RESUMO
Although T cells can exert potent anti-tumor immunity, a subset of T helper (Th) cells producing interleukin-22 (IL-22) in breast and lung tumors is linked to dismal patient outcome. Here, we examined the mechanisms whereby these T cells contribute to disease. In murine models of lung and breast cancer, constitutional and T cell-specific deletion of Il22 reduced metastases without affecting primary tumor growth. Deletion of the IL-22 receptor on cancer cells decreases metastasis to a degree similar to that seen in IL-22-deficient mice. IL-22 induced high expression of CD155, which bound to the activating receptor CD226 on NK cells. Excessive activation led to decreased amounts of CD226 and functionally impaired NK cells, which elevated the metastatic burden. IL-22 signaling was also associated with CD155 expression in human datasets and with poor patient outcomes. Taken together, our findings reveal an immunosuppressive circuit activated by T cell-derived IL-22 that promotes lung metastasis.
Assuntos
Interleucinas , Neoplasias , Receptores Virais , Linfócitos T Auxiliares-Indutores , Animais , Humanos , Camundongos , Antígenos de Diferenciação de Linfócitos T/metabolismo , Interleucinas/genética , Interleucinas/metabolismo , Células Matadoras Naturais/metabolismo , Neoplasias/metabolismo , Ligação Proteica , Linfócitos T Auxiliares-Indutores/metabolismo , Interleucina 22RESUMO
During metastasis, cancer cells invade, intravasate, enter the circulation, extravasate, and colonize target organs. Here, we examined the role of interleukin (IL)-22 in metastasis. Immune cell-derived IL-22 acts on epithelial tissues, promoting regeneration and healing upon tissue damage, but it is also associated with malignancy. Il22-deficient mice and mice treated with an IL-22 antibody were protected from colon-cancer-derived liver and lung metastasis formation, while overexpression of IL-22 promoted metastasis. Mechanistically, IL-22 acted on endothelial cells, promoting endothelial permeability and cancer cell transmigration via induction of endothelial aminopeptidase N. Multi-parameter flow cytometry and single-cell sequencing of immune cells isolated during cancer cell extravasation into the liver revealed iNKT17 cells as source of IL-22. iNKT-cell-deficient mice exhibited reduced metastases, which was reversed by injection of wild type, but not Il22-deficient, invariant natural killer T (iNKT) cells. IL-22-producing iNKT cells promoting metastasis were tissue resident, as demonstrated by parabiosis. Thus, IL-22 may present a therapeutic target for prevention of metastasis.
Assuntos
Interleucinas , Neoplasias Hepáticas , Células T Matadoras Naturais , Animais , Camundongos , Células Endoteliais/metabolismo , Interleucinas/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/secundário , Camundongos Endogâmicos C57BL , Células T Matadoras Naturais/metabolismo , Neoplasias Colorretais/metabolismo , Interleucina 22RESUMO
Long interspersed element-1 (LINE-1 or L1) comprises 17% of the human genome, continuously generates genetic variations, and causes disease in certain cases. However, the regulation and function of L1 remain poorly understood. Here, we uncover that L1 can enrich RNA polymerase IIs (RNA Pol IIs), express L1 chimeric transcripts, and create contact domain boundaries in human cells. This impact of L1 is restricted by a nuclear matrix protein scaffold attachment factor B (SAFB) that recognizes transcriptionally active L1s by binding L1 transcripts to inhibit RNA Pol II enrichment. Acute inhibition of RNA Pol II transcription abolishes the domain boundaries associated with L1 chimeric transcripts, indicating a transcription-dependent mechanism. Deleting L1 impairs domain boundary formation, and L1 insertions during evolution have introduced species-specific domain boundaries. Our data show that L1 can create RNA Pol II-enriched regions that alter genome organization and that SAFB regulates L1 and RNA Pol II activity to preserve gene regulation.
Assuntos
Elementos Nucleotídeos Longos e Dispersos , Proteínas de Ligação à Região de Interação com a Matriz , RNA Polimerase II , Receptores de Estrogênio , Transcrição Gênica , Humanos , RNA Polimerase II/metabolismo , RNA Polimerase II/genética , Elementos Nucleotídeos Longos e Dispersos/genética , Proteínas de Ligação à Região de Interação com a Matriz/metabolismo , Proteínas de Ligação à Região de Interação com a Matriz/genética , Proteínas Associadas à Matriz Nuclear/metabolismo , Proteínas Associadas à Matriz Nuclear/genética , Regulação da Expressão Gênica , Ligação Proteica , Células HEK293 , Genoma HumanoRESUMO
The GATOR2-GATOR1 signaling axis is essential for amino-acid-dependent mTORC1 activation. However, the molecular function of the GATOR2 complex remains unknown. Here, we report that disruption of the Ring domains of Mios, WDR24, or WDR59 completely impedes amino-acid-mediated mTORC1 activation. Mechanistically, via interacting with Ring domains of WDR59 and WDR24, the Ring domain of Mios acts as a hub to maintain GATOR2 integrity, disruption of which leads to self-ubiquitination of WDR24. Physiologically, leucine stimulation dissociates Sestrin2 from the Ring domain of WDR24 and confers its availability to UBE2D3 and subsequent ubiquitination of NPRL2, contributing to GATOR2-mediated GATOR1 inactivation. As such, WDR24 ablation or Ring deletion prevents mTORC1 activation, leading to severe growth defects and embryonic lethality at E10.5 in mice. Hence, our findings demonstrate that Ring domains are essential for GATOR2 to transmit amino acid availability to mTORC1 and further reveal the essentiality of nutrient sensing during embryonic development.
Assuntos
Complexos Multiproteicos , Serina-Treonina Quinases TOR , Animais , Camundongos , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Proteínas Nucleares/metabolismo , Transdução de SinaisRESUMO
HLA class I (HLA-I) glycoproteins drive immune responses by presenting antigens to cognate CD8+ T cells. This process is often hijacked by tumors and pathogens for immune evasion. Because options for restoring HLA-I antigen presentation are limited, we aimed to identify druggable HLA-I pathway targets. Using iterative genome-wide screens, we uncovered that the cell surface glycosphingolipid (GSL) repertoire determines effective HLA-I antigen presentation. We show that absence of the protease SPPL3 augmented B3GNT5 enzyme activity, resulting in upregulation of surface neolacto-series GSLs. These GSLs sterically impeded antibody and receptor interactions with HLA-I and diminished CD8+ T cell activation. Furthermore, a disturbed SPPL3-B3GNT5 pathway in glioma correlated with decreased patient survival. We show that the immunomodulatory effect could be reversed through GSL synthesis inhibition using clinically approved drugs. Overall, our study identifies a GSL signature that inhibits immune recognition and represents a potential therapeutic target in cancer, infection, and autoimmunity.
Assuntos
Ácido Aspártico Endopeptidases/metabolismo , Linfócitos T CD8-Positivos/imunologia , Glioma/imunologia , Glicoesfingolipídeos/metabolismo , Glicosiltransferases/metabolismo , Antígenos HLA/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo , Imunoterapia/métodos , Apresentação de Antígeno , Ácido Aspártico Endopeptidases/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Glioma/mortalidade , Glicoesfingolipídeos/imunologia , Antígenos HLA/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Ativação Linfocitária , Transdução de Sinais , Análise de Sobrevida , Evasão TumoralRESUMO
Crustal accretion at mid-ocean ridges governs the creation and evolution of the oceanic lithosphere. Generally accepted models1-4 of passive mantle upwelling and melting predict notably decreased crustal thickness at a spreading rate of less than 20 mm year-1. We conducted the first, to our knowledge, high-resolution ocean-bottom seismometer (OBS) experiment at the Gakkel Ridge in the Arctic Ocean and imaged the crustal structure of the slowest-spreading ridge on the Earth. Unexpectedly, we find that crustal thickness ranges between 3.3 km and 8.9 km along the ridge axis and it increased from about 4.5 km to about 7.5 km over the past 5 Myr in an across-axis profile. The highly variable crustal thickness and relatively large average value does not align with the prediction of passive mantle upwelling models. Instead, it can be explained by a model of buoyant active mantle flow driven by thermal and compositional density changes owing to melt extraction. The influence of active versus passive upwelling is predicted to increase with decreasing spreading rate. The process of active mantle upwelling is anticipated to be primarily influenced by mantle temperature and composition. This implies that the observed variability in crustal accretion, which includes notably varied crustal thickness, is probably an inherent characteristic of ultraslow-spreading ridges.
RESUMO
Plants face constant threats from pathogens, leading to growth retardation and crop failure. Cell-surface leucine-rich repeat receptor-like kinases (LRR-RLKs) are crucial for plant growth and defense, but their specific functions, especially to necrotrophic fungal pathogens, are largely unknown. Here, we identified an LRR-RLK (Solyc06g069650) in tomato (Solanum lycopersicum) induced by the economically important necrotrophic pathogen Botrytis cinerea. Knocking out this LRR-RLK reduced plant growth and increased sensitivity to B. cinerea, while its overexpression led to enhanced growth, yield, and resistance. We named this LRR-RLK as BRAK (B. cinerea resistance-associated kinase). Yeast two-hybrid screen revealed BRAK interacted with phytosulfokine (PSK) receptor PSKR1. PSK-induced growth and defense responses were impaired in pskr1, brak single and double mutants, as well as in PSKR1-overexpressing plants with silenced BRAK. Moreover, BRAK and PSKR1 phosphorylated each other, promoting their interaction as detected by microscale thermophoresis. This reciprocal phosphorylation was crucial for growth and resistance. In summary, we identified BRAK as a novel regulator of seedling growth, fruit yield and defense, offering new possibilities for developing fungal disease-tolerant plants without compromising yield.
RESUMO
In preparation for a potential pregnancy, the endometrium of the uterus changes into a temporary structure called the decidua. Senescent decidual stromal cells (DSCs) are enriched in the decidua during decidualization, but the underlying mechanisms of this process remain unclear. Here, we performed single-cell RNA transcriptomics on ESCs and DSCs and found that cell senescence during decidualization is accompanied by increased levels of the branched-chain amino acid (BCAA) transporter SLC3A2. Depletion of leucine, one of the branched-chain amino acids, from cultured media decreased senescence, while high leucine diet resulted in increased senescence and high rates of embryo loss in mice. BCAAs induced senescence in DSCs via the p38 MAPK pathway. In contrast, TNFSF14+ decidual natural killer (dNK) cells were found to inhibit DSC senescence by interacting with its ligand TNFRSF14. As in mice fed high-leucine diets, both mice with NK cell depletion and Tnfrsf14-deficient mice with excessive uterine senescence experienced adverse pregnancy outcomes. Further, we found excessive uterine senescence, SLC3A2-mediated BCAA intake, and insufficient TNFRSF14 expression in the decidua of patients with recurrent spontaneous abortion. In summary, this study suggests that dNK cells maintain senescence homeostasis of DSCs via TNFSF14/TNFRSF14, providing a potential therapeutic strategy to prevent DSC senescence-associated spontaneous abortion.
RESUMO
Cancer metastasis requires the transient activation of cellular programs enabling dissemination and seeding in distant organs1. Genetic, transcriptional and translational heterogeneity contributes to this dynamic process2,3. Metabolic heterogeneity has also been observed4, yet its role in cancer progression is less explored. Here we find that the loss of phosphoglycerate dehydrogenase (PHGDH) potentiates metastatic dissemination. Specifically, we find that heterogeneous or low PHGDH expression in primary tumours of patients with breast cancer is associated with decreased metastasis-free survival time. In mice, circulating tumour cells and early metastatic lesions are enriched with Phgdhlow cancer cells, and silencing Phgdh in primary tumours increases metastasis formation. Mechanistically, Phgdh interacts with the glycolytic enzyme phosphofructokinase, and the loss of this interaction activates the hexosamine-sialic acid pathway, which provides precursors for protein glycosylation. As a consequence, aberrant protein glycosylation occurs, including increased sialylation of integrin αvß3, which potentiates cell migration and invasion. Inhibition of sialylation counteracts the metastatic ability of Phgdhlow cancer cells. In conclusion, although the catalytic activity of PHGDH supports cancer cell proliferation, low PHGDH protein expression non-catalytically potentiates cancer dissemination and metastasis formation. Thus, the presence of PHDGH heterogeneity in primary tumours could be considered a sign of tumour aggressiveness.
Assuntos
Neoplasias da Mama , Metástase Neoplásica , Fosfoglicerato Desidrogenase , Animais , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Progressão da Doença , Feminino , Inativação Gênica , Humanos , Camundongos , Fosfoglicerato Desidrogenase/genética , Serina/metabolismoRESUMO
Epithelial-mesenchymal transition (EMT) is pivotal in the initiation and development of cancer cell metastasis. We observed that the abundance of glycosphingolipids (GSLs), especially ganglioside subtypes, decreased significantly during TGF-ß-induced EMT in NMuMG mouse mammary epithelial cells and A549 human lung adenocarcinoma cells. Transcriptional profiling showed that TGF-ß/SMAD response genes and EMT signatures were strongly enriched in NMuMG cells, along with depletion of UDP-glucose ceramide glucosyltransferase (UGCG), the enzyme that catalyzes the initial step in GSL biosynthesis. Consistent with this finding, genetic or pharmacological inhibition of UGCG promoted TGF-ß signaling and TGF-ß-induced EMT. UGCG inhibition promoted A549 cell migration, extravasation in the zebrafish xenograft model, and metastasis in mice. Mechanistically, GSLs inhibited TGF-ß signaling by promoting lipid raft localization of the TGF-ß type I receptor (TßRI) and by increasing TßRI ubiquitination and degradation. Importantly, we identified ST3GAL5-synthesized a-series gangliosides as the main GSL subtype involved in inhibition of TGF-ß signaling and TGF-ß-induced EMT in A549 cells. Notably, ST3GAL5 is weakly expressed in lung cancer tissues compared to adjacent nonmalignant tissues, and its expression correlates with good prognosis.
Assuntos
Neoplasias Pulmonares , Fator de Crescimento Transformador beta , Humanos , Animais , Camundongos , Fator de Crescimento Transformador beta/metabolismo , Gangliosídeos , Transição Epitelial-Mesenquimal/genética , Peixe-Zebra/metabolismo , Neoplasias Pulmonares/metabolismo , Glicoesfingolipídeos , Catálise , Movimento Celular , Linhagem Celular TumoralRESUMO
Existing imaging genetics studies have been mostly limited in scope by using imaging-derived phenotypes defined by human experts. Here, leveraging new breakthroughs in self-supervised deep representation learning, we propose a new approach, image-based genome-wide association study (iGWAS), for identifying genetic factors associated with phenotypes discovered from medical images using contrastive learning. Using retinal fundus photos, our model extracts a 128-dimensional vector representing features of the retina as phenotypes. After training the model on 40,000 images from the EyePACS dataset, we generated phenotypes from 130,329 images of 65,629 British White participants in the UK Biobank. We conducted GWAS on these phenotypes and identified 14 loci with genome-wide significance (p<5×10-8 and intersection of hits from left and right eyes). We also did GWAS on the retina color, the average color of the center region of the retinal fundus photos. The GWAS of retina colors identified 34 loci, 7 are overlapping with GWAS of raw image phenotype. Our results establish the feasibility of this new framework of genomic study based on self-supervised phenotyping of medical images.
Assuntos
Fundo de Olho , Estudo de Associação Genômica Ampla , Fenótipo , Retina , Humanos , Estudo de Associação Genômica Ampla/métodos , Retina/diagnóstico por imagem , Masculino , Polimorfismo de Nucleotídeo Único , Feminino , Processamento de Imagem Assistida por Computador/métodosRESUMO
The subgroup J avian leukosis virus (ALV-J), a retrovirus, uses its gp85 protein to bind to the receptor, the chicken sodium hydrogen exchanger isoform 1 (chNHE1), facilitating viral invasion. ALV-J is the main epidemic subgroup and shows noteworthy mutations within the receptor-binding domain (RBD) region of gp85, especially in ALV-J layer strains in China. However, the implications of these mutations on viral replication and transmission remain elusive. In this study, the ALV-J layer strain JL08CH3-1 exhibited a more robust replication ability than the prototype strain HPRS103, which is related to variations in the gp85 protein. Notably, the gp85 of JL08CH3-1 demonstrated a heightened binding capacity to chNHE1 compared to HPRS103-gp85 binding. Furthermore, we showed that the specific N123I mutation within gp85 contributed to the enhanced binding capacity of the gp85 protein to chNHE1. Structural analysis indicated that the N123I mutation primarily enhanced the stability of gp85, expanded the interaction interface, and increased the number of hydrogen bonds at the interaction interface to increase the binding capacity between gp85 and chNHE1. We found that the N123I mutation not only improved the viral replication ability of ALV-J but also promoted viral shedding in vivo. These comprehensive data underscore the notion that the N123I mutation increases receptor binding and intensifies viral replication.
Assuntos
Vírus da Leucose Aviária , Leucose Aviária , Doenças das Aves Domésticas , Animais , Vírus da Leucose Aviária/genética , Vírus da Leucose Aviária/química , Mutação , Galinhas , Isoformas de Proteínas/genética , Proteínas do Envelope Viral/genéticaRESUMO
BACKGROUND: Despite endothelial dysfunction being an initial step in the development of hypertension and associated cardiovascular/renal injuries, effective therapeutic strategies to prevent endothelial dysfunction are still lacking. GPR183 (G protein-coupled receptor 183), a recently identified G protein-coupled receptor for oxysterols and hydroxylated metabolites of cholesterol, has pleiotropic roles in lipid metabolism and immune responses. However, the role of GPR183 in the regulation of endothelial function remains unknown. METHODS: Endothelial-specific GPR183 knockout mice were generated and used to examine the role of GPR183 in endothelial senescence by establishing 2 independent hypertension models: desoxycorticosterone acetate/salt-induced and Ang II (angiotensin II)-induced hypertensive mice. Echocardiography, transmission electron microscopy, blood pressure measurement, vasorelaxation response experiments, flow cytometry analysis, and chromatin immunoprecipitation analysis were performed in this study. RESULTS: Endothelial GPR183 was significantly induced in hypertensive mice, which was further confirmed in renal biopsies from subjects with hypertensive nephropathy. Endothelial-specific deficiency of GPR183 markedly alleviated cardiovascular and renal injuries in hypertensive mice. Moreover, we found that GPR183 regulated endothelial senescence in both hypertensive mice and aged mice. Mechanistically, GPR183 disrupted circadian signaling by inhibiting PER1 (period circadian regulator 1) expression, thereby facilitating endothelial senescence and dysfunction through the cAMP (cyclic adenosine monophosphate)/PKA (protein kinase A)/CREB (cAMP-response element binding protein) signaling pathway. Importantly, pharmacological inhibition of the oxysterol-GPR183 axis by NIBR189 or clotrimazole ameliorated endothelial senescence and cardiovascular/renal injuries in hypertensive mice. CONCLUSIONS: This study discovers a previously unrecognized role of GPR183 in promoting endothelial senescence. Pharmacological targeting of GPR183 may be an innovative therapeutic strategy for hypertension and its associated complications.
Assuntos
Senescência Celular , Hipertensão , Oxisteróis , Receptores Acoplados a Proteínas G , Animais , Humanos , Masculino , Camundongos , Células Cultivadas , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Acetato de Desoxicorticosterona , Células Endoteliais/metabolismo , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oxisteróis/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Transdução de SinaisRESUMO
In recent years, the issues of global warming and CO2 emission reduction have garnered increasing global attention. In the 21st Conference of the Parties (convened in Paris in 2015), 179 nations and the European Union signed a pivotal agreement to limit the global temperature increase of this century to well below 2 K above preindustrial levels. To fulfill this objective, extensive research has been conducted to use renewable energy sources as potential replacements for traditional fossil fuels. Among them, the production of hydrocarbon transportation fuels from CO2-neutral and renewable biomass has proven to be a particularly promising solution due to its compatibility with existing infrastructure. This review systematically summarizes research progress in the synthesis of liquid hydrocarbon biofuels from lignocellulose during the past two decades. Based on the chemical structure (including n-paraffins, iso-paraffins, aromatics, and cycloalkanes) of hydrocarbon transportation fuels, the synthesis pathways of these biofuels are discussed in four separate sections. Furthermore, this review proposes three guiding principles for the design of practical hydrocarbon biofuels, providing insights into future directions for the development of viable biomass-derived liquid fuels.
RESUMO
Radical C-H functionalization represents a useful means of streamlining synthetic routes by avoiding substrate preactivation and allowing access to target molecules in fewer steps. The first-row transition metals (Ti, V, Cr, Mn, Fe, Co, Ni, and Cu) are Earth-abundant and can be employed to regulate radical C-H functionalization. The use of such metals is desirable because of the diverse interaction modes between first-row transition metal complexes and radical species including radical addition to the metal center, radical addition to the ligand of metal complexes, radical substitution of the metal complexes, single-electron transfer between radicals and metal complexes, hydrogen atom transfer between radicals and metal complexes, and noncovalent interaction between the radicals and metal complexes. Such interactions could improve the reactivity, diversity, and selectivity of radical transformations to allow for more challenging radical C-H functionalization reactions. This review examines the achievements in this promising area over the past decade, with a focus on the state-of-the-art while also discussing existing limitations and the enormous potential of high-value radical C-H functionalization regulated by these metals. The aim is to provide the reader with a detailed account of the strategies and mechanisms associated with such functionalization.
RESUMO
Autophagy is an important intracellular catabolic mechanism that mediates the degradation of cytoplasmic proteins and organelles. We report a potent small molecule inhibitor of autophagy named "spautin-1" for specific and potent autophagy inhibitor-1. Spautin-1 promotes the degradation of Vps34 PI3 kinase complexes by inhibiting two ubiquitin-specific peptidases, USP10 and USP13, that target the Beclin1 subunit of Vps34 complexes. Beclin1 is a tumor suppressor and frequently monoallelically lost in human cancers. Interestingly, Beclin1 also controls the protein stabilities of USP10 and USP13 by regulating their deubiquitinating activities. Since USP10 mediates the deubiquitination of p53, regulating deubiquitination activity of USP10 and USP13 by Beclin1 provides a mechanism for Beclin1 to control the levels of p53. Our study provides a molecular mechanism involving protein deubiquitination that connects two important tumor suppressors, p53 and Beclin1, and a potent small molecule inhibitor of autophagy as a possible lead compound for developing anticancer drugs.
Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Benzilaminas/farmacologia , Endopeptidases/metabolismo , Quinazolinas/farmacologia , Proteína Supressora de Tumor p53/metabolismo , Ubiquitina Tiolesterase/metabolismo , Animais , Autofagia , Proteína Beclina-1 , Classe III de Fosfatidilinositol 3-Quinases/metabolismo , Humanos , Camundongos , Proteases Específicas de Ubiquitina , UbiquitinaçãoRESUMO
MicroRNA-mediated gene silencing is a fundamental mechanism in the regulation of gene expression. It remains unclear how the efficiency of RNA silencing could be influenced by RNA-binding proteins associated with the microRNA-induced silencing complex (miRISC). Here we report that fused in sarcoma (FUS), an RNA-binding protein linked to neurodegenerative diseases including amyotrophic lateral sclerosis (ALS), interacts with the core miRISC component AGO2 and is required for optimal microRNA-mediated gene silencing. FUS promotes gene silencing by binding to microRNA and mRNA targets, as illustrated by its action on miR-200c and its target ZEB1. A truncated mutant form of FUS that leads its carriers to an aggressive form of ALS, R495X, impairs microRNA-mediated gene silencing. The C. elegans homolog fust-1 also shares a conserved role in regulating the microRNA pathway. Collectively, our results suggest a role for FUS in regulating the activity of microRNA-mediated silencing.
Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Inativação Gênica , MicroRNAs/metabolismo , RNA de Helmintos/metabolismo , Proteína FUS de Ligação a RNA/metabolismo , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Células HEK293 , Humanos , Camundongos , MicroRNAs/genética , RNA de Helmintos/genética , Proteína FUS de Ligação a RNA/genéticaRESUMO
5-Methylcytosine (m5C), an abundant RNA modification, plays a crucial role in regulating RNA fate and gene expression. While recent progress has been made in understanding the biological roles of m5C, the inability to introduce m5C at specific sites within transcripts has hindered efforts to elucidate direct links between specific m5C and phenotypic outcomes. Here, we developed a CRISPR-Cas13d-based tool, named reengineered m5C modification system (termed 'RCMS'), for targeted m5C methylation and demethylation in specific transcripts. The RCMS editors consist of a nuclear-localized dCasRx conjugated to either a methyltransferase, NSUN2/NSUN6, or a demethylase, the catalytic domain of mouse Tet2 (ten-eleven translocation 2), enabling the manipulation of methylation events at precise m5C sites. We demonstrate that the RCMS editors can direct site-specific m5C incorporation and demethylation. Furthermore, we confirm their effectiveness in modulating m5C levels within transfer RNAs and their ability to induce changes in transcript abundance and cell proliferation through m5C-mediated mechanisms. These findings collectively establish RCMS editors as a focused epitranscriptome engineering tool, facilitating the identification of individual m5C alterations and their consequential effects.
Assuntos
5-Metilcitosina , Técnicas Genéticas , Metilação , Metiltransferases , Edição de RNA , Animais , Camundongos , 5-Metilcitosina/metabolismo , Metiltransferases/genética , Metiltransferases/metabolismo , RNA de Transferência/metabolismo , Sistemas CRISPR-Cas , HumanosRESUMO
Drug resistance is a major barrier in cancer treatment and anticancer drug development. Growing evidence indicates that non-coding RNAs (ncRNAs), especially microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), play pivotal roles in cancer progression, therapy, and drug resistance. Furthermore, ncRNAs have been proven to be promising novel therapeutic targets for cancer treatment. Reversing dysregulated ncRNAs by drugs holds significant potential as an effective therapeutic strategy for overcoming drug resistance. Therefore, we developed ncRNADrug, an integrated and comprehensive resource that records manually curated and computationally predicted ncRNAs associated with drug resistance, ncRNAs targeted by drugs, as well as potential drug combinations for the treatment of resistant cancer. Currently, ncRNADrug collects 29 551 experimentally validated entries involving 9195 ncRNAs (2248 miRNAs, 4145 lncRNAs and 2802 circRNAs) associated with the drug resistance of 266 drugs, and 32 969 entries involving 10 480 ncRNAs (4338 miRNAs, 6087 lncRNAs and 55 circRNAs) targeted by 965 drugs. In addition, ncRNADrug also contains associations between ncRNAs and drugs predicted from ncRNA expression profiles by differential expression analysis. Altogether, ncRNADrug surpasses the existing related databases in both data volume and functionality. It will be a useful resource for drug development and cancer treatment. ncRNADrug is available at http://www.jianglab.cn/ncRNADrug.
Assuntos
MicroRNAs , Neoplasias , RNA Longo não Codificante , Humanos , Resistência a Medicamentos , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/genética , RNA Circular/genética , RNA Circular/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , Bases de Dados FactuaisRESUMO
Efficient photocatalytic H2 production from wastewater instead of pure water is a dual solution to the environmental and energy crisis, but due to the rapid recombination of photoinduced charge in the photocatalyst and inevitable electron depletion caused by organic pollutants, a significant challenge of dual-functional photocatalysis (simultaneous oxidative and reductive reactions) in single catalyst is designing spatial separation path for photogenerated charges at atomic level. Here, we designed a Pt-doped BaTiO3 single catalyst with oxygen vacancies (BTPOv) that features Pt-O-Ti3+ short charge separation site, which enables excellent H2 production performance (1519 µmol·g-1·h-1) while oxidizing moxifloxacin (k = 0.048 min-1), almost 43 and 98 times than that of pristine BaTiO3 (35 µmol·g-1·h-1 and k = 0.00049 min-1). The efficient charge separation path is demonstrated that the oxygen vacancies extract photoinduced charge from photocatalyst to catalytic surface, and the adjacent Ti3+ defects allow rapid migration of electrons to Pt atoms through the superexchange effect for H* adsorption and reduction, while the holes will be confined in Ti3+ defects for oxidation of moxifloxacin. Impressively, the BTPOv shows an exceptional atomic economy and potential for practical applications, a best H2 production TOF (370.4 h-1) among the recent reported dual-functional photocatalysts and exhibiting excellent H2 production activity in multiple types of wastewaters.