Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Nature ; 627(8002): 101-107, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38418886

RESUMO

Li-ion batteries (LIBs) for electric vehicles and aviation demand high energy density, fast charging and a wide operating temperature range, which are virtually impossible because they require electrolytes to simultaneously have high ionic conductivity, low solvation energy and low melting point and form an anion-derived inorganic interphase1-5. Here we report guidelines for designing such electrolytes by using small-sized solvents with low solvation energy. The tiny solvent in the secondary solvation sheath pulls out the Li+ in the primary solvation sheath to form a fast ion-conduction ligand channel to enhance Li+ transport, while the small-sized solvent with low solvation energy also allows the anion to enter the first Li+ solvation shell to form an inorganic-rich interphase. The electrolyte-design concept is demonstrated by using fluoroacetonitrile (FAN) solvent. The electrolyte of 1.3 M lithium bis(fluorosulfonyl)imide (LiFSI) in FAN exhibits ultrahigh ionic conductivity of 40.3 mS cm-1 at 25 °C and 11.9 mS cm-1 even at -70 °C, thus enabling 4.5-V graphite||LiNi0.8Mn0.1Co0.1O2 pouch cells (1.2 Ah, 2.85 mAh cm-2) to achieve high reversibility (0.62 Ah) when the cells are charged and discharged even at -65 °C. The electrolyte with small-sized solvents enables LIBs to simultaneously achieve high energy density, fast charging and a wide operating temperature range, which is unattainable for the current electrolyte design but is highly desired for extreme LIBs. This mechanism is generalizable and can be expanded to other metal-ion battery electrolytes.

2.
Small ; 20(2): e2305464, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37658520

RESUMO

The utilization of layered oxides as cathode materials has significantly contributed to the advancement of the lithium-ion batteries (LIBs) with high energy density and reliability. However, the structural and interfacial instability triggered by side reactions when charged to high voltage has plagued their practical applications. Here, this work reports a novel multifunctional additive, id est, 7-Anilino-3-diethylamino-6-methyl fluoran (ADMF), which exhibits unique characteristics such as preferential adsorption, oxygen scavenging, and electropolymerization protection for high-voltage cathodes. The ADMF demonstrates the capability to ameliorate the growth of cathode-electrolyte interphase (CEI), effectively diminishing the dissolution of transition metal (TM) ions, reducing the interface impedance, and facilitating the Li+ transport. As a result, ADMF additive with side reaction-blocking ability significantly enhances the cycling stability of MCMB||NCM811 full-cells at 4.4 V and MCMB||LCO full-cells at 4.55 V, as evidenced by the 80% retention over 600 cycles and 87% retention after 750 cycles, respectively. These findings highlight the potential of the additive design strategy to modulate the CEI chemistry, representing a new paradigm with profound implications for the development of next-generation high-voltage LIBs.

3.
Angew Chem Int Ed Engl ; 63(11): e202319355, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38227349

RESUMO

The growth of disorganized lithium dendrites and weak solid electrolyte interphase greatly impede the practical application of lithium metal batteries. Herein, we designed and synthesized a new kind of stable polyimide covalent organic frameworks (COFs), which have a high density of well-aligned lithiophilic quinoxaline and phthalimide units anchored within the uniform one-dimensional channels. The COFs can serve as an artificial solid electrolyte interphase on lithium metal anode, effectively guiding the uniform deposition of lithium ions and inhibiting the growth of lithium dendrites. The unsymmetrical Li||COF-Cu battery exhibits a Coulombic efficiency of 99 % at a current density of 0.5 mA cm-2 , which can be well retained up to 400 cycles. Meanwhile, the Li-COF||LFP full cell shows a Coulombic efficiency over 99 % at a charge of 0.3 C. And its capacity can be well maintained up to 91 % even after 150 cycles. Therefore, the significant electrochemical cycling stability illustrates the feasibility of employing COFs in solving the disordered deposition of lithium ions in lithium metal batteries.

4.
Angew Chem Int Ed Engl ; : e202406122, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38743507

RESUMO

Rational design of advanced electrolytes to improve the high-voltage capability has been attracting wide attention as one critical solution to enable next-generation high-energy-density batteries. However, the limited understanding of electrolyte antioxidant chemistry as well as the lack of valid quantization approaches have resulted in knowledge gap, which hinders the formulation of new electrolytes. Herein, we construct a standard curve based on representative solvation structures to quantify the oxidation stability of ether-based electrolytes, which reveals the linear correlation between the oxidation potential and the atomic charge of the least oxidation-resistant solvent. Dictated by the regularity between solvation composition and oxidation potential, a (Trifluoromethyl)cyclohexane-based localized high-concentration electrolyte dominated by anion-less solvation structures was designed to optimize the cycling performance of 4.5 V 30 µm-Li||3.8 mAh cm-2-LiCoO2 batteries, which maintained 80 % capacity retention even after 440 cycles. The consistency of experimental and computational results validates the proposed principles, offering a fundamental guideline to evaluate and design aggressive electrochemical systems.

5.
J Am Chem Soc ; 145(2): 1022-1030, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36584327

RESUMO

The development of conductive covalent organic frameworks (COFs) with high stability is desirable for the practical applications in optoelectronics and energy storage. Herein, we developed a new kind of Janus dione-based COF, which is fully sp2 carbon-conjugated through the connection by olefin units. The electrical conductivity and carrier mobility reached up to 10-3 S cm-1 and 7.8 cm2 V-1 s-1, respectively. In addition, these COFs are strongly robust against various harsh conditions. The well-ordered two-dimensional crystalline structures, excellent porosity, high conductivity, and abundant redox-active carbonyl units render these COFs serviceable as high-performance cathode materials in lithium-ion batteries. It is worth noting that TFPPy-ICTO-COF exhibits a capacity of up to 338 mAh g-1 at a discharge rate of 0.1 C, which sets a new capacity record among COF-based lithium-ion batteries. Its capacity retention was as high as 100% even after 1000 cycles, demonstrating the remarkable stability of these Janus dione-based COF materials. This work not only expands the diversity of olefin-linked COFs but also makes a new breakthrough in energy storage.

6.
J Am Chem Soc ; 145(12): 6773-6780, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36821052

RESUMO

The activation of dinitrogen (N2) and direct incorporation of its N atom into C-H bonds to create aliphatic C-N compounds remains unresolved. Incompatible conditions between dinitrogen reduction and C-H functionalization make this process extremely challenging. Herein, we report the first example of dinitrogen insertion into an aliphatic Csp3-H bond on the ligand scaffold of a 1,3-propane-bridged [N2N]2--type dititanium complex. Mechanistic investigations on the behaviors of dinuclear and mononuclear Ti complexes indicated the intramolecular synergistic effect of two Ti centers at a C-N bond-forming step. Computational studies revealed the critical isomerization between the inactive side-on N2 complex and the active nitridyl complex, which is responsible for the Csp3-H amination. This strategy maps an efficient route toward the future synthesis of aliphatic amines directly from N2.

7.
J Am Chem Soc ; 145(1): 359-376, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36538367

RESUMO

The intermediacy of alkoxy radicals in cerium-catalyzed C-H functionalization via H-atom abstraction has been unambiguously confirmed. Catalytically relevant Ce(IV)-alkoxide complexes have been synthesized and characterized by X-ray diffraction. Operando electron paramagnetic resonance and transient absorption spectroscopy experiments on isolated pentachloro Ce(IV) alkoxides identified alkoxy radicals as the sole heteroatom-centered radical species generated via ligand-to-metal charge transfer (LMCT) excitation. Alkoxy-radical-mediated hydrogen atom transfer (HAT) has been verified via kinetic analysis, density functional theory (DFT) calculations, and reactions under strictly chloride-free conditions. These experimental findings unambiguously establish the critical role of alkoxy radicals in Ce-LMCT catalysis and definitively preclude the involvement of chlorine radical. This study has also reinforced the necessity of a high relative ratio of alcohol vs Ce for the selective alkoxy-radical-mediated HAT, as seemingly trivial changes in the relative ratio of alcohol vs Ce can lead to drastically different mechanistic pathways. Importantly, the previously proposed chlorine radical-alcohol complex, postulated to explain alkoxy-radical-enabled selectivities in this system, has been examined under scrutiny and ruled out by regioselectivity studies, transient absorption experiments, and high-level calculations. Moreover, the peculiar selectivity of alkoxy radical generation in the LMCT homolysis of Ce(IV) heteroleptic complexes has been analyzed and back-electron transfer (BET) may have regulated the efficiency and selectivity for the formation of ligand-centered radicals.


Assuntos
Cloro , Hidrogênio , Hidrogênio/química , Cinética , Ligantes , Metais , Etanol , Catálise
8.
Chemistry ; 29(6): e202202834, 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36206170

RESUMO

Recent years have witnessed a boom of machine learning (ML) applications in chemistry, which reveals the potential of data-driven prediction of synthesis performance. Digitalization and ML modelling are the key strategies to fully exploit the unique potential within the synergistic interplay between experimental data and the robust prediction of performance and selectivity. A series of exciting studies have demonstrated the importance of chemical knowledge implementation in ML, which improves the model's capability for making predictions that are challenging and often go beyond the abilities of human beings. This Minireview summarizes the cutting-edge embedding techniques and model designs in synthetic performance prediction, elaborating how chemical knowledge can be incorporated into machine learning until June 2022. By merging organic synthesis tactics and chemical informatics, we hope this Review can provide a guide map and intrigue chemists to revisit the digitalization and computerization of organic chemistry principles.

9.
J Phys Chem A ; 127(32): 6791-6803, 2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37530446

RESUMO

The current benchmark study is focused on determining the most precise theoretical method for optimizing the geometry of transition metal-dinitrogen complexes. To accomplish this goal, seven density functional (DF) methods from five distinct classes of density functional theory (DFT) have been selected, including B3LYP-D3(BJ), BP86-D3(BJ), PBE0-D3(BJ), ωB97X-D, M06, M06-L, and TPSSh-D3(BJ). These DFs will be utilized with the Karlsruhe basis set (def2-SVP). To carry out this benchmark study, a total of forty-two structurally diverse transition metal-dinitrogen compounds with experimentally known X-ray data have been selected from the Cambridge Crystallographic Data Centre (CCDC). Based on a comparison of the theoretical data with experimental values (X-ray) of the selected transition metal-dinitrogen compounds, statistical parameters such as root-mean-square deviation (RMSD) and N-N and M-N bond lengths are obtained to evaluate the performance of the seven chosen DFs. According to the obtained results, among all DFT methods used in the study, Minnesota functionals (M06 and M06-L) and TPSSh-D3(BJ) show good performance, with lower RMSD values. This suggests that these three methods are the most reliable for optimizing the geometry of transition metal-dinitrogen complexes. Based on the absolute errors of the N-N and M-N bond lengths relative to the X-ray data, further analysis is conducted, and it is determined that M06-L is the best functional for optimizing the geometry of transition metal-dinitrogen compounds. Additionally, the influence of using a high-level basis set (def2-TZVP) compared to def2-SVP on the calculated RMSD among the seven chosen methods is found to be negligible.

10.
Angew Chem Int Ed Engl ; 62(11): e202218970, 2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36688728

RESUMO

Although great progress has been made in new electrolytes for lithium metal batteries (LMBs), the intrinsic relationship between electrolyte composition and cell performance remains unclear due to the lack of valid quantization method. Here, we proposed the concept of negative center of electrostatic potential (NCESP) and Mayer bond order (MBO) to describe solvent capability, which highly relate to solvation structure and oxidation potential, respectively. Based on established principles, the selected electrolyte with 1.7 M LiFSI in methoxytrimethylsilane (MOTMS)/ (trifluoromethyl)trimethylsilane (TFMTMS) shows unique hyperconjugation nature to stabilize both Li anode and high-voltage cathode. The 4.6 V 30 µm Li||4.5 mAh cm-2 lithium cobalt oxide (LCO) (low N/P ratio of 1.3) cell with our electrolyte shows stable cycling with 91 % capacity retention over 200 cycles. The bottom-up design concept of electrolyte opens up a general strategy for advancing high-voltage LMBs.

11.
J Am Chem Soc ; 144(31): 14071-14078, 2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-35882019

RESUMO

Splitting of N2 via six-electron reduction and further functionalization to value-added products is one of the most important and challenging chemical transformations in N2 fixation. However, most N2 splitting approaches rely on strong chemical or electrochemical reduction to generate highly reactive metal species to bind and activate N2, which is often incompatible with functionalizing agents. Catalytic and sustainable N2 splitting to produce metal nitrides under mild conditions may create efficient and straightforward methods for N-containing organic compounds. Herein, we present that a readily available and nonredox (n-Bu)4NBr can promote N2-splitting with a Mo(III) platform. Both experimental and theoretical mechanistic studies suggest that simple X- (X = Br, Cl, etc.) anions could induce the disproportionation of MoIII[N(TMS)Ar]3 at the early stage of the catalysis to generate a catalytically active {MoII[N(TMS)Ar]3}- species. The quintet MoII species prove to be more favorable for N2 fixation kinetically and thermodynamically, compared with the quartet MoIII counterpart. Especially, computational studies reveal a distinct heterovalent {MoII-N2-MoIII} dimeric intermediate for the N≡N triple bond cleavage.


Assuntos
Elétrons , Molibdênio , Catálise , Molibdênio/química
12.
Acc Chem Res ; 54(9): 2158-2171, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33826300

RESUMO

Transition-metal-catalyzed C-O bond activation provides a useful strategy for utilizing alcohol- and phenol-derived electrophiles in cross-coupling reactions, which has become a research field of active and growing interest in organic chemistry. The synergy between computation and experiment elucidated the mechanistic model and controlling factors of selectivities in these transformations, leading to advances in innovative C-O bond activation and functionalization methods.Toward the rational design of C-O bond activation, our collaborations with the Jarvo group bridged the mechanistic models of C(sp2)-O and C(sp3)-O bond activations. We found that the nickel catalyst cleaves the benzylic and allylic C(sp3)-O bonds via two general mechanisms: the stereoinvertive SN2 back-side attack model and the stereoretentive chelation-assisted model. These two models control the stereochemistry in a wide array of stereospecific Ni-catalyzed cross-coupling reactions with benzylic or allylic alcohol derivatives. Because of the catalyst distortion, the ligands can differentiate the competing stereospecific C(sp3)-O bond activations. The PCy3 ligand interacts with nickel mainly through σ-donation, and the Ni(PCy3) catalyst can undergo facile bending of the substrate-nickel-ligand angle, which favors the stereoretentive benzylic C-O bond activation. The N-heterocyclic carbene SIMes ligand has additional d(metal)-p(ligand) back-donation with nickel, which leads to an extra energy penalty for the same angle bending. This results in the preference of stereoinvertive benzylic C-O bond activation under Ni/SIMes catalysis. In addition to ligand control, a Lewis acid can increase the selectivity for stereoinvertive C(sp3)-O activation by stabilizing the SN2 back-side attack transition state. The oxygen leaving group complexes with the MgI2 Lewis acid in the stereoinvertive activation, leading to the exclusive stereoinvertive Kumada coupling of benzylic ethers. We also identified that the competing C(sp3)-O bond activation models have noticeable differences in charge separation. This leads to the solvent polarity control of the stereospecificity in C(sp3)-O activations. Low-polarity solvents favor the neutral stereoretentive C-O bond activation, while high-polarity solvents favor the zwitterionic stereoinvertive cleavage.In sharp contrast to the nickel catalysts, the C(sp2)-O bond activation under palladium catalysis mainly proceeds via the classic three-membered ring oxidative addition mechanism instead of the chelation-assisted mechanism. This is due to the lower oxophilicity of palladium, which disfavors the oxygen coordination in the chelation-assisted-type activation. The three-membered ring activation model selectively cleaves the weak C-O bond, resulting in the exclusive chemoselectivity of acyl C-O bond activation in Pd-catalyzed cross-coupling reactions with aryl carboxylic acid derivatives. This explains the overall acylation in the Pd-catalyzed Suzuki-Miyaura coupling with aryl esters. In collaboration with the Szostak group, we revealed that the three-membered ring model applies in the Pd-catalyzed C-O bond activation of carboxylic acid anhydride, which stimulated the development of a series of Pd-catalyzed decarbonylative functionalizations of aryl carboxylic acids.

13.
Angew Chem Int Ed Engl ; 60(42): 22804-22811, 2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34370892

RESUMO

Asymmetric hydrogenation of olefins is one of the most powerful asymmetric transformations in molecular synthesis. Although several privileged catalyst scaffolds are available, the catalyst development for asymmetric hydrogenation is still a time- and resource-consuming process due to the lack of predictive catalyst design strategy. Targeting the data-driven design of asymmetric catalysis, we herein report the development of a standardized database that contains the detailed information of over 12000 literature asymmetric hydrogenations of olefins. This database provides a valuable platform for the machine learning applications in asymmetric catalysis. Based on this database, we developed a hierarchical learning approach to achieve predictive machine leaning model using only dozens of enantioselectivity data with the target olefin, which offers a useful solution for the few-shot learning problem and will facilitate the reaction optimization with new olefin substrate in catalysis screening.

14.
J Am Chem Soc ; 142(25): 11102-11113, 2020 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-32479072

RESUMO

Carbohydrates, one of the three primary macromolecules of living organisms, play significant roles in various biological processes such as intercellular communication, cell recognition, and immune activity. While the majority of established methods for the installation of carbohydrates through the anomeric carbon rely on nucleophilic displacement, anomeric radicals represent an attractive alternative because of their functional group compatibility and high anomeric selectivities. Herein, we demonstrate that anomeric nucleophiles such as C1 stannanes can be converted into anomeric radicals by merging Cu(I) catalysis with blue light irradiation to achieve highly stereoselective C(sp3)-S cross-coupling reactions. Mechanistic studies and DFT calculations revealed that the C-S bond-forming step occurs via the transfer of the anomeric radical directly to a sulfur electrophile bound to Cu(II) species. This pathway complements a radical chain observed for photochemical metal-free conditions where a disulfide initiator can be activated by a Lewis base additive. Both strategies utilize anomeric nucleophiles as efficient radical donors and achieve a switch from an ionic to a radical pathway. Taken together, the stability of glycosyl nucleophiles, a broad substrate scope, and high anomeric selectivities observed for the thermal and photochemical protocols make this novel C-S cross coupling a practical tool for late-stage glycodiversification of bioactive natural products and drug candidates.


Assuntos
Radicais Livres/química , Compostos Orgânicos de Estanho/química , Tioglicosídeos/síntese química , Catálise/efeitos da radiação , Complexos de Coordenação/química , Complexos de Coordenação/efeitos da radiação , Cobre/química , Cobre/efeitos da radiação , Teoria da Densidade Funcional , Glicosilação , Luz , Modelos Químicos , Compostos Orgânicos de Estanho/efeitos da radiação
15.
Org Biomol Chem ; 18(28): 5414-5419, 2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32618317

RESUMO

Transition metal-catalyzed single bond metathesis has recently emerged as a useful strategy for functional group transfer. In this work, we explored the mechanism and reactivity profile of Pd/PhI-cocatalyzed C-P bond metathesis between aryl phosphines using density functional theory (DFT) calculations. The overall single bond metathesis involves two Pd(ii)-catalyzed C-P reductive eliminations and two Pd(0)-catalyzed C-P oxidative additions, which allows the reversible C-P bond cleavage and formation of the phosphonium cation. Distortion/interaction analysis indicates that the facile C-P bond cleavage and formation of the phosphonium cation are due to the involvement of coordinating aryl phosphine in the process. In addition, the substituent effects on the reaction kinetics and thermodynamics of metathesis were computed, which provides helpful mechanistic information for the design of related single bond metathesis reactions.

16.
Angew Chem Int Ed Engl ; 59(32): 13253-13259, 2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32359009

RESUMO

Radical C-H bond functionalization provides a versatile approach for elaborating heterocyclic compounds. The synthetic design of this transformation relies heavily on the knowledge of regioselectivity, while a quantified and efficient regioselectivity prediction approach is still elusive. Herein, we report the feasibility of using a machine learning model to predict the transition state barrier from the computed properties of isolated reactants. This enables rapid and reliable regioselectivity prediction for radical C-H bond functionalization of heterocycles. The Random Forest model with physical organic features achieved 94.2 % site accuracy and 89.9 % selectivity accuracy in the out-of-sample test set. The prediction performance was further validated by comparing the machine learning results with additional substituents, heteroarene scaffolds and experimental observations. This work revealed that the combination of mechanism-based computational statistics and machine learning model can serve as a useful strategy for selectivity prediction of organic transformations.

17.
J Am Chem Soc ; 141(32): 12770-12779, 2019 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-31345038

RESUMO

Because of the inherent difficulty in differentiating two olefins, the development of metal-catalyzed asymmetric cyclization of 1,6-dienes remains challenging. Herein, we describe the first rhodium(III)-catalyzed asymmetric borylative cyclization of cyclohexadienone-tethered mono-, 1,1-di-, and (E)-1,2-disubstituted alkenes (1,6-dienes), affording optically pure cis-bicyclic skeletons bearing three or four contiguous stereocenters with high yields (25-93%), and excellent diastereoselectivities (>20:1 dr) and enantioselectivities (90-99% ee). This mild catalytic approach is generally compatible with a wide range of functional groups, which allows several facile conversions of the cyclization products. Furthermore, on the basis of our SAESI-MS experiment and computational study, a Rh(I)/(III) catalytic cycle is proposed in this tandem reaction, and the Rh(I) active species catalyzes the overall transformation via sequential oxidative addition of B2pin2, olefin insertion, cyclizing conjugate addition, and reductive elimination. The irreversible conjugate addition determines the overall regioselectivity of borylative cyclization, and the ring strain favors the formation of 5,6-bicyclic structure. This highlights the control of ring strain in diene cyclizations, which provides a useful basis for future reaction designs.

18.
J Am Chem Soc ; 141(14): 5835-5855, 2019 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-30866626

RESUMO

Ni-catalyzed C(sp3)-O bond activation provides a useful approach to synthesize enantioenriched products from readily available enantioenriched benzylic alcohol derivatives. The control of stereospecificity is key to the success of these transformations. To elucidate the reversed stereospecificity and chemoselectivity of Ni-catalyzed Kumada and cross-electrophile coupling reactions with benzylic ethers, a combined computational and experimental study is performed to reach a unified mechanistic understanding. Kumada coupling proceeds via a classic cross-coupling mechanism. Initial rate-determining oxidative addition occurs with stereoinversion of the benzylic stereogenic center. Subsequent transmetalation with the Grignard reagent and syn-reductive elimination produce the Kumada coupling product with overall stereoinversion at the benzylic position. The cross-electrophile coupling reaction initiates with the same benzylic C-O bond cleavage and transmetalation to form a common benzylnickel intermediate. However, the presence of the tethered alkyl chloride allows a facile intramolecular SN2 attack by the benzylnickel moiety. This step circumvents the competing Kumada coupling, leading to the excellent chemoselectivity of cross-electrophile coupling. These mechanisms account for the observed stereospecificity of the Kumada and cross-electrophile couplings, providing a rationale for double inversion of the benzylic stereogenic center in cross-electrophile coupling. The improved mechanistic understanding will enable design of stereoselective transformations involving Ni-catalyzed C(sp3)-O bond activation.


Assuntos
Benzeno/química , Teoria da Densidade Funcional , Éteres/química , Níquel/química , Catálise , Modelos Moleculares , Conformação Molecular , Estereoisomerismo
19.
J Am Chem Soc ; 141(14): 5824-5834, 2019 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-30862155

RESUMO

The asymmetric allylic alkylation (AAA), which features employing active allylic substrates, has historical significance in organic synthesis. The allylic C-H alkylation is principally more atom- and step-economic than the classical allylic functionalizations and thus can be considered a transformative variant. However, asymmetric allylic C-H alkylation reactions are still scarce and yet underdeveloped. Herein, we have found that Z/ E- and regioselectivities in the Pd-catalyzed asymmetric allylic C-H alkylation of 1,4-dienes are highly dependent on the type of nucleophiles. A highly stereoselective allylic C-H alkylation of 1,4-dienes with azlactones has been established by palladium-chiral phosphoramidite catalysis. The protocol proceeds under mild conditions and can accommodate a wide scope of substrates, delivering structurally divergent α,α-disubstituted α-amino acid surrogates in high yields and excellent levels of diastereo-, Z/ E-, regio-, and enantioselectivities. Notably, this method provides key chiral intermediates for an efficient synthesis of lepadiformine marine alkaloids. Experimental and computational studies on the reaction mechanism suggest a novel concerted proton and two-electron transfer process for the allylic C-H cleavage and reveal that the Z/ E- and regioselectivities are governed by the geometry and coordination pattern of nucleophiles.

20.
Org Biomol Chem ; 17(41): 9135-9139, 2019 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-31596304

RESUMO

Vinyl cations exhibit remarkable reactivity towards arene C-H functionalizations. This computational study revealed the key mechanistic details of intramolecular C-H vinylation through a vinyl cation intermediate. Based on the reaction mechanism, the effects of substitution, ring strain and tether length on the reactivity of the vinyl cation were elucidated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA