Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 146
Filtrar
1.
Histopathology ; 85(2): 295-309, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38660975

RESUMO

AIMS: Immunotherapy has brought a new era to cancer treatment, yet we lack dependable predictors for its effectiveness. This study explores the predictive significance of intratumour stroma proportion (iTSP) for treatment success and prognosis in non-small cell lung cancer (NSCLC) patients undergoing treatment with immune check-point inhibitors (ICIs) together with chemotherapy. METHODS AND RESULTS: We retrospectively collected data from patients with unresectable stage IIIB-IV NSCLC who were treated with first-line ICIs and chemotherapy. Each patient received a confirmed pathological diagnosis, and the pathologist evaluated the iTSP on haematoxylin and eosin (H&E)-stained sections of diagnostic tissue slides. Among the 102 H&E-stained biopsy samples, 61 (59.8%) were categorised as stroma-L (less than 50% iTSP), while 41 (40.2%) were classified as stroma-H (more than 50% iTSP). We observed that the stroma-L group exhibited a significantly better objective response rate (ORR) (72.1 versus 51.2%, P = 0.031) and deeper response depth (DpR) (-50.49 ± 28.79% versus -35.83 ± 29.91%, P = 0.015) compared to the stroma-H group. Furthermore, the stroma-L group showed longer median progression-free survival (PFS) (9.6 versus 6.0 months, P = 0.011) and overall survival (OS) (24.0 versus 12.2 months, P = 0.001) compared to the stroma-H group. Multivariate Cox proportional hazards regression analysis indicated that iTSP was a highly significant prognostic factor for both PFS [hazard ratio (HR) = 1.713; P = 0.030] and OS (HR = 2.225; P = 0.003). CONCLUSION: Our findings indicate that a lower iTSP corresponds to improved clinical outcomes and greater DpR in individuals with stage IIIB-IV NSCLC treated with first-line ICIs and chemotherapy. The iTSP could potentially serve as a predictive biomarker for ICIs therapy response.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Inibidores de Checkpoint Imunológico , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Feminino , Inibidores de Checkpoint Imunológico/uso terapêutico , Masculino , Pessoa de Meia-Idade , Idoso , Estudos Retrospectivos , Prognóstico , Adulto , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Estadiamento de Neoplasias , Idoso de 80 Anos ou mais , Resultado do Tratamento
2.
Langmuir ; 2024 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-39481021

RESUMO

Developing electrocatalysts for the N2 reduction reaction (NRR) with high activity, high selectivity, and low cost is urgently required to enhance the NH3 yield rate. Based on first-principles calculations, we predict a series of new transition metal boride TMB6 (TM = Ti, V, Cr, Mn, Fe, and Co) monolayers and investigate their magnetoelectronic and electrocatalytic properties. The results reveal that VB6 and CoB6 favor ferromagnetic coupling, while TiB6, CrB6, MnB6, and FeB6 display antiferromagnetic ordering. Furthermore, TiB6 exhibits a high Néel temperature of 344 K and a large magnetic anisotropy energy of 614 µeV per Ti atom. Most interestingly, TiB6 and VB6 exhibit superior NRR catalytic activity with a limiting potential of -0.50 and -0.19 V, respectively, and favorable NRR selectivity over the HER. Finally, the structural stability of TMB6 monolayers has been confirmed by a set of phonon dispersion, molecular dynamics, and elastic constant calculations. Our results highlight the use of the newly designed two-dimensional (2D) TM borides as promising candidates for spintronic devices and nitrogen fixation applications.

3.
Phys Chem Chem Phys ; 26(13): 10202-10213, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38497211

RESUMO

Designing an electrocatalyst with high efficiency and product selectivity is always crucial for an electrocatalytic CO2 reduction reaction (CO2RR). Inspired by the great progress of two-dimensional (2D) nanomaterials growing on Cu surfaces and their promising CO2RR catalytic efficiencies at their interfaces, the unique performance of Cu-based 2D materials as high-efficiency and low-cost CO2RR electrocatalysts has attracted extensive attention. Herein, based on density functional theory (DFT) calculations, we proposed a composite structure of graphitic carbon nitride (g-C3N4) fragments loaded on a Cu surface to explore the CO2RR catalytic property of the interface between g-C3N4 and the Cu surface. Three composite interfaces of C3N4/Cu(111), C3N4/Cu(110) and C3N4/Cu(100) have been studied by considering the reaction sites of vertex nitrogen atoms, edge nitrogen atoms and the nearby Cu atoms. It was found that the C3N4/Cu interfaces where nitrogen atoms contact the Cu substrate present competitive CO2RR activity. Among them, C3N4/Cu(111)-N3 exhibited a better activity for CH3OH production, with a low overpotential of 0.38 V. For HCOOH and CH4 production, C3N4/Cu(111)-Cu and C3N4/Cu(100)-N1 have overpotentials of 0.26 V and 0.44 V. The electronic analysis indicates the electron transfer from the Cu substrate to the g-C3N4 fragment and mainly accumulates on the nitrogen atoms of the interface. Such charge accumulation can activate the adsorbed CO bond of CO2 and lead to lower energetic barriers of CO2RR. DFT calculations indicate that the boundary nitrogen sites reduced the energy barrier of *CHO, which is crucial for CO2RR, compared with that of the pristine Cu surface. Our study explores a new Cu-based electrocatalyst and indicates that the C3N4/Cu interface can enhance the activities and selectivity of CO2RR and open a new strategy to design high-efficiency electrocatalysts for CO2RR.

4.
Molecules ; 29(16)2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39202993

RESUMO

Two-dimensional (2D) ferromagnetic semiconductors (FM SCs) provide an ideal platform for the development of quantum information technology in nanoscale devices. However, many developed 2D FM materials present a very low Curie temperature (TC), greatly limiting their application in spintronic devices. In this work, we predict two stable 2D transition metal chalcogenides, V3Se3X2 (X = S, Te) monolayers, by using first-principles calculations. Our results show that the V3Se3Te2 monolayer is a robust bipolar magnetic SC with a moderate bandgap of 0.53 eV, while V3Se3S2 is a direct band-gap FM SC with a bandgap of 0.59 eV. Interestingly, the ferromagnetisms of both monolayers are robust due to the V-S/Se/Te-V superexchange interaction, and TCs are about 406 K and 301 K, respectively. Applying biaxial strains, the FM SC to antiferromagnetic (AFM) SC transition is revealed at 5% and 3% of biaxial tensile strain. In addition, their high mechanical, dynamical, and thermal stabilities are further verified by phonon dispersion calculations and ab initio molecular dynamics (AIMD) calculations. Their outstanding attributes render the V3Se3Y2 (Y = S, Te) monolayers promising candidates as 2D FM SCs for a wide range of applications.

5.
J Am Chem Soc ; 145(4): 2669-2678, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36651291

RESUMO

Two-dimensional (2D) nanofluidic membranes have shown great promise in harvesting osmotic energy from the salinity difference between seawater and fresh water. However, the output power densities are strongly hampered by insufficient membrane permselectivity. Herein, we demonstrate that vacancy engineering is an effective strategy to enhance the permselectivity of 2D nanofluidic membranes to achieve high-efficiency osmotic energy generation. Phosphorus vacancies were facilely created on NbOPO4 (NbP) nanosheets, which remarkably enlarged their negative surface charge. As verified by both experimental and theoretical investigations, the vacancy-introduced NbP (V-NbP) exhibited fast transmembrane ion migration and high ionic selectivity originating from the improved electrostatic affinity of cations. When applied in a natural river water|seawater osmotic power generator, the macroscopic-scale V-NbP membrane delivered a record-high power density of 10.7 W m-2, far exceeding the commercial benchmark of 5.0 W m-2. This work endows the remarkable potential of vacancy engineering for 2D materials in nanofluidic energy devices.

6.
Chemistry ; 29(7): e202202925, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36333274

RESUMO

Fixing nitrogen (N2 ) by electrosynthesis method has become a promising way to ammonia (NH3 ) production, nevertheless, developing electrocatalysts combining long-term stable and low-cost feathers are still a great challenge to date. Using comprehensive first-principles calculations, we herein investigate the potential of a new class of two-dimensional (2D) transition metal tri-borides (TMB3 s) as nitrogen reduction reaction (NRR) electrocatalysts, and explore the effect of magnetic orders on the NRR. Our results show that the TMB3 s can sufficiently activate N2 and convert it to NH3 . Particularly, TiB3 is identified as a high-efficiency catalyst for NRR because of its low limiting potential (-0.24 V) and good suppression of the competitive hydrogen evolution reaction (HER). For the first time, we present that these TMB3 s with various magnetic states exhibit different performances in the adsorption of N2 and NRR intermediates, and minor effect on activation of N2 . Besides, VB3 , CrB3 , MnB3 , and FeB3 monolayers possess the superior capacity to suppress surface oxidation via the self-activating process, which reduces * O/* OH into * H2 O under NRR electrochemical conditions, thus favoring the N2 electroreduction. This work paves the way for finding high-performance NRR catalysts for transition metal borides and pioneering the research of magnetic states effects in NRR.

7.
Inorg Chem ; 62(51): 21115-21127, 2023 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-38063020

RESUMO

Based on the density functional theory (DFT) calculations, we explored the structures and HER catalytic properties of reconstructed and double-stacked black phosphorene (BP) edges. Ten bilayer BP edges were constructed by the double stacking of three typical monolayer edges, i.e., zigzag (ZZ) edge, armchair (AC) edge, skewed diagonal (SD) edge, and their reconstructed derivatives with their layer's configurations, edge deformations and thermodynamic stabilities were discussed. Based on these edges, five chemical sites on four bilayer BP edges were selected to be promising candidates for a HER catalyst, which present higher HER activities than that of Pt(111). Besides, among these four edges, two edges have even lower energetic barriers for the Tafel reaction. Compared with the monolayer edges, these selected bilayer BP edges confirm the remarkable enhancement of the HER catalytic properties, which can be attributed to their unique edge structures and the enhanced electronic densities after the hydrogen adsorptions. Finally, the thermostability of these edges at room temperature has also been proved by the DFT-MD simulations. This theoretic study deepens our fundamental understanding of the double-stacked edge structures of the BP and provides a new way for the rational design of highly efficient and noble-metal-free HER catalysts.

8.
Phys Chem Chem Phys ; 25(32): 21227-21235, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37539626

RESUMO

Multiferroic van der Waals (vdW) heterostructures (HSs) prepared by combining different ferroic materials offer an exciting platform for next-generation nanoelectronic devices. In this work, we investigate the magnetoelectric coupling properties of multiferroic vdW HSs consisting of a magnetic TMBr2 (TM = V-Ni) monolayer and a ferroelectric Ga2SSe2 monolayer using first-principles theory calculations. It is found that the magnetic orderings in the magnetic TMBr2 layers are robust and the band alignment of these TMBr2/Ga2SSe2 HSs can be altered by reversing the polarization direction of the ferroelectric layer. Among them, VBr2/Ga2SSe2 and FeBr2/Ga2SSe2 HSs can be switched from a type-I to a type-II semiconductor, which allows the generation of spin-polarized and unpolarized photocurrent. Besides, CrBr2/Ga2SSe2, CoBr2/Ga2SSe2 and NiBr2/Ga2SSe2 exhibit a type-II band alignment in reverse ferroelectric polarization states. Moreover, the magnetic configuration and band alignment of these TMBr2/Ga2SSe2 HSs can be further modulated by applying an external strain. Our findings suggest the potential of TMBr2/Ga2SSe2 HSs in 2D multiferroic and spintronic applications.

9.
Phys Chem Chem Phys ; 25(12): 8592-8599, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36883966

RESUMO

Photocatalytic overall water splitting with two-dimensional materials is a promising strategy to solve the problems of environmental pollution and energy shortage. However, conventional photocatalysts are often limited to a narrow visible photo-absorption range, low catalytic activity, and poor charge separation. Herein, given the intrinsic polarization facilitating the improvement of photogenerated carrier separation, we adopt a polarized g-C3N5 material combining the doping strategy to alleviate the abovementioned problems. Boron (B), as a Lewis acid, has a great chance to improve the capture and catalytic activity of water. By doping B into g-C3N5, the overpotential for the complicated four-electron process of the oxygen reduction reaction is only 0.50 V. Simultaneously, the B doping-induced impurity state effectively reduces the band gap and broadens the photo-absorption range. Moreover, with the increase of B doping concentration, the photo-absorption range and catalytic activity can be gradually improved. Whereas when the concentration exceeds 33.3%, the reduction potential of the conduction band edge will not meet the demand for hydrogen evolution. Therefore, excessive doping is not recommended in experiments. Our work affords not only a promising photocatalyst but also a practical design scheme by combining polarizing materials and the doping strategy for overall water splitting.

10.
Nano Lett ; 22(3): 1225-1232, 2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35044774

RESUMO

Rationally electronic structure engineering of nanocomposite electrodes shows great promise for enhancing the electrochemical performance of rechargeable batteries. Herein, we report antimony single atoms and quantum dots (∼5 nm) codecorated Ti3C2Tx MXene-based aerogels (Sb SQ@MA) for high-performance potassium-ion batteries (PIBs). We found that the atomically dispersed Sb could modify the electronic structure of the Sb/Ti3C2Tx composite, improve the charge transfer kinetics, and enhance the potassium storage capability at the heterointerfaces. Additionally, the MXene-based aerogel with rich surface functional groups and defects provides abundant anchoring sites and endows the composite reinforced structural stability and highly efficient electron transfer. The high loading of Sb (∼60.3 wt %) with short ionic transport pathways is desired potassium reservoirs. These features synergistically enhance the rate and cycling performance of the Sb SQ@MA electrodes in PIBs. This work has demonstrated an enlightening technique to tailor the interface activity of heterostructured electrodes for electrochemical applications.

11.
Molecules ; 28(2)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36677569

RESUMO

The electronic and magnetic properties of graphene/MoS2 heterostructures intercalated with 3d transition metal (TM) atoms at different concentrations have been systematically investigated by first principles calculations. The results showed that all the studied systems are thermodynamically stable with large binding energies of about 3.72 eV-6.86 eV. Interestingly, all the TM-intercalated graphene/MoS2 heterostructures are ferromagnetic and their total magnetic moments increase with TM concentration. Furthermore, TM concentration-dependent spin polarization is obtained for the graphene layer and MoS2 layer due to the charge transfer between TM atoms and the layers. A significant band gap is opened for graphene in these TM-intercalated graphene/MoS2 heterostructures (around 0.094 eV-0.37 eV). With the TM concentration increasing, the band gap of graphene is reduced due to the enhanced spin polarization of graphene. Our study suggests a research direction for the manipulation of the properties of 2D materials through control of the intercalation concentration of TM atoms.

12.
Molecules ; 28(24)2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38138435

RESUMO

Currently, two-dimensional (2D) materials with intrinsic antiferromagnetism have stimulated research interest due to their insensitivity to external magnetic fields and absence of stray fields. Here, we predict a family of stable transition metal (TM) borides, TMB12 (TM = V, Cr, Mn, Fe) monolayers, by combining TM atoms and B12 icosahedra based on first-principles calculations. Our results show that the four TMB12 monolayers have stable antiferromagnetic (AFM) ground states with large magnetic anisotropic energy. Among them, three TMB12 (TM=V, Cr, Mn) monolayers display an in-plane easy magnetization axis, while the FeB12 monolayer has an out-of-plane easy magnetization axis. Among them, the CrB12 and the FeB12 monolayers are AFM semiconductors with band gaps of 0.13 eV and 0.35 eV, respectively. In particular, the AFM FeB12 monolayer is a spin-polarized AFM material with a Néel temperature of 125 K. Moreover, the electronic and magnetic properties of the CrB12 and the FeB12 monolayers can be modulated by imposing external biaxial strains. Our findings show that the TMB12 monolayers are candidates for designing 2D AFM materials, with potential applications in electronic devices.

13.
Chemphyschem ; 23(1): e202100626, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-34755927

RESUMO

The grain boundary is an intrinsic defect within mono- and multi-layer polygonal graphene islands during the chemical vapor deposition growth process. It greatly influences their mechanical and electronic properties. However, the precise characterization and formation mechanism of grain boundaries still remain unclear. In this work, H2 etching experiments show that a polygonal etched hole originates from the natural location of a grain boundary beyond the nucleation site in polygonal monolayer graphene. Furthermore, colorful Raman mapping provides a visualized method to explore the distribution of grain boundaries in polygonal bilayer graphene. Therefore, a deep understanding of the growth kinetics of mono- and bi-layer polygonal graphene was obtained through etching engineering combined with Raman spectroscopy.

14.
J Nat Prod ; 85(1): 115-126, 2022 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-34978437

RESUMO

Thirteen new sesquiterpenoid glycoside esters, including 11 aromadendrane-type compounds, pitqinlingosides A-K (1-11), one cadinane-type compound, pitqinlingoside L (12), and one eudesmane-type compound, pitqinlingoside M (13), together with seven known analogues (14-20) were isolated from the twigs, fruits, and leaves of Pittosporum qinlingense. Structures were elucidated by analysis of spectroscopic data, gas chromatography mass spectrometry (GC-MS), and chemical methods. The absolute configuration was confirmed by single-crystal X-ray crystallography analysis or electronic circular dichroism spectra. Unusual glycoside esters are characterized by the presence of polyacylated ß-d-fucopyranosyl, ß-d-glucopyranosyl, and ß-d-xylopyranosyl units. Pitqinlingosides A (1), B (2), D (4), and F (6), pittosporanoside A1 acetate (14), and pittosporanoside A1 (16) showed significant nitric oxide production inhibition in lipopolysaccharide (LPS)-induced BV-2 microglial cells with IC50 values ranging from 0.95 to 24.12 µM. Structure-activity relationships of the isolated compounds are discussed.


Assuntos
Anti-Inflamatórios/farmacologia , Microglia/efeitos dos fármacos , Rosales/química , Sesquiterpenos/química , Sesquiterpenos/farmacologia , Animais , Anti-Inflamatórios/química , Cristalografia por Raios X , Ésteres/química , Glucosídeos/química , Lipopolissacarídeos/farmacologia , Camundongos , Microglia/metabolismo , Estrutura Molecular , Óxido Nítrico/biossíntese , Análise Espectral/métodos , Relação Estrutura-Atividade
15.
Nano Lett ; 21(8): 3548-3556, 2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33851851

RESUMO

Nonlithium (Li) metal-sulfur batteries are a viable technology for large-scale energy storage due to their relative high energy densities and low cost. However, their practical application is still hindered by the insufficient reversibility and/or limited cycling stability. Herein, we report a high-performance calcium/sodium-sulfur (Ca/Na-S) hybrid battery enabled by a multi-ion chemistry. The introduction of Na ions in the electrolyte greatly boosts the conversion of Ca polysulfides, which has been verified by theoretical calculation and experimental investigation. Meanwhile, the presence of Ca ions constructs a protective electrostatic shield around the initial protrusions on the Na metal anode without prereduction, thus efficiently suppressing the Na dendrite growth. The as-developed Ca/Na-S cell exhibited a high reversible capacity of 947 mAh g-1 at 0.1 C with long cycle life, clearly demonstrating the feasibility of this multi-ion strategy for developing low-cost non-Li metal-sulfur batteries.

16.
Zhongguo Zhong Yao Za Zhi ; 47(3): 593-602, 2022 Feb.
Artigo em Zh | MEDLINE | ID: mdl-35178941

RESUMO

Chinese medicine processing is a procedure to process medicinal materials under the guidance of traditional Chinese medicine(TCM) theories by using unique methods in China. The medicinal materials can only be used clinically after proper processing. With the development of the modernization of TCM, it is difficult to solve the problems in the inheritance, development, and internationalization of Chinese medicine processing. Metabonomics, a new omics technology developed at the end of the last century, is used to infer the physiological or pathological conditions of the organism with the methods such as NMR and LC-MS via investigating the changes in endogenous small molecule metabolic network after the organism is stimulated by external environment. Metabonomics coincides with the holistic view of TCM because it displays the characteristics of integrity, comprehensiveness, and dynamics, and it has been widely applied in the field of Chinese medicine processing in recent years. This study summarized the application of metabonomics in the processing mechanism and quality control of Chinese medicine processing and prospected the development of this technology in the field of Chinese medicine processing.


Assuntos
Medicamentos de Ervas Chinesas , Medicina Tradicional Chinesa , Cromatografia Líquida , Espectrometria de Massas , Metabolômica/métodos , Controle de Qualidade
17.
Angew Chem Int Ed Engl ; 61(37): e202207026, 2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-35791061

RESUMO

Currently, nitrogen fertilizers feed half of the global population, but their use is limited by energy consumption and transportation. Therefore, it is important to study photocatalysts for use in solar nitrogen fertilizers. Herein, a new type of graphene-embedded Ce-based UiO-66 (Ce-UiO-66) photocatalyst (GSCe) is investigated. Ce-UiO-66 is activated by the breakage of benzene-C bonds and the formation of active sites by ultraviolet light in water. Moreover, embedding graphene effectively controls activation and improves nitrogen fixation. GSCe exhibited a remarkable apparent quantum efficiency (AQE) of 9.25 % and stability under 365 nm light with solar-level intensity. GSCe also performed well as a solar ammonia fertilizer for crop cultivation. This investigation opens up opportunities for nitrogen fixation photocatalysts to be used as environmentally friendly solar nitrogen fertilizers.

18.
Chemphyschem ; 22(9): 894-903, 2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-33538388

RESUMO

Unlike graphene and other 2D materials, borophene is 2D polymorphic with diverse hexagonal holes (HHs)-triangles ratios and the concentrations of HHs are highly substrate dependent. Here, we systematically explored the evolution of boron cluster on Ag(111) surface, BN @Ag(111) (N=1∼36), to understand the nucleation of 2D boron sheet on metal surface. Our calculation showed that, with the size increasing, the structures of most stable BN clusters undergo an evolution from compact triangular lattice, such as double-chains or triple-chains, to the ones with mixed triangular-hexagonal lattices. The first single-HH appears at N=12 and the first double-HH appears at N=27. The stability of large BN clusters with mixed structures is derived from the charge transfer between triangular lattice and the HHs, as well as between the substrates and the BN clusters. Our results provide a deep understanding on the formation of small boron clusters in the initial nucleation stage of borophene growth.

19.
Nanotechnology ; 32(44)2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34311456

RESUMO

Molybdenum disulfide (MoS2) nanosheets are promising candidates as earth-abundant and low-cost catalyst for hydrogen evolution reaction (HER). Nevertheless, compared with the benchmark Pt/C catalyst, the application of MoS2nanosheets is limited to its relatively low catalytic activity, especially in alkaline environments. Here, we developed a dual-cation doping strategy to improve the alkaline HER performance of MoS2nanosheets. The designed Ni, Co co-doped MoS2nanosheets can promote the tandem HER steps simultaneously, thus leading to a much enhanced catalytic activity in alkaline solution. Density functional theory calculations revealed the individual roles of Ni and Co dopants in the catalytic process. The doped Ni is uncovered to be the active site for the initial water-cleaving step, while the Co dopant is conducive to the H desorbing by regulating the electronic structure of neighboring edge-S in MoS2. The synergistic effect resulted by the dual-cation doping thus facilitates the tandem HER steps, providing an effective route to raise the catalytic performance of MoS2materials in alkaline solution.

20.
Phys Chem Chem Phys ; 23(3): 2222-2228, 2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33439169

RESUMO

Understanding the fundamentals of chemical vapor deposition bilayer graphene growth is crucial for its synthesis. By employing density functional theory calculations and classical molecular dynamics simulations, we have investigated the evolution of carbon structures and the kinetics of the adlayer graphene nucleation between the graphene top layer (GTL) and the Ni(111) substrate. Compared to the epitaxial GTL, the weaker interaction between the nonepitaxial GTL and the Ni(111) substrate makes the nucleation of the adlayer more favorable. Furthermore, the defects involving in the adlayer graphene are easier to be healed by adopting the nonepitaxial GTL. Our results agree well with the experimental observation and demonstrate that the adlayer graphene with a high quality can be grown underneath the nonepitaxial GTL on Ni-like substrates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA