , Proteína-Arginina Desiminase do Tipo 4 , Salvia miltiorrhiza , Proteína-Arginina Desiminase do Tipo 4/antagonistas & inibidores , Salvia miltiorrhiza/química , Estrutura Molecular , Plantas Medicinais/química , Humanos , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/isolamento & purificação , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química
8.
Phytomedicine ; 132: 155803, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38876008

RESUMO

BACKGROUND: Electromagnetic radiation is relevant to human life, and radiation can trigger neurodegenerative diseases by altering the function of the central nervous system through oxidative stress, mitochondrial dysfunction, and protein degradation. Astragaloside IV (AS-IV) is anti-oxidative, anti-apoptotic, activates the BDNF-TrkB pathway and enhances synaptic plasticity in radiated mice, which can exert its neuroprotection. However, the exact molecular mechanisms are still unclear. PURPOSE: This study investigated whether AS-IV could play a neuroprotective role by regulating BDNF-TrkB pathway in radiation damage and its underlying molecular mechanisms. METHODS: Transgenic mice (Thy1-YFP line H) were injected with AS-IV (40 mg/kg/day body weight) by intraperitoneal injection daily for 4 weeks, followed by X-rays. PC12 cells and primary cortical neurons were also exposed to UVA after 24 h of AS-IV treatment (25 µg/ml and 50 µg/ml) in vitro. The impact of radiation on learning and cognitive functions was visualized in the Morris water maze assay. Subsequently, Immunofluorescence and Golgi-Cox staining analyses were utilized to investigate the structural damage of neuronal dendrites and the density of dendritic spines. Transmission electron microscopy was performed to examine how the radiation affected the ultrastructure of neurons. Finally, western blotting analysis and Quantitative RT-PCR were used to evaluate the expression levels and locations of proteins in vitro and in vivo. RESULTS: Radiation induced BDNF-TrkB signaling dysregulation and decreased the levels of neuron-related functional genes (Ngf, Bdnf, Gap-43, Ras, Psd-95, Arc, Creb, c-Fos), PSD-95 and F-actin, which subsequently led to damage of neuronal ultrastructure and dendrites, loss of dendritic spines, and decreased dendritic complexity index, contributing to spatial learning and memory deficits. These abnormalities were prevented by AS-IV treatment. In addition, TrkB receptor antagonists antagonized these neuroprotective actions of AS-IV. 7,8-dihydroxyflavone and AS-IV had neuroprotective effects after radiation. CONCLUSION: AS-IV inhibits morphological damage of neurons and cognitive dysfunction in mice after radiation exposure, resulting in a neuroprotective effect, which were mediated by activating the BDNF-TrkB pathway.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Camundongos Transgênicos , Neurônios , Fármacos Neuroprotetores , Receptor trkB , Saponinas , Transdução de Sinais , Triterpenos , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Saponinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Triterpenos/farmacologia , Camundongos , Receptor trkB/metabolismo , Fármacos Neuroprotetores/farmacologia , Neurônios/efeitos dos fármacos , Neurônios/efeitos da radiação , Ratos , Células PC12 , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/efeitos da radiação
9.
Talanta ; 278: 126492, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38955099

RESUMO

Dysregulation of peptidyl arginine deiminase 4 (PAD4) is involved in a variety of diseases including rheumatoid arthritis (RA) and Alzheimer's disease (AD), and it has emerged as potential and promising therapeutic target. However, no PAD4 inhibitor is ready for clinical use. Immobilized enzyme screening technology has gained increasing attention due to its low cost, reusability, easy separation from the reaction mixture, and resistance to changes in environmental conditions. In this study, PAD4 was immobilized on the magnetic nanoparticles (MNP) to prolong its activity stability, and a simple and rapid screening strategy of traditional Chinese medicine inhibitors based on immobilized PAD4 was established. The PAD4 enzyme was immobilized on magnetic nanoparticles (MNP) via Schiff base reaction using glutaraldehyde (GA) as crosslinking agent. Compared with free PAD4, the resulting MNP@GA@PAD4 exhibited an enhanced tolerance to temperature and storage stability, and its reusability was greatly improved with 66 % of initial enzyme activity after being recycled 10 times. The inhibitory activity of the immobilized PAD4 was assessed using two known PAD4 inhibitors GSK484 and BB-Cl-amidine. The semi-maximum inhibitory concentrations (IC50) of GSK484 and BB-Cl-amidine for MNP@GA@PAD4 were 1.00 and 0.97 µM, respectively, for free PAD4 were 0.64 and 0.85 µM, respectively. Finally, the MNP@GA@PAD4 was employed to rapid screen of natural PAD4 inhibitors from forty traditional Chinese medicines (TCMs). Under the same conditions, the controlled experiment was conducted with free PAD4. The screening results of TCMs inhibitors on MNP@GA@PAD4 and free PAD4 were similar, the alcohol extracts of Cinnamomi Cortex and Caryophylli Flos had significant inhibitory effects on PAD4 enzyme activity. The IC50 values of Cinnamomi Cortex extract for MNP@GA@PAD4 and free PAD4 were determined as 27 and 48 µg/mL, respectively. The IC50 values of Caryophylli Flos extracts for MNP@GA@PAD4 and free PAD4 were determined as 48 and 32 µg/mL, respectively. For the first time, this study proposed a method to immobilize PAD4 on magnetic materials, and developed a rapid, reusable and feasible strategy to screening natural PAD4 inhibitors from TCMs.


Assuntos
Inibidores Enzimáticos , Enzimas Imobilizadas , Nanopartículas de Magnetita , Proteína-Arginina Desiminase do Tipo 4 , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Enzimas Imobilizadas/antagonistas & inibidores , Nanopartículas de Magnetita/química , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Proteína-Arginina Desiminase do Tipo 4/antagonistas & inibidores , Proteína-Arginina Desiminase do Tipo 4/metabolismo , Proteína-Arginina Desiminase do Tipo 4/química , Humanos , Medicina Tradicional Chinesa , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacologia , Avaliação Pré-Clínica de Medicamentos
10.
J Chromatogr A ; 1716: 464643, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38232639

RESUMO

Peptidyl arginine deiminase 4 (PAD4) is an important biocatalytic enzymes involved in the conversion of protein arginine to citrulline, its dysregulation has a great impact on many physiological processes. Recently, PAD4 has emerged as a potential therapeutic target for the treatment of various diseases including rheumatoid arthritis (RA). Traditional Chinese Medicines (TCMs), also known as herbal plants, have gained great attention by the scientific community due to their good therapeutic performance and far fewer side effects observed in the clinical treatment. However, limited researches have been reported to screen natural PAD4 inhibitors from herbal plants. The color developing reagent (COLDER) or fluorescence based methods have been widely used in PAD4 activity assay and inhibitor screening. However, both methods measure the overall absorbance or fluorescence in the reaction solution, which are easy to be affected by the background interference due to colorful extracts from herbal plants. In this study, a simple, and robust high-performance liquid chromatography ultraviolet-visible (HPLC-UV) based method was developed to determine PAD4 activity. The proposed strategy was established based on COLDER principle, while used hydrophilic l-arginine instead of hydrophobic N-benzoyl-l-arginine ethyl ester (BAEE) as a new substrate to determine PAD4 inhibition activity of herbal extracts. The herbal extracts and PAD4 generated hydrophobic l-citrulline were successfully separated by the HPLC, and the developed method was optimized and validated with a known PAD4 inhibitor (GSK484) in comparison with COLDER assay. The IC50 value of GSK484 measured by HPLC-UV method was 153 nM, and the detection limit of the citrulline was 0.5 nmol, respectively, with a linear range of 0.5 nmol to 20 nmol. The IC50 value of the HPLC-UV method was improved by nearly three times compared with COLDER assay (527 nM), and the results indicated the reliability of PAD4 inhibition via HPLC-UV method. The inhibitory effect against PAD4 were fast and accurately screened for the twenty-four extracts from eight herbs. Among them, Ephedra Herba extracts showed significant inhibitory activity against the PAD4 with the IC50 values of three extracts (ethanol, ethyl acetate and water) ranging from 29.11 µg/mL to 41.36 µg/mL, which may help researchers to discover novel natural compounds holding high PAD4 inhibition activity.


Assuntos
Produtos Biológicos , Medicamentos de Ervas Chinesas , Inibidores Enzimáticos , Proteína-Arginina Desiminase do Tipo 4 , Cromatografia Líquida de Alta Pressão , Citrulina , Proteína-Arginina Desiminase do Tipo 4/antagonistas & inibidores , Reprodutibilidade dos Testes , Inibidores Enzimáticos/química , Inibidores Enzimáticos/isolamento & purificação , Inibidores Enzimáticos/farmacologia , Produtos Biológicos/química , Produtos Biológicos/isolamento & purificação , Produtos Biológicos/farmacologia , Medicamentos de Ervas Chinesas/química
11.
Int J Biol Macromol ; 259(Pt 1): 129175, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38181916

RESUMO

Armillaria mellea (Vahl) P. Kumm. is a well-known homoeopathic plant with medicinal and culinary uses. Modern phytochemical researchers have successfully extracted and purified over 40 types of A. mellea polysaccharides (AMPs) from the fruiting bodies, hyphae and fermentation broth of A. mellea, and some of them have been analyzed and identified by their chemical structures. The impressive biological activity of these polysaccharides has been recognized by scientists worldwide. Many studies show that AMPs have remarkable antioxidant, anti-diabetic, anti-tumor, anti-inflammatory, immunoregulatory, hypolipidemic, thrombectomy, anti-aging, pulmonary protective, hepatic protective, anti-Alzheimer's properties, etc. However, the current understanding of the relationships between their chemical structure and biological activity, toxicological effects and pharmacokinetics remains limited. This article provides a systematic review of the research conducted over the past decades on the extraction and purification methods, structural characteristics, biological activity and mechanism of action of AMPs. The aim is to provide a research base that will benefit the future application of AMPs as therapeutic drugs and functional foods, and also provide insights for the further development of AMPs.


Assuntos
Armillaria , Polissacarídeos , Armillaria/química , Polissacarídeos/química , Polissacarídeos/farmacologia , Polissacarídeos/isolamento & purificação , Humanos , Antioxidantes/farmacologia , Antioxidantes/química , Antioxidantes/isolamento & purificação , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/isolamento & purificação
12.
Talanta ; 279: 126611, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39067202

RESUMO

Peptidyl arginine deiminase 4 (PAD4) plays a critical role in many autoimmune diseases including rheumatoid arthritis. Herein, a trypsin assisted highly immunoassay method was established to determine PAD4 activity and screen potent inhibitors from herbal plants extracts and purified natural products. The method was applied to determine endogenous PAD4 activity in both cell and tissue lysates, as well as the inhibitory effects of 20 herbal plants and 50 purified natural products. The Cinnamomi ramulus extract showed strongest inhibitory potency with IC50 value lower than 5 µg/mL. Meanwhile, pyrroloquinoline quinone (PQQ), widely used as a dietary supplement, was discovered as a promising PAD4 inhibitor with an IC50 value lower than 4 µM. The inhibition kinetic analysis, drug affinity response target stability (DARTS) and molecular docking were performed to confirm the interaction between PQQ and PAD4. This method has great potential for researchers to monitor activities and discover potential inhibitors of PAD4.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA