Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 176
Filtrar
1.
Neuroimage ; 291: 120584, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38522806

RESUMO

Memory is closely associated with neuronal activity and dendritic spine formation. Low-intensity transcranial ultrasound stimulation (TUS) improves the memory of individuals with vascular dementia (VD). However, it is unclear whether neuronal activity and dendritic spine formation under ultrasound stimulation are involved in memory improvement in VD. In this study, we found that seven days of TUS improved memory in VD model while simultaneously increasing pyramidal neuron activity, promoting dendritic spine formation, and reducing dendritic spine elimination. These effects lasted for 7 days but disappeared on 14 d after TUS. Neuronal activity and dendritic spine formation strongly corresponded to improvements in memory behavior over time. In addition, we also found that the memory, neuronal activity and dendritic spine of VD mice cannot be restored again by TUS of 7 days after 28 d. Collectively, these findings suggest that TUS increases neuronal activity and promotes dendritic spine formation and is thus important for improving memory in patients with VD.


Assuntos
Demência Vascular , Camundongos , Humanos , Animais , Demência Vascular/terapia , Neurônios , Células Piramidais , Ultrassonografia
2.
Neurochem Res ; 49(2): 348-362, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37812268

RESUMO

Melittin, a principal constituent of honeybee venom, exhibits diverse biological effects, encompassing anti-inflammatory capabilities and neuroprotective actions against an array of neurological diseases. In this study, we probed the prospective protective influence of melittin on cerebral ischemia, focusing on its anti-inflammatory activity. Mechanistically, we explored whether monocyte chemotactic protein-induced protein 1 (MCPIP1, also known as ZC3H12A), a recently identified zinc-finger protein, played a role in melittin-mediated anti-inflammation and neuroprotection. Male C57/BL6 mice were subjected to distal middle cerebral artery occlusion to create a focal cerebral cortical ischemia model, with melittin administered intraperitoneally. We evaluated motor functions, brain infarct volume, cerebral blood flow, and inflammatory marker levels within brain tissue, employing quantitative real-time polymerase chain reaction, enzyme-linked immunosorbent assays, and western blotting. In vitro, an immortalized BV-2 microglia culture was stimulated with lipopolysaccharide (LPS) to establish an inflammatory cell model. Post-melittin exposure, cell viability, and cytokine expression were examined. MCPIP1 was silenced using siRNA in LPS-induced BV-2 cells, with the ensuing nuclear translocation of nuclear factor-κB assessed through cellular immunofluorescence. In vivo, melittin enhanced motor functions, diminished infarction, fostered blood flow restoration in ischemic brain regions, and markedly inhibited the expression of inflammatory cytokines (interleukin-1ß, interleukin-6, tumor necrosis factor-α, and nuclear factor-κB). In vitro, melittin augmented MCPIP1 expression in LPS-induced BV-2 cells and ameliorated inflammation-induced cell death. The neuroprotective effect conferred by melittin was attenuated upon MCPIP1 knockdown. Our findings establish that melittin-induced tolerance to ischemic injury is intrinsically linked with its anti-inflammatory capacity. Moreover, MCPIP1 is, at the very least, partially implicated in this process.


Assuntos
Isquemia Encefálica , Fármacos Neuroprotetores , Camundongos , Masculino , Animais , NF-kappa B/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Fármacos Neuroprotetores/metabolismo , Meliteno/farmacologia , Meliteno/uso terapêutico , Meliteno/genética , Regulação para Cima , Lipopolissacarídeos/farmacologia , Estudos Prospectivos , Isquemia Encefálica/metabolismo , Infarto da Artéria Cerebral Média/metabolismo , Isquemia/metabolismo , Citocinas/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Microglia/metabolismo
3.
Cereb Cortex ; 33(8): 4665-4676, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36137570

RESUMO

Low-intensity transcranial ultrasound stimulation (TUS) can modulate the coupling of high-frequency (160-200 Hz) neural oscillations and cerebral blood oxygen metabolism (BOM); however, the correlation of low-frequency (0-2 Hz) neural oscillations with BOM in temporal and frequency domains under TUS remains unclear. To address this, we monitored the TUS-evoked neuronal calcium oscillations and BOM simultaneously in the mouse visual cortex by using multimodal optical imaging with a high spatiotemporal resolution. We demonstrated that TUS can significantly increase the intensity of the neuronal calcium oscillations and BOM; the peak value, peak time, and duration of calcium oscillations are functionally related to stimulation duration; TUS does not significantly increase the neurovascular coupling strength between calcium oscillations and BOM in the temporal domain; the time differences of the energy peaks between TUS-induced calcium oscillations and BOM depend on their spectral ranges; the frequency differences of the energy peaks between TUS-induced calcium oscillations and BOM depend on their time ranges; and TUS can significantly change the phase of calcium oscillations and BOM from uniform distribution to a more concentrated region. In conclusion, ultrasound stimulation can evoke the time-frequency cross-coupling between the cortical low-frequency neuronal calcium oscillations and BOM in mouse.


Assuntos
Sinalização do Cálcio , Acoplamento Neurovascular , Camundongos , Animais , Neurônios , Oxigênio
4.
Cereb Cortex ; 33(22): 10984-10996, 2023 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-37771006

RESUMO

Vascular remodeling is essential for patients with cerebral ischemic stroke (CIS). Our previous study proved that low-intensity pulsed ultrasound (LIPUS) could increase cortical hemodynamics. However, the effects and mechanisms of LIPUS on cerebral vascular remodeling after CIS are still unknown. In this study, we applied LIPUS to the mouse brain at 0.5 h after distal middle cerebral artery occlusion (dMCAO) and subsequently daily for a stimulation time of 30 min. Results showed that compared with the dMCAO group, LIPUS markedly increased cerebral blood flow (CBF), reduced brain swelling, and improved functional recovery at day 3 after CIS. LIPUS promoted leptomeningeal vasculature remodeling, enlarged vascular diameter, and increased the average vessel length and density at day 3 after CIS. Proteomic analysis highlighted that LIPUS mainly participated in the regulation of actin cytoskeleton pathway. Rho kinase 1 (ROCK1) was downregulated by LIPUS and participated in regulation of actin cytoskeleton. Subsequently, we verified that ROCK1 was mainly expressed in pericytes. Furthermore, we demonstrated that LIPUS inhibited ROCK1/p-MLC2 signaling pathway after CIS, which had positive effects on vascular remodeling and cerebral blood circulation. In conclusion, our preliminary study revealed the vascular remodeling effects and mechanism of LIPUS in CIS, provided evidence for potential clinical application of LIPUS.


Assuntos
AVC Isquêmico , Acidente Vascular Cerebral , Camundongos , Humanos , Animais , Remodelação Vascular , Quinases Associadas a rho , Proteômica , Transdução de Sinais , Encéfalo , Ondas Ultrassônicas
5.
J Stroke Cerebrovasc Dis ; 33(2): 107517, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38056113

RESUMO

OBJECTIVES: To investigate the potential protective effects of evolocumab, a proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitor, on ischemic stroke and its underlying mechanisms. MATERIALS AND METHODS: We established a mouse model with distal middle cerebral artery occlusion. We evaluated the therapeutic effects through neurological function and infarct size, while the underlying mechanisms were elucidated using western blotting and real-time polymerase chain reaction. RESULTS: Evolocumab improved neurological recovery, reduced the infarct volume, suppressed the activation of Toll-like receptor (TLR) 4 and nuclear factor-kappa B (NF-κB), and attenuated the increased levels of IL-1ß and TNF-α after cerebral ischemia. CONCLUSION: Evolocumab protects against cerebral ischemic injury by inhibiting inflammation. Therefore, the TLR4/NF-кB pathway may represent a major mechanism in ischemic stroke.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Camundongos , Animais , Pró-Proteína Convertase 9/metabolismo , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , NF-kappa B/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/metabolismo , Subtilisinas/uso terapêutico
6.
Neuroimage ; 270: 119952, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36805093

RESUMO

Low-intensity transcranial ultrasound stimulation (TUS) has been effective in modulating several neurological and psychiatric disorders. However, how TUS modulates neuronal firing activity and synaptic plasticity remains unclear. Thus, we behaviorally tested the whisker-dependent novel object discrimination ability in mice after ultrasound stimulation and examined the cortical neuronal firing activity and synaptic plasticity in awake mice after ultrasound stimulation by two-photon fluorescence imaging. The current study presented the following results: (1) TUS could significantly improve the whisker-dependent new object discrimination ability of mice, suggesting that their learning and memory abilities were significantly enhanced; (2) TUS significantly enhanced neuronal firing activity; and (3) TUS increased the growth rate of dendritic spines in the barrel cortex, but did not promote the extinction of dendritic spines, resulting in enhanced synaptic plasticity. The above results indicate that TUS can improve the learning and memory ability of mice and enhance the neuronal firing activity and synaptic plasticity that are closely related to it. This study provides a research basis for the application of ultrasound stimulation in the treatment of learning- and memory-related diseases.


Assuntos
Plasticidade Neuronal , Neurônios , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Aprendizagem
7.
J Transl Med ; 21(1): 139, 2023 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-36823656

RESUMO

BACKGROUND: Exercise-related signaling Fndc5/irisin expresses in brain and acts as a crucial regulator of cognitive function, but its detailed roles in vascular dementia (VaD) are still unclear. Low intensity pulsed ultrasound (LIPUS), a novel brain stimulation approach, has been suggested as a promising treatment for dementia. Here, we investigated the activity and efficacy of Fndc5/irisin in experimental VaD, further explored whether the potential effects of LIPUS on VaD is related to Fndc5/irisin. METHODS: Mouse model of VaD was established with chronic cerebral hypoperfusion (CCH) using bilateral common carotid arteries stenosis (BCAS). Transcranial LIPUS was applied 24 h after BCAS and subsequently daily with a stimulation time of 5 min at an ultrasound pressure of 0.51 MPa for a period of 28 days. The levels of Fndc5/irisin in different brain regions, the hippocampal long-term potentiation and anti-inflammatory cytokines were investigated at day 28 after cognitive evaluation. Global Fndc5 knock-out (F5KO), forced expression or knockdown of Fndc5, and recombinant irisin application were respectively employed for mechanism exploration. The neuron dendritic spine density and astrocyte phenotype were detected in vitro. RESULTS: Fndc5/irisin was reduced in hippocampus of BCAS mice, forced expression hippocampal Fndc5 or bilateral intrahippocampal injection of recombinant irisin respectively improved hippocampal synaptic plasticity or inflammatory microenvironment, and then alleviated the cognitive impairments. LIPUS existed a positive efficacy in enhancing hippocampal Fndc5/irisin in BCAS mice, thus triggering a beneficial neuromodulation for VaD protection. Importantly, the neurorestorative effects of LIPUS on CCH-induced damages were totally reversed by knockdown the expression of hippocampal Fndc5 in WT mice, or in F5KO mice. Moreover, Fndc5 mediated the upregulated effects of LIPUS on spine density as well as irisin secretion of hippocampal neurons. The neuron-secreted irisin further drove reactive astrocytes to a neuroprotective phenotype. CONCLUSION: LIPUS induced a neurorestorative stimulation against VaD may be through upregulation of the hippocampal Fndc5/irisin levels. Hippocampal Fndc5/irisin signaling might be a promising strategic target for VaD.


Assuntos
Isquemia Encefálica , Demência Vascular , Camundongos , Animais , Fibronectinas/genética , Hipocampo/metabolismo , Isquemia Encefálica/metabolismo , Fatores de Transcrição/metabolismo , Camundongos Knockout , Ondas Ultrassônicas
8.
Mol Cell Biochem ; 2023 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-37659973

RESUMO

Intracranial aneurysm (IA), is a localized dilation of the intracranial arteries, the rupture of which is catastrophic. Hypertension is major IA risk factor that mediates endothelial cell damage. Sox17 is highly expressed in intracranial vascular endothelial cells, and GWAS studies indicate that its genetic alteration is one of the major genetic risk factors for IA. Vascular endothelial cell injury plays a vital role in the pathogenesis of IA. The genetic ablation of Sox17 plus hypertension induced by AngII can lead to an increased incidence of intracranial aneurysms had tested in the previous animal experiments. In order to study the underlying molecular mechanisms, we established stable Sox17-overexpressing and knockdown cell lines in human brain microvascular endothelial cells (HBMECs) first. Then flow cytometry, western blotting, and immunofluorescence were employed. We found that the knockdown of Sox17 could worsen the apoptosis and autophagy of HBMECs caused by AngII, while overexpression of Sox17 had the opposite effect. Transmission electron microscopy displayed increased autophagosomes after the knockdown of Sox17 in HBMECs. The RNA-sequencing analysis shown that dysregulation of the Sox17 gene was closely associated with the autophagy-related pathways. Our study suggests that Sox17 could protect HBMECs from AngII-induced injury by regulating autophagy and apoptosis.

9.
Acta Biochim Biophys Sin (Shanghai) ; 55(9): 1358-1369, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37587757

RESUMO

Mounting evidence demonstrates that hydrogen sulfide (H 2S) promotes anti-inflammatory molecules and inhibits pro-inflammatory cytokines in endothelial cells (ECs). This study aims to investigate the favorable action of H 2S on endothelial function in senescence by inhibiting the production of inflammatory molecules. Senescent ECs exhibit a reduction in H 2S, endothelial nitric oxide synthase (eNOS) and peroxisome proliferator-activated receptor δ (PPARδ), coupled with increased inflammatory molecules, sodium glucose transporter type 2 (SGLT2) and phosphorylation of STAT3, which could be reversed by the administration of a slow but sustained release agent of H 2S, GYY4137. Decreased production of eNOS and upregulated p-STAT3 and SGLT2 levels in senescent ECs are reversed by replenishment of the SGLT2 inhibitor EMPA and the PPARδ agonist GW501516. The PPARδ antagonist GSK0660 attenuates eNOS expression and increases the production of p-STAT3 and SGLT2. However, supplementation with GYY4137 has no beneficial effect on GSK0660-treated ECs. GYY4137, GW501516 and EMPA preserve endothelial-dependent relaxation (EDR) in D-gal-treated aortae, while GSK0660 destroys aortic relaxation even with GYY4137 supplementation. In summary, senescent ECs manifest aggravated the expressions of the inflammatory molecules SGLT2 and p-STAT3 and decreased the productions of PPARδ, eNOS and CSE. H 2S ameliorates endothelial dysfunction through the anti-inflammatory effect of the PPARδ/SGLT2/p-STAT3 signaling pathway in senescent ECs and may be a potential therapeutic target for anti-ageing treatment.


Assuntos
Sulfeto de Hidrogênio , PPAR delta , Humanos , Células Endoteliais , Sulfeto de Hidrogênio/farmacologia , Transportador 2 de Glucose-Sódio , Inflamação/tratamento farmacológico , Fator de Transcrição STAT3
10.
BMC Surg ; 23(1): 133, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37198675

RESUMO

BACKGROUND: Recent studies have shown that near-infrared (NIR) fluorescence imaging using Indocyanine green (ICG) may improve the efficiency of sentinel lymph node biopsy (SLNB). This study aimed to assess the effectiveness of the combination of ICG and methylene blue (MB) in breast cancer patients undergoing SLNB. PATIENTS AND METHOD: We evaluated ICG plus MB (ICG + MB) identification effectiveness with MB alone using retrospective analysis. From 2016 to 2020, we collected data on 300 eligible breast cancer patients who got SLNB treatment in our institution by ICG + MB or MB alone. By comparing the distribution of clinicopathological characteristics, the detection rate of sentinel lymph nodes (SLNs) and metastatic SLNs, as well as the total number of SLNs in the two groups, we were able to assess the imaging efficiency. RESULTS: Fluorescence imaging allowed 131 out of 136 patients in the ICG + MB group to find SLNs. ICG + MB group and MB group had detection rates of 98.5% and 91.5% (P = 0.007, χ2 = 7.352), respectively. Besides, the ICG + MB approach was able to produce improved recognition outcomes. What's more, compared with the MB group, the ICG + MB group can identify more lymph nodes (LNs) (3.1 to 2.6, P = 0.000, t = 4.447). Additionally, in the ICG + MB group, ICG could identify more LNs than MB (3.1 vs 2.6, P = 0.004, t = 2.884). CONCLUSION: ICG has high detection effectiveness for SLNs, and when paired with MB, the detection efficiency can be increased even further. Furthermore, the ICG + MB tracing mode does not involve radioisotopes, which has a lot of promise for clinical use and can take the place of conventional standard detection methods.


Assuntos
Neoplasias da Mama , Biópsia de Linfonodo Sentinela , Humanos , Feminino , Biópsia de Linfonodo Sentinela/métodos , Verde de Indocianina , Neoplasias da Mama/cirurgia , Neoplasias da Mama/patologia , Estudos Retrospectivos , Azul de Metileno , Corantes
11.
Biochem Biophys Res Commun ; 595: 22-27, 2022 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-35093636

RESUMO

BACKGROUND: Fibroblast growth factor receptor 4 (FGFR4) plays a key role in cancer progression, including tumour proliferation, invasion, and metastasis. Recent studies have shown that the FGFR4 selective inhibitor BLU-554 has clinical benefits on tumour regression in hepatocellular carcinoma patients. However, the effect of BLU-554 on gastric cancer remains unknown. METHODS: Changes in cell proliferation, apoptosis and cell cycle, migration, and invasion capabilities of MKN-45 cells treated with FGFR4 selective inhibitors were detected by CCK-8 assay, flow cytometry, transwell assay, and wound healing assay, respectively. Western blotting was used to detect the effect of BLU-554 on the expression of FGFR4, FRS2α, and p-ERK1/2. RESULTS: As the concentration of the inhibitor increased, the survival rate of gastric cancer cells decreased, and the trend of BLU-554 was more obvious; a high dose of BLU-554 caused significant cell apoptosis and cell cycle arrest as well as reduced cell invasion ability. The expression levels of FGFR4, FRS2α, and p-ERK1/2 were also significantly reduced when cells were treated with medium and high doses of BLU-554. CONCLUSION: BLU-554 inhibited the mitogen-activated protein kinase (RAS-RAF-MEK-ERK) pathway by inhibiting FGFR4, ultimately impeding the proliferation and invasion of gastric cancer cells and promoting cell apoptosis and cell cycle arrest.


Assuntos
Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Piranos/farmacologia , Quinazolinas/farmacologia , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/antagonistas & inibidores , Neoplasias Gástricas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Citometria de Fluxo , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteínas de Membrana/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/metabolismo , Neoplasias Gástricas/patologia
12.
Neurochem Res ; 47(7): 1904-1916, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35352213

RESUMO

It was recently shown that pyroptosis, an inflammatory form of programmed cell death, is critically involved in the pathogenesis of ischemic stroke. Liraglutide (Lg) is a novel long-acting analog of glucagon-like peptide-1 that has potential protective effects against stroke. However, the relationship between Lg and pyroptosis in the brain is not well defined. In this study, we found that injection of Lg significantly improved the recovery of motor function, increased cerebral blood flow and ameliorated cerebral damage in a mouse model of focal cerebral cortical ischemia. Our results revealed that Lg treatment significantly reduced the levels of NLRP3, Caspase1, IL-1ß and the pore-forming protein gasdermin D in microglial cells in vitro, suggesting that the neuroprotective effect of Lg may be achieved through the inhibition of pyroptosis. Furthermore, by using a specific inhibitor of NOD-like receptor protein 3 (NLRP3), we confirmed that the antipyroptotic mechanism of Lg may be mediated by NLRP3 in vivo. Our present study unveils a novel neuroprotective mechanism through which Lg alleviates ischemia by exerting NLRP3-dependent antipyroptotic effects.


Assuntos
Isquemia Encefálica , Acidente Vascular Cerebral , Animais , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Inflamassomos/metabolismo , Liraglutida/farmacologia , Liraglutida/uso terapêutico , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Piroptose , Acidente Vascular Cerebral/metabolismo
13.
Exp Cell Res ; 398(2): 112420, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33296663

RESUMO

Neurite outgrowth is the basis for wiring during the development of the nervous system. Dl-3-n-butylphthalide (NBP) has been recognized as a promising treatment to improve behavioral, neurological and cognitive outcomes in ischemic stroke. However, little is known about the effect and mechanism of NBP on the neurite outgrowth. In this study, we used different methods to investigate the potential effects of NBP on the neurite extension and plasticity of immature and mature primary cortical neurons and explored the underlying mechanisms. Our results demonstrated that in immature and mature cortical neurons, NBP promoted the neurite length and intersections, increased neuritic arborization, elevated numbers of neurite branch and terminal points and improved neurite complexity and plasticity of neuronal development processes. Besides, our data revealed that NBP promoted neurite extension and branching partly by activating Shh signaling pathway via increasing Gap43 expression both in immature and mature primary cortical neurons. The present study provided new insights into the contribution of NBP in neuronal plasticity and unveiled a novel pathway to induce Gap43 expression in primary cortical neurons.


Assuntos
Benzofuranos/farmacologia , Proteína GAP-43/metabolismo , Proteínas Hedgehog/metabolismo , Neurônios/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Feminino , Proteína GAP-43/genética , Camundongos , Camundongos Endogâmicos C57BL , Crescimento Neuronal/efeitos dos fármacos , Plasticidade Neuronal/efeitos dos fármacos , Neurônios/metabolismo , Gravidez , Transdução de Sinais/efeitos dos fármacos
14.
Mediators Inflamm ; 2022: 3855698, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36032782

RESUMO

Background: Our previous work has shown that inflammatory processes play a detrimental role in the pathophysiology of acute ischemic stroke (AIS). Neutrophil extracellular traps (NETs) have been recognized as a key contributor to the proinflammatory response in AIS and could aggravate blood-brain barrier (BBB) damage. Recently, experimental and clinical researches showed that Edaravone Dexborneol (Eda.B), which is comprised of two active ingredients, Edaravone and (+)-Borneol, was effective in treatment of AIS. However, it is not clear whether the effects of Eda.B against AIS are related to NETs and BBB permeability. Methods: Experiment 1 was to detect the effects of Eda.B in AIS patients. Serum samples of volunteers and AIS patients were collected before and 3 days after Edaravone Dexborneol treatment. Markers of NETs and occludin were detected by ELISA kit. Experiment 2 was to explore the effects of Eda.B on experimental stroke mice. Male C57BL/6 mice were subjected to distal middle cerebral artery occlusion (MCAO) and treated with vehicle, Eda.B, or DeoxyribonueleaseI (DNase I). After stroke, the neurobehavioral tests, infarct volume, and cerebral blood flow evaluation were determined. Leakage of Evans blue was to assess the integrity of BBB. Western blot, real-time quantitative polymerase chain reaction (RT-qPCR), and immunofluorescence were used to examine the expression of NETs and tight junction- (TJ-) associated proteins. Results: Eda.B significantly improved neurological function and cerebral blood flow but reduced infarct volume after experimental stroke. Eda.B downregulated level of NETs in serum samples of AIS patients and tissue samples of MCAO mouse cortex. Eda.B and DNase I alleviated BBB permeability by upregulating TJ-associated proteins. Conclusion: NETs are related to the early stage of AIS. Eda.B exerted neuroprotective effects and ameliorated BBB permeability after AIS.


Assuntos
Isquemia Encefálica , Armadilhas Extracelulares , AVC Isquêmico , Acidente Vascular Cerebral , Animais , Barreira Hematoencefálica , Desoxirribonuclease I , Edaravone , Humanos , Infarto da Artéria Cerebral Média , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Permeabilidade
15.
Chin J Physiol ; 65(2): 53-63, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35488670

RESUMO

Our previous study demonstrated that chronic intermittent hypobaric hypoxia (CIHH) protects vascular endothelium function through ameliorating autophagy in mesenteric arteries of metabolic syndrome (MS) rats. This study aimed to investigate the role of adenosine mono-phosphate-activated protein kinase-mammalian target of rapamycin (AMPK-mTOR) signaling in CIHH effect. Six-week-old male Sprague-Dawley rats were divided into control (CON), MS model, CIHH treatment (CIHH), and MS + CIHH groups. Serum pro-inflammatory cytokines were measured. The endothelium dependent relaxation (EDR), endothelial ultrastructure and autophagosomes were observed in mesenteric arteries. The expression of phosphor (p)-AMPKα, p-mTOR, autophagy-related and endoplasmic reticulum stress-related proteins, p-endothelial nitric oxide synthase, and cathepsin D were assayed. In MS rats, pro-inflammatory cytokines were increased, EDR was attenuated, and endothelial integrity was impaired. In addition, the expression level of p-AMPKα and cathepsin D was down-regulated, but the level of p-mTOR was up-regulated. While in MS + CIHH rats, all aforementioned abnormalities were ameliorated, and the beneficial effect of CIHH was cancelled by AMPKα inhibitor. In conclusion, AMPK-mTOR signaling pathway participates in the protection of CIHH on vascular endothelium of MS rats.


Assuntos
Endotélio Vascular , Síndrome Metabólica , Proteínas Quinases Ativadas por AMP , Nucleotídeos de Adenina , Adenosina , Animais , Catepsina D , Citocinas , Hipóxia , Masculino , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Serina-Treonina Quinases TOR
16.
J Physiol ; 599(4): 1115-1130, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33347681

RESUMO

KEY POINTS: This study demonstrates that both CO2 -induced respiratory and cardiovascular responses are augmented in spontaneously hypertensive rats (SHRs). Genetic ablation of the retrotrapezoid nucleus (RTN) neurons depresses enhanced hypercapnic ventilatory response and eliminates CO2 -stimulated increase in arterial pressure and heart rate in SHRs. SHRs have a high protein level of pH-sensitive channels in the RTN, including the TASK-2 channel, Kv12.1 channel and acid-sensing ion channel 3. The inhibition of putative TASK-2 channel activity by clofilium diminishes amplified hypercapnic ventilatory and cardiovascular responses, and reduces the number of CO2 -activated RTN neurons in SHRs. These results indicate that RTN neurons contribute to enhanced CO2 -stimulated respiratory and cardiovascular responses in SHRs. ABSTRACT: The respiratory regulation of cardiovascular activity is essential for maintaining an efficient ventilation and perfusion ratio. Activation of central respiratory chemoreceptors not only elicits a ventilatory response but also regulates sympathetic nerve activity and arterial blood pressure (ABP). The retrotrapezoid nucleus (RTN) is the most completely characterized cluster of central respiratory chemoreceptors. We hypothesize that RTN neurons contribute to augmented CO2 -stimulated respiratory and cardiovascular responses in adult spontaneously hypertensive rats (SHRs). Our findings indicate that SHRs exhibit more enhanced hypercapnic cardiorespiratory responses than age-matched normotensive Wistar-Kyoto rats. Genetic ablation of RTN neurons notably depresses an enhanced hypercapnic ventilatory response (HCVR) and eliminates a CO2 -stimulated greater increase in ABP and heart rate in SHRs. In addition, SHRs have a higher protein level of pH-sensitive channels in the RTN, including TASK-2 channels, Kv12.1 channels and acid-sensing ion channel 3. Administration of clofilium (i.p.), an unselective inhibitor of TASK-2 channels, not only significantly reduces the enhanced HCVR but also inhibits CO2 -amplified increases in ABP and heart rate in SHRs. Moreover, clofilium significantly decreases the number of CO2 -activated RTN neurons in SHRs. Taken together, we suggest that RTN neurons play an important role in enhanced hypercapnic ventilatory and cardiovascular responses in SHRs and the putative mechanism involved is associated with TASK-2 channel activity in the RTN.


Assuntos
Dióxido de Carbono , Células Quimiorreceptoras , Animais , Neurônios , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY
17.
BMC Neurol ; 21(1): 221, 2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-34107910

RESUMO

BACKGROUND: Presentation with massive systemic embolization as the initial manifestation of occult malignancy is infrequent. The standard management of cancer-related arterial thromboembolism has not yet been established. CASE PRESENTATION: We described a case of Trousseau's syndrome resulting in acute ischemic stroke concomitant with multiple embolizations in the spleen and kidney during oral administration of dabigatran for pulmonary embolism preceding the diagnosis of a malignant tumor. A cancer-related hypercoagulable state was suspected because the patient was admitted to the neurology department due to acute ischemic stroke with three territory infarcts on diffusion-weighted imaging (DWI) in the absence of identifiable conventional risk factors and brain vessel narrowing. The patient was subsequently diagnosed with epidermal growth factor receptor (EGFR) mutation-positive non-small-cell lung cancer (NSCLC) (stage IV) with pleural metastasis. Administration of low-molecular-weight heparin followed by long-term dabigatran under effective cancer therapy comprising gefitinib and subsequent chemotherapy did not cause stroke relapse during the 1-year follow-up. CONCLUSIONS: This case suggests that cancer-related hypercoagulability should be considered an important etiology for stroke patients who develop unexplained disseminated acute cerebral infarction without conventional stroke risk factors, especially concomitant with multiple organ embolization. Novel oral anticoagulants may be an alternative therapy for the long-term management of cancer-related arterial thromboembolism under effective cancer therapy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Neoplasias Pulmonares/diagnóstico , Acidente Vascular Cerebral/etiologia , Anticoagulantes/uso terapêutico , Isquemia Encefálica/etiologia , Carcinoma Pulmonar de Células não Pequenas/complicações , Imagem de Difusão por Ressonância Magnética , Embolia/etiologia , Receptores ErbB/genética , Feminino , Humanos , Neoplasias Pulmonares/complicações , Pessoa de Meia-Idade , Fatores de Risco
18.
J Environ Manage ; 288: 112386, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-33770724

RESUMO

Environmental Information Disclosure (EID) is a new tool for environmental governance in the era of big data and information. Based on the Pollution Information Disclosure Index (PITI) of 120 cities in China from 2003 to 2019, spatial data exploratory analysis and dynamic spatial panel model were adopted to analyze the spatial-temporal evolution characteristics and influencing factors of EID in China. The results show that (1) great progress of China's EID has been made in legislation and practice and its ways and channels are gradually becoming diversified, while it is accompanied by the problem of inadequate and unbalanced development; (2) EID shows the "superposition effect" promoted by previous accumulation has the "peer effect" of mutual imitation and learning and presents "demonstration effect", which shows significant agglomeration distribution pattern of spatial "club", while the spillover effect within the region is significant while the radiation effect between regions is weak. (3) In a dynamic process, cities with better economic development, firm performance, environmental performance and regulation, disclosure more environmental information, while the role of government competition and public participation needs further discussion. (4) Negative factors have a great influence during the economic crisis, while positive factors play a significant role in promoting the disclosure of environmental information during the economic expansion after crises. Cities in the developed regions (coastal, east and large cities) disclosure more than developing regions (inland, west, and small cities), and the positive factors are more likely to take effect.


Assuntos
Revelação , Política Ambiental , China , Cidades , Conservação dos Recursos Naturais
19.
J Neurosci ; 39(15): 2837-2846, 2019 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-30626698

RESUMO

The nucleus tractus solitarii (NTS) is implicated in the control of breathing, but the neuronal phenotype and circuit mechanism involved in such a physiological function remain incompletely understood. This study focused on the respiratory role of paired-like homeobox 2b gene (Phox2b)-expressing NTS neurons and sought to determine whether selective stimulation of this set of neurons activates breathing in male mice. A Cre-dependent vector encoding a Gq-coupled human M3 muscarinic receptor (hM3Dq) was microinjected into the NTS of Phox2b-Cre transgenic mice. The hM3Dq-transduced neurons were pharmacologically activated in conscious mice while respiratory effects were measured by plethysmography. We demonstrate that chemogenetic stimulation of Phox2b-expressing NTS neurons significantly increased baseline minute volume via an increase in respiratory frequency rather than tidal volume. Chemogenetic stimulation also synergized with moderate CO2 stimulation to enhance pulmonary ventilatory response. Selective ablation of Phox2b-expressing NTS neurons notably attenuated a hypercapnic ventilatory response. Moreover, histological evidence revealed that stimulation of Phox2b-expressing NTS neurons increased neuronal activity of the preBötzinger complex. Finally, we presented the neuroanatomical evidence of direct projection of Phox2b-expressing NTS neurons to putative respiratory central pattern generator. Overall, these findings suggest that selective activation of Phox2b-expressing NTS neurons potentiates baseline pulmonary ventilation via an excitatory drive to respiratory central pattern generator and this group of neurons is also required for the hypercapnic ventilatory response.SIGNIFICANCE STATEMENT The nucleus tractus solitarii (NTS) has been implicated in the control of breathing. The paired-like homeobox 2b gene (Phox2b) is the disease-defining gene for congenital central hypoventilation syndrome and is restrictively present in brainstem nucleus, including the NTS. Using a chemogenetic approach, we demonstrate herein that selective stimulation of Phox2b-expressing NTS neurons vigorously potentiates baseline pulmonary ventilation via an excitatory drive to respiratory central pattern generator in rodents. Genetic ablation of these neurons attenuates the hypercapnic ventilatory response. We also suggest that a fraction of Phox2b-expressing neurons exhibit CO2 sensitivity and presumably function as central respiratory chemoreceptors. The methodology is expected to provide a future applicability to the patients with sleep-related hypoventilation or apnea.


Assuntos
Proteínas de Homeodomínio/fisiologia , Neurônios/metabolismo , Respiração , Núcleo Solitário/metabolismo , Fatores de Transcrição/fisiologia , Animais , Dióxido de Carbono/farmacologia , Geradores de Padrão Central , Fenômenos Eletrofisiológicos/genética , Fenômenos Eletrofisiológicos/fisiologia , Proteínas de Homeodomínio/genética , Hipercapnia/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microinjeções , Testes de Função Respiratória , Mecânica Respiratória , Núcleo Solitário/citologia , Fatores de Transcrição/genética
20.
J Neuroinflammation ; 16(1): 256, 2019 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-31810470

RESUMO

BACKGROUND: Ischemic stroke is a leading cause of disability worldwide and characteristically accompanied by downregulation of the Wnt/ß-catenin signaling. Activation of Wnt/ß-catenin signaling emerges to attenuate neuroinflammation after ischemic stroke; however, its effect on modulating microglial polarization is largely unknown. Here, we explored whether Wnt/ß-catenin pathway activator TWS119 facilitated long-term neurological recovery via modulating microglia polarization after experimental stroke. METHODS: Ischemic stroke mice model was induced by permanent distal middle cerebral artery occlusion plus 1 h hypoxia. TWS119 was administrated from day 1 to 14 after stroke. Neurological deficits were monitored up to 21 days after stroke. Angiogenesis, neural plasticity, microglial polarization, and microglia-associated inflammatory cytokines were detected in the peri-infarct cortex at days 14 and 21 after stroke. Primary microglia and mouse brain microvascular endothelial cell lines were employed to explore the underlying mechanism in vitro. RESULTS: TWS119 mitigated neurological deficits at days 14 and 21 after experimental stroke, paralleled by acceleration on angiogenesis and neural plasticity in the peri-infarct cortex. Mechanistically, cerebral ischemia induced production of microglia-associated proinflammatory cytokines and priming of activated microglia toward pro-inflammatory polarization, whereas TWS119 ameliorated microglia-mediated neuroinflammatory status following ischemic stroke and promoted angiogenesis by modulating microglia to anti-inflammatory phenotype. The beneficial efficacy of TWS119 in microglial polarization was largely reversed by selective Wnt/ß-catenin pathway blockade in vitro, suggesting that TWS119-enabled pro-inflammatory to anti-inflammatory phenotype switch of microglia was possibly mediated by Wnt/ß-catenin signaling. CONCLUSIONS: Wnt/ß-catenin pathway activator TWS119 ameliorated neuroinflammatory microenvironment following chronic cerebral ischemia via modulating microglia towards anti-inflammatory phenotype, and facilitates neurological recovery in an anti-inflammatory phenotype polarization-dependent manner. Activation of Wnt/ß-catenin pathway following ischemic stroke might be a potential restorative strategy targeting microglia-mediated neuroinflammation.


Assuntos
Anti-Inflamatórios/uso terapêutico , Microglia/efeitos dos fármacos , Pirimidinas/uso terapêutico , Pirróis/uso terapêutico , Recuperação de Função Fisiológica/efeitos dos fármacos , Acidente Vascular Cerebral/tratamento farmacológico , Via de Sinalização Wnt/efeitos dos fármacos , Animais , Anti-Inflamatórios/farmacologia , Células Cultivadas , Mediadores da Inflamação/antagonistas & inibidores , Mediadores da Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Pirimidinas/farmacologia , Pirróis/farmacologia , Recuperação de Função Fisiológica/fisiologia , Acidente Vascular Cerebral/metabolismo , Via de Sinalização Wnt/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA