Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 173
Filtrar
1.
Anal Chem ; 96(21): 8221-8233, 2024 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-38740384

RESUMO

Compared with traditional "lock-key mode" biosensors, a sensor array consists of a series of sensing elements based on intermolecular interactions (typically hydrogen bonds, van der Waals forces, and electrostatic interactions). At the same time, sensor arrays also have the advantages of fast response, high sensitivity, low energy consumption, low cost, rich output signals, and imageability, which have attracted widespread attention from researchers. Nanozymes are nanomaterials which own enzyme-like properties. Because of the adjustable activity, high stability, and cost effectiveness of nanozymes, they are potential candidates for construction of sensor arrays to output different signals from analytes through the chemoresponse of colorants, which solves the shortcomings of traditional sensors that they cannot support multiple detection and lack universality. Recently, a sensor array based on nanozymes as nonspecific recognition receptors has attracted much more attention from researchers and has been applied to precise recognition of proteins, bacteria, and heavy metals. In this perspective, attention is given to nanozymes and the regulation of their enzyme-like activity. Particularly, the building principles and methods for sensor arrays based on nanozymes are analyzed, and the applications are summarized. Finally, the approaches to overcome the challenges and perspectives are also presented and analyzed for facilitating further research and development of nanozyme sensor arrays. This perspective should be helpful for gaining insight into research ideas within the field of nanozyme sensor arrays.


Assuntos
Técnicas Biossensoriais , Nanoestruturas , Nanoestruturas/química , Enzimas/metabolismo , Enzimas/química
2.
Small ; 20(42): e2403655, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38881262

RESUMO

Developing advanced functional carbon materials is essential for electrocatalysis, caused by their vast merits for boosting many key energy conversion reactions. Herein, the covalent organic frameworks (COFs) is utilized on metal-organic frameworks (MOFs) as the template, under the controllable metal atoms thermal migration process successfully in situ constructs Pd-Co alloy nanoparticles on hollow cubic graphene. The electrocatalytic oxygen reduction reaction (ORR) evaluation showed excellent performances with a half-wave potential of 0.866 V, and a limited current density of 4.975 mA cm-2, that superior to the commercial Pt/C and Co nanoparticles. The contrast experiments and X-ray absorption spectrum demonstrated the aggregated electrons at highly dispersed Pd atoms on Co nanoparticle that promoted the main activities. This work not only enlightens the novel carbon materials designing strategies but also suggests heterogeneous electrocatalysis.

3.
Small ; 20(19): e2308918, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38149504

RESUMO

Bioinspired tactile devices can effectively mimic and reproduce the functions of the human tactile system, presenting significant potential in the field of next-generation wearable electronics. In particular, memristor-based bionic tactile devices have attracted considerable attention due to their exceptional characteristics of high flexibility, low power consumption, and adaptability. These devices provide advanced wearability and high-precision tactile sensing capabilities, thus emerging as an important research area within bioinspired electronics. This paper delves into the integration of memristors with other sensing and controlling systems and offers a comprehensive analysis of the recent research advancements in memristor-based bionic tactile devices. These advancements incorporate artificial nociceptors and flexible electronic skin (e-skin) into the category of bio-inspired sensors equipped with capabilities for sensing, processing, and responding to stimuli, which are expected to catalyze revolutionary changes in human-computer interaction. Finally, this review discusses the challenges faced by memristor-based bionic tactile devices in terms of material selection, structural design, and sensor signal processing for the development of artificial intelligence. Additionally, it also outlines future research directions and application prospects of these devices, while proposing feasible solutions to address the identified challenges.


Assuntos
Inteligência Artificial , Biônica , Tato , Humanos , Dispositivos Eletrônicos Vestíveis
4.
Small ; : e2403878, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39058210

RESUMO

Effective identification of multiple cariogenic bacteria in saliva samples is important for oral disease prevention and treatment. Here, a simple colorimetric sensor array is developed for the identification of cariogenic bacteria using single-atom nanozymes (SANs) assisted by machine learning. Interestingly, cariogenic bacteria can increase oxidase-like activity of iron (Fe)─nitrogen (N)─carbon (C) SANs by accelerating electron transfer, and inversely reduce the activity of Fe─N─C further reconstruction with urea. Through machine-learning-assisted sensor array, colorimetric responses are developed as "fingerprints" of cariogenic bacteria. Multiple cariogenic bacteria can be well distinguished by linear discriminant analysis and bacteria at different genera can also be distinguished by hierarchical cluster analysis. Furthermore, colorimetric sensor array has demonstrated excellent performance for the identification of mixed cariogenic bacteria in artificial saliva samples. In view of convenience, precise, and high-throughput discrimination, the developed colorimetric sensor array based on SANs assisted by machine learning, has great potential for the identification of oral cariogenic bacteria so as to serve for oral disease prevention and treatment.

5.
Small ; : e2402588, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39058216

RESUMO

With the continuous advancement of wearable technology and advanced medical monitoring, there is an increasing demand for electronic devices that can adapt to complex environments and have high perceptual sensitivity. Here, a novel artificial injury perception device based on an Ag/HfOx/ITO/PET flexible memristor is designed to address the limitations of current technologies in multimodal perception and environmental adaptability. The memristor exhibits excellent resistive switching (RS) performance and mechanical flexibility under different bending angles (BAs), temperatures, humid environment, and repetitive folding conditions. Further, the device demonstrates the multimodal perception and conversion capabilities toward voltage, mechanical, and thermal stimuli through current response tests under different conditions, enabling not only the simulation of artificial injury perception but also holds promise for monitoring and controlling the movement of robotic arms. Moreover, the logical operation capability of the memristor-based reconfigurable logic (MRL) gates is also demonstrated, proving the device has great potential applications with sensing, storage, and memory functions. Overall, this study not only provides a direction for the development of the next-generation flexible multimodal sensors, but also has significant implications for technological advancements in many fields such as robotic arms, electronic skin (e-skin), and medical monitoring.

6.
Angew Chem Int Ed Engl ; 63(16): e202318748, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38374765

RESUMO

Single-atom catalysts (SACs), distinguished by their maximum atom efficiency and precise control over the coordination and electronic properties of individual atoms, show great promise in electrocatalysis. Gaining a comprehensive understanding of the electrochemical performance of SACs requires the screening of electron transfer process at micro/nano scale. This research pioneers the use of electrogenerated chemiluminescence microscopy (ECLM) to observe the electrocatalytic reactions at individual SACs. It boasts sensitivity at the single photon level and temporal resolution down to 100 ms, enabling real-time capture of the electrochemical behavior of individual SACs during potential sweeping. Leveraging the direct correlation between ECL emission and heterogeneous electron transfer processes, we introduced photon flux density for quantitative analysis, unveiling the electrocatalytic efficiency of individual SACs. This approach systematically reveals the relationship between SACs based on different metal atoms and their peroxidase (POD)-like activity. The outcomes contribute to a fundamental understanding of SACs and pave the way for designing SACs with diverse technological and industrial applications.

7.
Anal Chem ; 95(29): 10844-10858, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37438259

RESUMO

Natural enzymes are crucial in biological systems and widely used in biology and medicine, but their disadvantages, such as insufficient stability and high-cost, have limited their wide application. Since Fe3O4 nanoparticles were found to show peroxidase-like activity, researchers have designed and developed a growing number of nanozymes that mimic the activity of natural enzymes. Nanozymes can compensate for the defects of natural enzymes and show higher stability with lower cost. Iron, a nontoxic and low-cost transition metal, has been used to synthesize a variety of iron-based nanozymes with unique structural and physicochemical properties to obtain different enzymes mimicking catalytic properties. In this perspective, catalytic mechanisms, activity modulation, and their recent research progress in sensing, tumor therapy, and antibacterial and anti-inflammatory applications are systematically presented. The challenges and perspectives on the development of iron-based nanozymes are also analyzed and discussed.


Assuntos
Nanopartículas , Nanoestruturas , Ferro , Catálise , Antibacterianos , Nanoestruturas/química
8.
Anal Chem ; 95(34): 12648-12655, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37599579

RESUMO

Single-atom catalysts (SACs), a novel kind of electrocatalysts with full metal utilization, have been developed as unique signal amplifiers in several sensing platforms. Herein, based on theoretical prediction of the oxygen reduction reaction (ORR) mechanism on different atom sites, we constructed dual-atomic-site catalysts (DACs), Fe/Mn-N-C, to catalyze luminol-dissolved oxygen electrochemiluminescence (ECL). Computational simulation indicated that the weak adsorption of OH* on a single Fe site was overcome by introducing Mn as the secondary metallic active site, resulting in a synergic dual-site cascade mechanism. The superior catalytic activity of Fe/Mn-N-C DACs for the ORR was proven by the highly efficient cathodic luminol ECL, surpassing the performance of single-site catalysts (SACs), Fe-N-C and Mn-N-C. Furthermore, the ECL system, enhanced by a cascade reaction, exhibited remarkable sensitivity to ascorbic acid, with a detection limit of 0.02 nM. This research opens up opportunities for enhancing both the ECL efficiency and sensing performance by employing a rational atomic-scale design for DACs.

9.
Small ; 19(29): e2300042, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37046185

RESUMO

Modifying sulfur cathodes with lithium polysulfides (LiPSs) adsorptive and electrocatalytic host materials is regarded as one of the most effective approaches to address the challenging problems in lithium-sulfur (Li-S) batteries. However, because of the high operating voltage window of Li-S batteries from 1.7 to 2.8 V, most of the host materials cannot participate in the sulfur redox reactions within the same potential region, which exhibit fixed or single functional property, hardly fulfilling the requirement of the complex and multiphase process. Herein, Chevrel phase Mo6 S8 nanosheets with high electronic conductivity, fast ion transport capability, and strong polysulfide affinity are introduced to sulfur cathode. Unlike most previous inactive hosts with a fixed affinity or catalytic ability toward LiPSs, the reaction involving Mo6 S8 is intercalative and the adsorbability for LiPSs as well as the ionic conductivity can be dynamically enhanced via reversible electrochemical lithiation of Mo6 S8 to Li-ion intercalated Lix Mo6 S8 , thereby suppressing the shuttling effect and accelerating the conversion kinetics. Consequently, the Mo6 S8 nanosheets act as an effective dynamic-phase promoter in Li-S batteries and exhibit superior cycling stability, high-rate capability, and low-temperature performance. This study opens a new avenue for the development of advanced hosts with dynamic regulation activity for high performance Li-S batteries.

10.
J Nanobiotechnology ; 21(1): 423, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37964381

RESUMO

Conventional electrospinning produces nanofibers with smooth surfaces that limit biomineralization ability. To overcome this disadvantage, we fabricated a tetramethylpyrazine (TMP)-loaded matrix-mimicking biomineralization in PCL/Gelatin composite electrospun membranes with bubble-shaped nanofibrous structures. PCL/Gelatin membranes (PG), PCL/Gelatin membranes containing biomineralized hydroxyapatite (HA) (PGH), and PCL/Gelatin membranes containing biomineralized HA and loaded TMP (PGHT) were tested. In vitro results indicated that the bubble-shaped nanofibrous surface increased the surface roughness of the nanofibers and promoted mineralization. Furthermore, sustained-release TMP had an excellent drug release efficiency. Initially released vigorously, it reached stabilization at day 7, and the slow-release rate stabilized at 61.0 ± 1.8% at 28 days. All membranes revealed an intact cytoskeleton, cell viability, and superior adhesion and proliferation when stained with Ghost Pen Cyclic Peptide, CCK-8, cell adhesion, and EdU. In PGHT membranes, the osteogenic and vascularized gene expression of BMSCs and human vascular endothelial cells was significantly upregulated compared with that in other groups, indicating the PGHT membranes exhibited an effective vascularization role. Subsequently, the membranes were implanted in a rat cranium defect model for 4 and 8 weeks. Micro-CT and histological analysis results showed that the PGHT membranes had better bone regenerative patterns. Additionally, the levels of CD31 and VEGF significantly increased in the PGHT membrane compared with those in other membranes. Thus, PGHT membranes could accelerate the repair of cranium defects in vivo via HA and TMP synergistic effects.


Assuntos
Nanofibras , Ratos , Humanos , Animais , Nanofibras/química , Gelatina/química , Células Endoteliais , Regeneração Óssea , Durapatita/química , Crânio , Poliésteres/química , Alicerces Teciduais , Proliferação de Células , Engenharia Tecidual/métodos
11.
Anal Chem ; 94(3): 1499-1509, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35014271

RESUMO

Nanozymes are a kind of nanomaterial mimicking enzyme catalytic activity, which has aroused extensive interest in the fields of biosensors, biomedicine, and climate and ecosystems management. However, due to the complexity of structures and composition of nanozymes, atomic scale active centers have been extensively investigated, which helps with in-depth understanding of the nature of the biocatalysis. Single atom nanozymes (SANs) cannot only significantly enhance the activity of nanozymes but also effectively improve the selectivity of nanozymes owing to the characteristics of simple and adjustable coordination environment and have been becoming the brightest star in the nanozyme spectrum. The SANs based sensors have also been widely investigated due to their definite structural features, which can be helpful to study the catalytic mechanism and provide ways to improve catalytic activity. This perspective presents a comprehensive understanding on the advances and challenges on SANs based sensors. The catalytic mechanisms of SANs and then the sensing application from the perspectives of sensing technology and sensor construction are thoroughly analyzed. Finally, the major challenges, potential future research directions, and prospects for further research on SANs based sensors are also proposed.


Assuntos
Técnicas Biossensoriais , Nanoestruturas , Catálise , Ecossistema , Nanoestruturas/química
12.
Soft Matter ; 18(48): 9153-9162, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36458603

RESUMO

The artificial biomimetic sensory hair as state-of-art electronics has drawn great attention from academic theorists of industrial production given its potential application in soft robotics, environmental exploration and health monitoring. However, it still remains a challenge to develop highly sensitive electronic sensory hair with fast response. In this study, a bio-inspired electronic whisker (e-whisker) with a hollow polymer shell and a liquid metal core was prepared by microinjection for airflow measurement and detection of obstacles. In addition, we illustrated the effect of liquid metal hysteresis on its distribution in microchannels on deformation. The difference in the deformed velocity between the selected fiber and EGaIn would result in a disturbance emerging in the liquid metal channel, which further causes a variation in resistance. Taking advantage of this phenomenon, the integrated fiber e-whisker can be employed to detect tiny airflow and disturbance. The experimental results indicate that the fiber sensor can detect the airflow velocity as low as 0.2 m s-1 within 0.1 s. The e-whisker can accurately monitor rainfall, human motion and object velocity. This work sheds light on the liquid metal viscosity-induced sensing mechanism and offers a novel strategy to fabricate high-performance velocity sensors.


Assuntos
Robótica , Vibrissas , Animais , Humanos , Vibrissas/fisiologia , Eletrônica , Biomimética , Movimento (Física) , Metais
13.
Anal Chem ; 93(3): 1221-1231, 2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33371664

RESUMO

Single-atom nanozymes (SANs) are one of the newest generations of nanozymes, which have been greatly developed in the past few years and exploited widely for many applications, such as biosensing, disease diagnosis and therapy, bioimaging, and so on. SANs, possessing dispersed single-atom structures and a well-defined coordination environment, exhibit remarkable catalytic performance with both high activity and stability. In this paper, the most recent progress in SANs is reviewed in terms of their advanced synthesis, characterization, functional mechanisms, performance validation/optimization, and biomedical applications. Several technical challenges hindering practical applications of SANs are analyzed, and possible research directions are also proposed for overcoming the challenges.


Assuntos
Pesquisa Biomédica , Materiais Biomiméticos/química , Técnicas Biossensoriais , Nanoestruturas/química
14.
Nanotechnology ; 32(9): 095106, 2021 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-33290267

RESUMO

Glaucoma is the second leading cause of blindness in the world. Intraocular pressure (IOP) is a primary indicator of glaucoma which can be measured for the treatment of the disease. This paper presents a piezo-resistive principle pressure sensor to monitor IOP continuously and non-invasively. The sensor is designed based on the Wheatstone bridge circuit and fabricated by the spray-coating method. The hybrid nanomaterials of graphene and carbon nanotubes are introduced as sensing layers which are embedded inside the soft contact lens substrate composed of flexible polydimethyl siloxane (PDMS) and parylene. The sensing performance is discussed followed by a brief description of our sensor design and fabrication. Tests on a PDMS eyeball model indicate that it has a high sensitivity of 36.01 µV mmHg-1. Also, the frequency response and the ability to track dynamic pressure change cycles are demonstrated in normal IOP variation range from 9 to 34 mmHg. It shows good repeatability and linearity, and can accurately track fluctuating IOP. Thus, this sensor, with its ease of fabrication and simple design, as well as allowance for continuous pressure measurement, offers a promising approach for IOP monitoring in clinical diagnosis of glaucoma.

15.
Nanotechnology ; 32(14): 145710, 2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33438583

RESUMO

There are unrevealed factors that bring about the performance variations of resistive switching devices. In this work, Pt/CeO x /Pt devices prepared by magnetron sputtering showed rectification in their asymmetrical current-voltage (I-V) curves during voltage sweeps. X-ray photoelectron spectroscopy showed that the deposited CeO x film had an inhomogeneous composition, and more oxygen vacancies existed in CeO x near the top electrode. The asymmetrical resistance change of the Pt/CeO x /Pt devices can be explained by the presence of more charged oxygen vacancies in CeO x near the top electrode, along with the Schottky conduction mechanism. This work reveals that the compositional inhomogeneity is inevitable in the magnetron sputtering of oxide targets like CeO2 and can be an important source of device-to-device and cycle-to-cycle variations of memristors.

16.
Mikrochim Acta ; 187(10): 543, 2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32880716

RESUMO

Monodispersed Au nanoparticles in ordered mesoporous carbon/silica (Au/OMCS) nanocomposites were prepared by the solvent evaporation induced self-assembly. Au/OMCS nanocomposites were characterized through XRD, BET, and TEM. The obtained nanocomposites exhibit uniform mesopores with the size of 18 ± 2 nm. And ultrafine Au nanoparticles with the size of 3~7 nm are well dispersed in the cavities. An ultrasensitive nanoenzyme sensor was fabricated based on a Au/OMCS-modified electrode. The Au/OMCS-modified electrode displays high xanthine oxidase-like catalytic activity evaluated through cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The DPV response currents are linearly dependent on concentrations of xanthine (Xa) in the range 0.10-20 µM, along with a high sensitivity of 6.84 µA µM-1 cm-2 and very low detection limit of 0.006 µM (S/N = 3) under the optimal working potential of 0.64 V vs. SCE. Interference experiments show that the nanoenzyme sensor has no obvious responses to most potentially interfering species at a potential of 0.64 V. The fabricated sensor has been applied to the determination of Xa in spiked urine samples with recoveries ranging from 98.26 to 101.4%. Graphical abstract.


Assuntos
Carbono/química , Técnicas Eletroquímicas/métodos , Ouro/química , Nanopartículas Metálicas/química , Dióxido de Silício/química , Xantina Oxidase/química , Xantina/química
17.
J Cell Biochem ; 120(8): 12402-12411, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30825231

RESUMO

A growing body of evidence has proved that the expression of COL1A2 is associated with a reduced risk of osteoporotic fracture. One single-nucleotide polymorphism (rs3917) located within the 3'-untranslated region of COL1A2 may "alter" binding site of miR-382 and thereby associated with the risk of osteoporotic fracture. Bioinformatic analysis, luciferase reporter assay, site-directed mutagenesis, Western blot and real-time PCR were performed in this study. In this study, we validated COL1A2 as a target of miR-382 in osteoblast. In addition, bone tissue samples were genotyped as wild-type rs3917, heterozygous rs3917, and homozygous rs3917. The expression of miR-382 was comparable between the genotype groups, whereas the expression of COL1A2 mRNA and protein was much higher in heterozygous rs3917 and homozygous rs3917 than the wild-type rs3917 group. Furthermore, we transfected the wild-type rs3917 and heterozygous rs3917 cells with miR-382 mimics or inhibitors and found that the transfection with miR-382 mimics significantly increased the level of the miR-382 in the cells of both genotypes, and the introduction of miR-382 inhibitors substantially suppressed the level of miR-382 in both cells. In wild-type rs3917 cells, transfection of miR-382 mimics and COL1A2 small interfering RNA (siRNA) similarly and substantially downregulated the expression of COL1A2, while in heterozygous rs3917 cells, only COL1A2 siRNA notably reduced the expression of COL1A2, whereas introduction of miR-382 mimics left expression of COL1A2 intact. The findings showed rs3917 polymorphism interfered with the interaction between COL1A2 mRNA and miR-382, and minor allele is associated with a reduced risk of osteoporotic fracture.


Assuntos
Colágeno Tipo I/metabolismo , Regulação da Expressão Gênica , Predisposição Genética para Doença , Mutação INDEL , MicroRNAs/metabolismo , Fraturas por Osteoporose/patologia , Polimorfismo de Nucleotídeo Único , Regiões 3' não Traduzidas , Apoptose , Sítios de Ligação , Biomarcadores/metabolismo , Estudos de Casos e Controles , Proliferação de Células , Células Cultivadas , Colágeno Tipo I/genética , Feminino , Seguimentos , Humanos , Masculino , MicroRNAs/genética , Pessoa de Meia-Idade , Fraturas por Osteoporose/genética , Fraturas por Osteoporose/metabolismo , Prognóstico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
18.
BMC Complement Altern Med ; 19(1): 326, 2019 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-31752797

RESUMO

BACKGROUND: It has been testified that Diabetes mellitus (DM) has a close association with chronic inflammation and Toll-like Receptors (TLRs), and DM could be prevented by mulberry leaf. Therefore, a hypothesis came into being that mulberry leaf could ameliorate proinflammation and insulin resistance (IR) through TLRs and insulin signalling pathways. METHODS: Water extracts of mulberry leaf (WEM) was given to diabetic mice by gavage for 10 weeks, and the diabetic mice was injected with low-dose streptozocin, fed with high-fat and high-sugar diet. Oral glucose tolerance tests (OGTTs) were conducted. At the same time, homeostasis model assessment of insulin (HOMA-IR) and the level of the inflammatory factor, tumour necrosis factor-α (TNF-α) was measured. The expressions of critical nodes of TLRs and insulin signalling pathway were also examined. RESULTS: WEM contributed to a significant decrease in fasting blood glucose, AUC from the investigation of OGTTs and HOMA-IR. The levels of the inflammatory factor, tumour necrosis factor-α (TNF-α) also declined. Moreover, WEM suppressed the expression of TLR2, myeloid differentiation primary-response protein 88 (MyD88), tumour-necrosis-factor receptor-associated factor 6 (TRAF6), nuclear factor kappa B (NF-κB) in the skeletal muscle. WEM could up-regulate the expression of insulin receptor (InsR) and insulin receptor substrate 1 (IRS1), and down-regulate the phosphorylation of IRS1 in adipose tissue. CONCLUSION: Through this study, a conclusion could be made that WEM mitigates hyperglycemia, IR, and inflammation through the interactions among TLR2 signalling pathway, insulin signalling pathway and TNF-α.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Inflamação/metabolismo , Resistência à Insulina/fisiologia , Morus , Extratos Vegetais/farmacologia , Animais , Glicemia/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Diabetes Mellitus Tipo 2/metabolismo , Insulina/sangue , Insulina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos ICR , Folhas de Planta/química , Transdução de Sinais/efeitos dos fármacos , Receptor 2 Toll-Like/sangue , Receptor 2 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/sangue , Fator de Necrose Tumoral alfa/metabolismo
19.
BMC Complement Altern Med ; 19(1): 36, 2019 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-30704468

RESUMO

BACKGROUND: Bone damage is a condition that affects the quality of life of patients. Mesenchymal stem cells (MSCs) are important for bone repair. Osteoking is a natural compound in traditional Chinese Medicine used to treat bone diseases; however, the effect of Osteoking on the differentiation of MSCs has not been reported. In this study, we aimed to investigate the effect of Osteoking on the osteogenic and adipogenic differentiation potential of rat bone marrow mesenchymal stem cells (rbMSCs). METHODS: The effects of Osteoking on the proliferation and differentiation of rbMSCs were investigated. Different concentrations of Osteoking were prepared, and its cytotoxicity was evaluated by CCK-8 assay. The expression of osteogenic and adipogenic genes were determined, and several staining methods were used to reveal the osteogenic and adipogenic differentiation potential of rbMSCs. RESULTS: Our results show that appropriate concentrations of Osteoking can enhance osteogenic differentiation of rbMSCs and reduce adipogenic differentiation without any effect on proliferation. This may be related to the changes in related gene expression. CONCLUSION: Osteoking enhances osteogenic differentiation and inhibits adipogenic differentiation of rbMSCs. Therefore, Osteoking may have a therapeutic potential for treating bone disease caused by changes in differentiation function of MSCs.


Assuntos
Adipogenia/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Masculino , Células-Tronco Mesenquimais/citologia , Ratos , Ratos Sprague-Dawley
20.
Mikrochim Acta ; 186(1): 47, 2019 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-30610459

RESUMO

A material is described for sensing NO2 in the gas phase. It has an architecture of type Au/MASnI3/SnO2 (where MA stands for methylammonium cation) and was fabricated by first synthesizing Au/MASnI3 and then crystallizing SnO2 on the surface by calcination. The physical and NO2 sensing properties of the composite were examined at room temperature without and with UV (365 nm) illumination, and the NO2-sensing mechanism was studied. The characterization demonstrated the formation of a p-n heterojunction structure between p-MASnI3 and n-SnO2. The sensor, best operated at a voltage of 1.1 V at room temperature, displays superior NO2 sensing performance. Figures of merit include (a) high response (Rg/Ra = 240 for 5 ppm NO2; where Rg stands for the resistance of a sensor in test gas, and Ra stands for the resistance of a sensor in air), (b) fast recovery (about 12 s), (c) excellent selectivity compared to sensors based on the use of SnO2 or Au/SnO2 only, both at room temperature under UV illumination; (d) a low detection limit (55 ppb), and (e) a linear response between 0.5 and 10 ppm of NO2. The enhanced sensing performance is mainly attributed to the high light absorption capacity of MASnI3, the easy generation and transfer of photo-induced electrons from MASnI3 to the conduction band of SnO2, and the catalytic effect of gold nanoparticles. Graphical abstract Schematic of the energy band diagrams of the gold-functionalized MASnI3/SnO2 system after equilibrium with UV illumination, by which the enhanced sensing performance for NO2 can be explained.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA