Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Plant J ; 2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38852163

RESUMO

Sugarcane is the main source of sugar worldwide, and 80% of the sucrose production comes from sugarcane. However, the genetic differentiation and basis of agronomic traits remain obscure. Here, we sequenced the whole-genome of 219 elite worldwide sugarcane cultivar accessions. A total of approximately 6 million high-quality genome-wide single nucleotide polymorphisms (SNPs) were detected. A genome-wide association study identified a total of 2198 SNPs that were significantly associated with sucrose content, stalk number, plant height, stalk diameter, cane yield, and sugar yield. We observed homozygous tendency of favor alleles of these loci, and over 80% of cultivar accessions carried the favor alleles of the SNPs or haplotypes associated with sucrose content. Gene introgression analysis showed that the number of chromosome segments from Saccharum spontaneum decreased with the breeding time of cultivars, while those from S. officinarum increased in recent cultivars. A series of selection signatures were identified in sugarcane improvement procession, of which 104 were simultaneously associated with agronomic traits and 45 of them were mainly associated with sucrose content. We further proposed that as per sugarcane transgenic experiments, ShN/AINV3.1 plays a positive role in increasing stalk number, plant height, and stalk diameter. These findings provide comprehensive resources for understanding the genetic basis of agronomic traits and will be beneficial to germplasm innovation, screening molecular markers, and future sugarcane cultivar improvement.

2.
BMC Plant Biol ; 24(1): 25, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38166633

RESUMO

BACKGROUND: Maize kernel colour is an important index for evaluating maize quality and value and mainly entails two natural pigments, carotenoids and anthocyanins. To analyse the genetic mechanism of maize kernel colour and mine single nucleotide polymorphisms (SNPs) related to kernel colour traits, an association panel including 244 superior maize inbred lines was used to measure and analyse the six traits related to kernel colour in two environments and was then combined with the about 3 million SNPs covering the whole maize genome in this study. Two models (Q + K, PCA + K) were used for genome-wide association analysis (GWAS) of kernel colour traits. RESULTS: We identified 1029QTLs, and two SNPs contained in those QTLs were located in coding regions of Y1 and R1 respectively, two known genes that regulate kernel colour. Fourteen QTLs which contain 19 SNPs were within 200 kb interval of the genes involved in the regulation of kernel colour. 13 high-confidence SNPs repeatedly detected for specific traits, and AA genotypes of rs1_40605594 and rs5_2392770 were the most popular alleles appeared in inbred lines with higher levels. By searching the confident interval of the 13 high-confidence SNPs, a total of 95 candidate genes were identified. CONCLUSIONS: The genetic loci and candidate genes of maize kernel colour provided in this study will be useful for uncovering the genetic mechanism of maize kernel colour, gene cloning in the future. Furthermore, the identified elite alleles can be used to molecular marker-assisted selection of kernel colour traits.


Assuntos
Estudo de Associação Genômica Ampla , Zea mays , Zea mays/genética , Alelos , Antocianinas , Cor , Sementes/genética , Fenótipo , Polimorfismo de Nucleotídeo Único/genética
3.
Plant Physiol ; 191(4): 2316-2333, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36652388

RESUMO

Carbon and nitrogen are the two main nutrients in maize (Zea mays L.) kernels, and kernel filling and metabolism determine seed formation and germination. However, the molecular mechanisms underlying the relationship between kernel filling and corresponding carbon and nitrogen metabolism remain largely unknown. Here, we found that HEAT SHOCK PROTEIN 90.6 (HSP90.6) is involved in both seed filling and the metabolism processes of carbon and nitrogen. A single-amino acid mutation within the HATPase_c domain of HSP90.6 led to small kernels. Transcriptome profiling showed that the expression of amino acid biosynthesis- and carbon metabolism-related genes was significantly downregulated in the hsp90.6 mutant. Further molecular evidence showed strong interactions between HSP90.6 and the 26S proteasome subunits REGULATORY PARTICLE NON-ATPASE6 (RPN6) and PROTEASOME BETA SUBUNITD2 (PBD2). The mutation of hsp90.6 significantly reduced the activity of the 26S proteasome, resulting in the accumulation of ubiquitinated proteins and defects in nitrogen recycling. Moreover, we verified that HSP90.6 is involved in carbon metabolism through interacting with the 14-3-3 protein GENERAL REGULATORY FACTOR14-4 (GF14-4). Collectively, our findings revealed that HSP90.6 is involved in seed filling and development by interacting with the components controlling carbon and nitrogen metabolism.


Assuntos
Carbono , Sementes , Carbono/metabolismo , Sementes/metabolismo , Aminoácidos/metabolismo , Nitrogênio/metabolismo , Proteínas de Choque Térmico/metabolismo , Zea mays/metabolismo
4.
Virol J ; 21(1): 107, 2024 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-38720392

RESUMO

Natural immunity is the first defense line of the host immune system, which plays a significant role in combating foreign pathogenic microorganisms. The IFN-ß (interferon-beta) signaling pathway, being a typical example of innate immunity, plays a vital function. This study aimed to elucidate the function of pseudorabies virus (PRV) UL38 protein (unique long region 38) in suppressing the activation of the IFN-ß signaling pathway. The findings from our study indicate that the PRV UL38 protein effectively hampers the activation of IFN-ß by poly (dA: dT) (poly(deoxyadenylic-deoxythymidylic)) and 2'3'-cGAMP (2'-3'-cyclic GMP-AMP). Furthermore, UL38 exhibits spatial co-localization with STING (stimulator of interferon genes) and effectively hinders STING dimerization. Subsequently, STING was downgraded to suppress the production of IFN-ß and ISGs (interferon stimulated genes). Immunoprecipitation analysis revealed that the interaction between UL38 and STING, which subsequently initiated the degradation of STING via selective autophagy mediated by TOLLIP (toll interacting protein). To summarize, this research elucidates the function of UL38 in counteracting the cGAS (cGAMP synthase)-STING-induced IFN-ß pathway. The PRV UL38 protein may attenuate the activation of IFN-ß as a means of regulating the virus's persistence in the host.


Assuntos
Autofagia , Herpesvirus Suídeo 1 , Interferon beta , Proteínas de Membrana , Nucleotidiltransferases , Transdução de Sinais , Animais , Humanos , Linhagem Celular , Células HEK293 , Herpesvirus Suídeo 1/fisiologia , Herpesvirus Suídeo 1/imunologia , Interações Hospedeiro-Patógeno , Imunidade Inata , Interferon beta/metabolismo , Interferon beta/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Nucleotidiltransferases/metabolismo , Nucleotidiltransferases/genética , Pseudorraiva/virologia , Pseudorraiva/metabolismo , Pseudorraiva/imunologia , Proteínas Virais/metabolismo , Proteínas Virais/genética , Suínos , Mesocricetus
5.
J Pak Med Assoc ; 74(7): 1355-1357, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39028070

RESUMO

Hepatic sinus obstruction syndrome (HSOS) is easy to be misdiagnosed or missed, and there is no unified and effective treatment for it. A patient was considered to have Budd-Chiari syndrome. He underwent a transjugular liver biopsy, and pathological examination revealed HSOS without liver cirrhosis. After the failure of anticoagulation therapy, he successfully received a transjugular intrahepatic portosystemic shunt (TIPS). After discharge, he was followed-up for four years with a good prognosis. G. segetum-induced HSOS can be easily overlooked, especially in patients with underlying liver diseases. When medical therapy fails, TIPS can control ascites and portal hypertension, and the long-term prognosis is optimistic.


Assuntos
Hepatopatias Alcoólicas , Derivação Portossistêmica Transjugular Intra-Hepática , Humanos , Masculino , Hepatopatias Alcoólicas/complicações , Hepatopatia Veno-Oclusiva/diagnóstico , Hepatopatia Veno-Oclusiva/complicações , Síndrome de Budd-Chiari/complicações , Síndrome de Budd-Chiari/diagnóstico , Síndrome de Budd-Chiari/etiologia , Pessoa de Meia-Idade
6.
BMC Plant Biol ; 23(1): 631, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38062375

RESUMO

Maize (Zea mays L.) is an important food and feed crop worldwide and serves as a a vital source of biological trace elements, which are important breeding targets. In this study, 170 maize materials were used to detect QTNs related to the content of Mn, Fe and Mo in maize grains through two GWAS models, namely MLM_Q + K and MLM_PCA + K. The results identified 87 (Mn), 205 (Fe), and 310 (Mo) QTNs using both methods in the three environments. Considering comprehensive factors such as co-location across multiple environments, strict significance threshold, and phenotypic value in multiple environments, 8 QTNs related to Mn, 10 QTNs related to Fe, and 26 QTNs related to Mo were used to identify 44 superior alleles. Consequently, three cross combinations with higher Mn element, two combinations with higher Fe element, six combinations with higher Mo element, and two combinations with multiple element (Mn/Fe/Mo) were predicted to yield offspring with higher numbers of superior alleles, thereby increasing the likelihood of enriching the corresponding elements. Additionally, the candidate genes identified 100 kb downstream and upstream the QTNs featured function and pathways related to maize elemental transport and accumulation. These results are expected to facilitate the screening and development of high-quality maize varieties enriched with trace elements, establish an important theoretical foundation for molecular marker assisted breeding and contribute to a better understanding of the regulatory network governing trace elements in maize.


Assuntos
Oligoelementos , Estudo de Associação Genômica Ampla , Zea mays/genética , Melhoramento Vegetal , Fenótipo
7.
J Exp Bot ; 73(19): 6800-6815, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-35922377

RESUMO

Desiccation tolerance is a remarkable feature of pollen, seeds, and resurrection-type plants. Exposure to desiccation stress can cause sporophytic defects, resulting in male sterility. Here, we report the novel maize sterility gene DRP1 (Desiccation-Related Protein 1), which was identified by bulked-segregant analysis sequencing and encodes a desiccation-related protein. Loss of function of DRP1 results in abnormal Ubisch bodies, defective tectum of the pollen exine, and complete male sterility. Our results suggest that DRP1 may facilitate anther dehydration to maintain appropriate water status. DRP1 is a secretory protein that is specifically expressed in the tapetum and microspore from the tetrad to the uninucleate microspore stage. Differentially expressed genes in drp1 are enriched in Gene Ontology terms for pollen exine formation, polysaccharide catabolic process, extracellular region, and response to heat. In addition, DRP1 is a target of selection that appears to have played an important role in the spread of maize from tropical/subtropical to temperate regions. Taken together, our results suggest that DRP1 encodes a desiccation-related protein whose loss of function causes male sterility. Our findings provide a potential genetic resource that may be used to design crops for heterosis utilization.


Assuntos
Infertilidade das Plantas , Pólen , Zea mays , Dessecação , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/fisiologia , Pólen/crescimento & desenvolvimento , Zea mays/genética , Zea mays/fisiologia , Genes de Plantas
8.
Plant Cell ; 31(5): 974-992, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30914497

RESUMO

The early maize (Zea mays) seed undergoes several developmental stages after double fertilization to become fully differentiated within a short period of time, but the genetic control of this highly dynamic and complex developmental process remains largely unknown. Here, we report a high temporal-resolution investigation of transcriptomes using 31 samples collected at an interval of 4 or 6 h within the first six days of seed development. These time-course transcriptomes were clearly separated into four distinct groups corresponding to the stages of double fertilization, coenocyte formation, cellularization, and differentiation. A total of 22,790 expressed genes including 1415 transcription factors (TFs) were detected in early stages of maize seed development. In particular, 1093 genes including 110 TFs were specifically expressed in the seed and displayed high temporal specificity by expressing only in particular period of early seed development. There were 160, 22, 112, and 569 seed-specific genes predominantly expressed in the first 16 h after pollination, coenocyte formation, cellularization, and differentiation stage, respectively. In addition, network analysis predicted 31,256 interactions among 1317 TFs and 14,540 genes. The high temporal-resolution transcriptome atlas reported here provides an important resource for future functional study to unravel the genetic control of seed development.


Assuntos
Regulação da Expressão Gênica de Plantas/genética , Proteínas de Plantas/genética , Sementes/genética , Transcriptoma , Zea mays/genética , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Especificidade de Órgãos , Polinização , Sementes/crescimento & desenvolvimento , Fatores de Tempo , Fatores de Transcrição/genética , Zea mays/crescimento & desenvolvimento
9.
Genomics ; 113(4): 1681-1688, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33839267

RESUMO

Conventional genome-wide association studies (GWAS) focused on the phenotypic mean differences (mGWAS) but often ignored genetic variants influencing differences in the variance between genotypes. In this study, we performed variance heterogeneity GWAS (vGWAS) analysis for 13 previously measured agronomic traits in a maize population. We discovered a total of 129 significant SNPs. We demonstrated that the genetic loci influencing mean differences and variance heterogeneity formed distinct groups, suggesting that breeders were able to independently select for phenotype mean and variance values. Moreover, vGWAS served as a tractable approach to effectively identify 214 epistatic interaction pairs. In addition, we documented four agronomic traits with decreasing phenotype variance during modern maize breeding history and identified the potential genetic variants influencing this process. In summary, we discovered additional non-additive effects contributing to missing heritability and valuable genetic variants used for breeding varieties with desired phenotypic variance.


Assuntos
Estudo de Associação Genômica Ampla , Zea mays , Genótipo , Fenótipo , Melhoramento Vegetal , Polimorfismo de Nucleotídeo Único , Zea mays/genética
10.
Int J Mol Sci ; 23(6)2022 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35328469

RESUMO

Pentatricopeptide repeat (PPR) proteins are a large protein family in higher plants and play important roles during seed development. Most reported PPR proteins function in mitochondria. However, some PPR proteins localize to more than one organelle; functional characterization of these proteins remains limited in maize (Zea mays L.). Here, we cloned and analyzed the function of a P-subfamily PPR protein, PPR278. Loss-function of PPR278 led to a lower germination rate and other defects at the seedling stage, as well as smaller kernels compared to the wild type. PPR278 was expressed in all investigated tissues. Furthermore, we determined that PPR278 is involved in the splicing of two mitochondrial transcripts (nad2 intron 4 and nad5 introns 1 and 4), as well as RNA editing of C-to-U sites in 10 mitochondrial transcripts. PPR278 localized to the nucleus, implying that it may function as a transcriptional regulator during seed development. Our data indicate that PPR278 is involved in maize seed development via intron splicing and RNA editing in mitochondria and has potential regulatory roles in the nucleus.


Assuntos
Proteínas de Plantas , Zea mays , Regulação da Expressão Gênica de Plantas , Íntrons/genética , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Splicing de RNA/genética , RNA Mitocondrial/genética , RNA Mitocondrial/metabolismo , Zea mays/metabolismo
11.
Genome Res ; 28(7): 1020-1028, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29903724

RESUMO

Genomic imprinting refers to allele-specific expression of genes depending on their parental origin. Nucleosomes, the fundamental units of chromatin, play a critical role in gene transcriptional regulation. However, it remains unknown whether differential nucleosome organization is related to the allele-specific expression of imprinted genes. Here, we generated a genome-wide map of allele-specific nucleosome occupancy in maize endosperm and presented an integrated analysis of its relationship with parent-of-origin-dependent gene expression and DNA methylation. We found that ∼2.3% of nucleosomes showed significant parental bias in maize endosperm. The parent-of-origin-dependent nucleosomes mostly exist as single isolated nucleosomes. Parent-of-origin-dependent nucleosomes were significantly associated with the allele-specific expression of imprinted genes, with nucleosomes positioned preferentially in the promoter of nonexpressed alleles of imprinted genes. Furthermore, we found that most of the paternal specifically positioned nucleosomes (pat-nucleosomes) were associated with parent-of-origin-dependent differential methylated regions, suggesting a functional link between the maternal demethylation and the occurrence of pat-nucleosome. Maternal specifically positioned nucleosomes (mat-nucleosomes) were independent of allele-specific DNA methylation but seem to be associated with allele-specific histone modification. Our study provides the first genome-wide map of allele-specific nucleosome occupancy in plants and suggests a mechanistic connection between chromatin organization and genomic imprinting.


Assuntos
Impressão Genômica/genética , Nucleossomos/genética , Zea mays/genética , Alelos , Cromatina/genética , Metilação de DNA/genética , Endosperma/genética , Regulação da Expressão Gênica de Plantas/genética , Genes de Plantas/genética , Genoma de Planta/genética , Regiões Promotoras Genéticas/genética
12.
Sensors (Basel) ; 21(4)2021 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-33562168

RESUMO

Global navigation satellite system (GNSS) precise point positioning (PPP) has been widely used for high-precision time and frequency transfer. However, the day-boundary discontinuities at the boundary epochs of adjacent days or batches are the most significant obstacle preventing PPP from continuous time transfer. The day-boundary discontinuities in station estimates and time comparisons are mainly caused by the code-pseudorange noise during the analysis of observation data in daily batches, where the absolute clock offset is determined by the average code measurements. However, some discontinuities with amplitudes even more than 0.15 ns may still appear in station clock estimates and time comparisons, although several methods had been proposed to remove such discontinuities. The residual small amplitude of the day-boundary discontinuities in some PPP station clock estimates and time comparisons through new GNSSs like Galileo seems larger, especially using precise clock products with large discontinuities. To further understand the origin of the day-boundary discontinuities, the influence of GNSS precise products on the day-boundary discontinuities in PPP station clock estimates and time comparisons is investigated in this paper. Ten whole days of Multi-GNSS Experiment (MGEX) from modified Julian date (MJD) 59028 to 59037 are used as the observation data. For a comparative analysis, the station clock estimates are compared with global positioning system (GPS) and Galileo observations through PPP and network solutions, separately. The experimental results show that the daily discontinuities in current combined GPS final and rapid clock products are less than 0.1 ns, and their influence on the origin of day-boundary discontinuities in PPP station clock estimates and time comparison are statistically negligible. However, the daily discontinuities in individual Analysis Centers (ACs) GPS products are more extensive, and their influence on the origin of the day-boundary discontinuities in GPS PPP station clock estimates cannot be ignored. The day-boundary discontinuities demonstrate random walk noise characteristics and deteriorate the station clocks' long-term frequency stability, especially at an average time of more than one day. Although Galileo clock daily discontinuities are different from those of GPS, their influence on the day-boundary discontinuities in station clock estimates is nearly similar to the GPS PPP. The influence of daily discontinuities of Galileo clocks on PPP time comparison is similar to GPS and is not particularly critical to time comparison. However, combined and weighted MGEX products should be developed or Galileo IPPP should be used for remote comparison of high-stability clocks.

13.
J Integr Plant Biol ; 63(7): 1227-1239, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33559966

RESUMO

Transcriptome deep sequencing (RNA-seq) has become a routine method for global gene expression profiling. However, its application to large-scale experiments remains limited by cost and labor constraints. Here we describe a massively parallel 3' end RNA-seq (MP3RNA-seq) method that introduces unique sample barcodes during reverse transcription to permit sample pooling immediately following this initial step. MP3RNA-seq allows for handling of hundreds of samples in a single experiment, at a cost of about $6 per sample for library construction and sequencing. MP3RNA-seq is effective for not only high-throughput gene expression profiling, but also genotyping. To demonstrate its utility, we applied MP3RNA-seq to 477 double haploid lines of maize. We identified 19,429 genes expressed in at least 50% of the lines and 35,836 high-quality single nucleotide polymorphisms for genotyping analysis. Armed with these data, we performed expression and agronomic trait quantitative trait locus (QTL) mapping and identified 25,797 expression QTLs for 15,335 genes and 21 QTLs for plant height, ear height, and relative ear height. We conclude that MP3RNA-seq is highly reproducible, accurate, and sensitive for high-throughput gene expression profiling and genotyping, and should be generally applicable to most eukaryotic species.


Assuntos
Locos de Características Quantitativas/genética , Zea mays/genética , Genótipo , RNA-Seq
14.
Sensors (Basel) ; 20(9)2020 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-32375378

RESUMO

Time and frequency transfer through global navigation satellite system (GNSS) precise point positioning (PPP) based on carrier-phase measurements has been widely used for clock comparisons in national timing laboratories. However, the time jumps up to one nanosecond at the day boundary epochs of adjacent daily batches lead to discontinuities in the time transfer results. Therefore, it is a major obstacle to achieve continuous carrier phase time transfer. The day-boundary discontinuities have been studied for many years, and they are believed to be caused by the long-term pseudorange noise during estimation of the clock offset in the daily batches and are nearly in accordance with a Gaussian curve. Several methods of eliminating the day-boundary discontinuity were proposed during the past fifteen years, such as shift and overlapping, longer batch processing, clock handover, and ambiguity stacking. Some errors and new noise limit the use of such methods in the long-term clock stability comparison. One of the effective methods is phase ambiguity fixing resolution in zero-differenced PPP, which is based on the precise products of wide-lane satellite bias (WSB) provided by the new international GNSS Service (IGS) Analysis Center of Centre National d'Etudes Spatiales (CNES) and Collecte Localisation Satellites (CLS). However, it is not suitable for new GNSS, such as the Beidou Satellite System (BDS), GALILEO, and QZSS. For overcoming the drawbacks above, Multi-GNSS Experiment (MGEX) observation data of 10 whole days from MJD 58624 to 58633have been network processed by batch least square resolution. These observations come from several ground receivers located in different national timing laboratories. Code and carrier phase ionosphere-free measurements of GPS and BDS satellites are used, and the time transfer results from network processing are compared with PPP results provided by Bureau International des Poids et Mesures (BIPM) and used for international atomic time (TAI) computation (TAIPPP) and universal time coordination (UTC). It is shown that the time offsets of three different time links are almost continuous and the day-boundary discontinuities are sharply eliminated by network processing, although a little extent of day-boundary discontinuities still exist in the results of UTC(USNO)-UTC(PTB). The accuracy of time transfer has been significantly improved, and the frequency stability of UTC(NTSC)-UTC(PTB) can be up to 6.8 × 10-15 on average time of more than one day. Thus, it is suitable for continuous multi-GNSS time transfer, especially for long-term clock stability comparison.

15.
J Integr Plant Biol ; 61(6): 706-727, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30506638

RESUMO

Uncovering the genetic basis of seed development will provide useful tools for improving both crop yield and nutritional value. However, the genetic regulatory networks of maize (Zea mays) seed development remain largely unknown. The maize opaque endosperm and small germ 1 (os1) mutant has opaque endosperm and a small embryo. Here, we cloned OS1 and show that it encodes a putative transcription factor containing an RWP-RK domain. Transcriptional analysis indicated that OS1 expression is elevated in early endosperm development, especially in the basal endosperm transfer layer (BETL), conducting zone (CZ), and central starch endosperm (CSE) cells. RNA sequencing (RNA-Seq) analysis of the os1 mutant revealed sharp downregulation of certain genes in specific cell types, including ZmMRP-1 and Meg1 in BETL cells and a majority of zein- and starch-related genes in CSE cells. Using a haploid induction system, we show that wild-type endosperm could rescue the smaller size of os1 embryo, which suggests that nutrients are allocated by the wild-type endosperm. Therefore, our data imply that the network regulated by OS1 accomplishes a key step in nutrient allocation between endosperm and embryo within maize seeds. Identification of this network will help uncover the mechanisms regulating the nutritional balance between endosperm and embryo.


Assuntos
Endosperma/metabolismo , Proteínas de Plantas/metabolismo , Zea mays/embriologia , Alelos , Endosperma/ultraestrutura , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Genes de Plantas , Anotação de Sequência Molecular , Mutação/genética , Fenótipo , Filogenia , Proteínas de Plantas/genética , Domínios Proteicos , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Transcriptoma/genética , Transformação Genética , Zea mays/genética , Zea mays/ultraestrutura , Zeína/metabolismo , Zeína/ultraestrutura
16.
Plant J ; 92(6): 1143-1156, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29072883

RESUMO

The complex interactions between transcription factors (TFs) and their target genes in a spatially and temporally specific manner are crucial to all cellular processes. Reconstruction of gene regulatory networks (GRNs) from gene expression profiles can help to decipher TF-gene regulations in a variety of contexts; however, the inevitable prediction errors of GRNs hinder optimal data mining of RNA-Seq transcriptome profiles. Here we perform an integrative study of Zea mays (maize) seed development in order to identify key genes in a complex developmental process. First, we reverse engineered a GRN from 78 maize seed transcriptome profiles. Then, we studied collective gene interaction patterns and uncovered highly interwoven network communities as the building blocks of the GRN. One community, composed of mostly unknown genes interacting with opaque2, brittle endosperm1 and shrunken2, contributes to seed phenotypes. Another community, composed mostly of genes expressed in the basal endosperm transfer layer, is responsible for nutrient transport. We further integrated our inferred GRN with gene expression patterns in different seed compartments and at various developmental stages and pathways. The integration facilitated a biological interpretation of the GRN. Our yeast one-hybrid assays verified six out of eight TF-promoter bindings in the reconstructed GRN. This study identified topologically important genes in interwoven network communities that may be crucial to maize seed development.


Assuntos
Redes Reguladoras de Genes/genética , Zea mays/genética , Endosperma/genética , Endosperma/crescimento & desenvolvimento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas , Sementes/genética , Sementes/crescimento & desenvolvimento , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcriptoma , Zea mays/crescimento & desenvolvimento
17.
BMC Plant Biol ; 18(1): 68, 2018 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-29685101

RESUMO

BACKGROUND: Drought is one of the major factors limiting global maize production. Exposure to long-term drought conditions inhibits growth and leads to yield losses. Although several drought-responsive genes have been identified and functionally analyzed, the mechanisms underlying responses to drought and water recovery treatments have not been fully elucidated. To characterize how maize seedling respond to drought stress at the transcriptional level, we analyzed physiological responses and differentially expressed genes (DEGs) in the inbred line B73 under water deficit and recovery conditions. RESULTS: The data for relative leaf water content, leaf size, and photosynthesis-related parameters indicated that drought stress significantly repressed maize seedling growth. Further RNA sequencing analysis revealed that 6107 DEGs were responsive to drought stress and water recovery, with more down-regulated than up-regulated genes. Among the DEGs, the photosynthesis- and hormone-related genes were enriched in responses to drought stress and re-watering. Additionally, transcription factor genes from 37 families were differentially expressed among the three analyzed time-points. Gene ontology enrichment analyses of the DEGs indicated that 50 GO terms, including those related to photosynthesis, carbohydrate metabolism, oxidoreductase activities, nutrient metabolism and other drought-responsive pathways, were over-represented in the drought-treated seedlings. The content of gibberellin in drought treatment seedlings was decreased compared to that of control seedlings, while abscisic acid showed accumulated in the drought treated plants. The deep analysis of DEGs related to cell wall development indicated that these genes were prone to be down-regulated at drought treatment stage. CONCLUSIONS: Many genes that are differentially expressed in responses to drought stress and water recovery conditions affect photosynthetic systems and hormone biosynthesis. The identified DEGs, especially those encoding transcription factors, represent potential targets for developing drought-tolerant maize lines.


Assuntos
Plântula/metabolismo , Plântula/fisiologia , Zea mays/metabolismo , Zea mays/fisiologia , Secas , Regulação da Expressão Gênica de Plantas/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
18.
Cell Mol Biol (Noisy-le-grand) ; 64(6): 110-113, 2018 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-29808809

RESUMO

Aggressive angiomyxoma (AA) is a distinctive soft tissue tumor with a high risk of local recurrence. Clinicians must be aware of this rare tumor pre-operatively. Excision is the preferred method of AA treatment. The case report presents a case of a 36-year-old woman who was difficulty in walking due to a non-painful tumor in the abdomen and perineum. She was misdiagnosed as abdomen neurofibroma for more than 10 years, and an operation was performed in 1997. However, the tumor was incompletely resected because its huge volume accompanies with extensive infiltration and bleeding. The tumors in her abdomen and perineum were growing gradually, and the latter became a large lump which impeded her daily life. In 2008, the perineal tumor was incompletely resected, which weighed 10725 g. The severe hemorrhage had been ceased by Gonadotropin-Releasing Hormone treatment. She is alive till now. Details of the history and operative procedures are presented. An AA diagnosis was made by microscopy immunohistochemically. Long-time misdiagnosis and improper treatment are the important reasons for making it impossible to be radically resected. Pathological and immunohistochemical examination are important for avoiding misdiagnosis. For this case, there is a remaining tumor in her abdomen. A special project including further follow-up and treatment will be taken out.


Assuntos
Neoplasias Abdominais/diagnóstico , Erros de Diagnóstico , Mixoma/diagnóstico , Neurofibroma/diagnóstico , Neoplasias Pélvicas/diagnóstico , Períneo , Neoplasias Abdominais/tratamento farmacológico , Neoplasias Abdominais/patologia , Neoplasias Abdominais/cirurgia , Adulto , Antineoplásicos Hormonais/uso terapêutico , Terapia Combinada , Cistotomia , Progressão da Doença , Feminino , Gosserrelina/uso terapêutico , Hemorragia/etiologia , Humanos , Laparotomia , Imageamento por Ressonância Magnética , Limitação da Mobilidade , Mixoma/tratamento farmacológico , Mixoma/patologia , Mixoma/cirurgia , Invasividade Neoplásica/patologia , Neoplasias Pélvicas/tratamento farmacológico , Neoplasias Pélvicas/patologia , Neoplasias Pélvicas/cirurgia , Períneo/patologia , Períneo/cirurgia , Carga Tumoral , Ureterostomia
19.
New Phytol ; 210(1): 256-68, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26593156

RESUMO

The number of leaves and their distributions on plants are critical factors determining plant architecture in maize (Zea mays), and leaf number is frequently used as a measure of flowering time, a trait that is key to local environmental adaptation. Here, using a large set of 866 maize-teosinte BC2 S3 recombinant inbred lines genotyped by using 19,838 single nucleotide polymorphism markers, we conducted a comprehensive genetic dissection to assess the genetic architecture of leaf number and its genetic relationship to flowering time. We demonstrated that the two components of total leaf number, the number of leaves above (LA) and below (LB) the primary ear, were under relatively independent genetic control and might be subject to differential directional selection during maize domestication and improvement. Furthermore, we revealed that flowering time and leaf number are commonly regulated at a moderate level. The pleiotropy of the genes ZCN8, dlf1 and ZmCCT on leaf number and flowering time were validated by near-isogenic line analysis. Through fine mapping, qLA1-1, a major-effect locus that specifically affects LA, was delimited to a region with severe recombination suppression derived from teosinte. This study provides important insights into the genetic basis of traits affecting plant architecture and adaptation. The genetic independence of LA from LB enables the optimization of leaf number for ideal plant architecture breeding in maize.


Assuntos
Flores/fisiologia , Folhas de Planta/anatomia & histologia , Zea mays/genética , Zea mays/fisiologia , Cruzamentos Genéticos , Flores/genética , Estudos de Associação Genética , Endogamia , Fenótipo , Mapeamento Físico do Cromossomo , Folhas de Planta/genética , Locos de Características Quantitativas/genética , Reprodutibilidade dos Testes , Fatores de Tempo
20.
RSC Adv ; 14(22): 15328-15336, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38741975

RESUMO

Isotope analysis of Sn plays a crucial role in geochemical studies and in monitoring nuclear contamination. Nevertheless, prevalent analytical techniques for examining Sn isotopes encounter the issue of isobaric interference, markedly impacting the accuracy of the test results. Laser resonance ionization mass spectrometry (LRIMS) can effectively overcome the difficulties associated with the isobaric interference inherent in commercial mass spectrometry. In this paper, different amounts of Sn were prepared on Re filaments by electrodeposition and tested via LRIMS. The results showed that the average detection efficiency of LRIMS decreased with increasing total Sn content from 1 µg to 4 µg, and the fluctuations in the test results among the samples increased significantly. Therefore, the electrodeposition process, as well as the composition and morphology of the deposits were characterized by SEM, EDS and XPS; results showed that the degradation of the samples with increasing Sn content was attributed to the complexity of the composition, micro-structure, valence of the deposits, and the interference of various elements. To cope with the anomalies encountered above, the deposits were heat-treated at 600 °C in a hydrogen atmosphere to eliminate detrimental impurities, like Cl, and Sn was effectively reduced to an almost singular atomic state. Furthermore, a titanium layer was covered on the surface of the heat-treated deposit by magnetron sputtering. Ultimately, a highly efficient and stable Sn atomic beam source with a sandwiched structure has been successfully developed and exhibits broad application prospect.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA