RESUMO
Middle East respiratory syndrome coronavirus (MERS-CoV) and several bat coronaviruses use dipeptidyl peptidase-4 (DPP4) as an entry receptor1-4. However, the receptor for NeoCoV-the closest known MERS-CoV relative found in bats-remains unclear5. Here, using a pseudotype virus entry assay, we found that NeoCoV and its close relative, PDF-2180, can efficiently bind to and use specific bat angiotensin-converting enzyme 2 (ACE2) orthologues and, less favourably, human ACE2 as entry receptors through their receptor-binding domains (RBDs) on the spike (S) proteins. Cryo-electron microscopy analysis revealed an RBD-ACE2 binding interface involving protein-glycan interactions, distinct from those of other known ACE2-using coronaviruses. We identified residues 337-342 of human ACE2 as a molecular determinant restricting NeoCoV entry, whereas a NeoCoV S pseudotyped virus containing a T510F RBD mutation efficiently entered cells expressing human ACE2. Although polyclonal SARS-CoV-2 antibodies or MERS-CoV RBD-specific nanobodies did not cross-neutralize NeoCoV or PDF-2180, an ACE2-specific antibody and two broadly neutralizing betacoronavirus antibodies efficiently inhibited these two pseudotyped viruses. We describe MERS-CoV-related viruses that use ACE2 as an entry receptor, underscoring a promiscuity of receptor use and a potential zoonotic threat.
Assuntos
Enzima de Conversão de Angiotensina 2 , Quirópteros , Coronavírus da Síndrome Respiratória do Oriente Médio , Receptores Virais , Internalização do Vírus , Animais , Humanos , Enzima de Conversão de Angiotensina 2/metabolismo , Quirópteros/metabolismo , Quirópteros/virologia , Microscopia Crioeletrônica , Coronavírus da Síndrome Respiratória do Oriente Médio/classificação , Coronavírus da Síndrome Respiratória do Oriente Médio/isolamento & purificação , Coronavírus da Síndrome Respiratória do Oriente Médio/metabolismo , Ligação Proteica , Receptores Virais/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo , Dipeptidil Peptidase 4/metabolismo , Zoonoses ViraisRESUMO
Vertebrate Tas2r taste receptors detect bitter compounds that are potentially poisonous. Previous studies found substantial variation in the number of Tas2r genes across vertebrates, with some frog species carrying the largest number. Peculiar among vertebrates, frogs undergo metamorphosis, often associated with a dietary shift between tadpoles and adults. A possible explanation for the large size of frog Tas2r families could be that distinct sets of Tas2r genes are required for tadpoles and adults, suggesting differential expression of Tas2r genes between tadpoles and adults. To test this hypothesis, we first examined 20 amphibian genomes and found that amphibians generally possess more Tas2r genes than do other vertebrate clades. We next focused on the American bullfrog (Lithobates catesbeianus) to examine the expression of its Tas2r genes in herbivorous tadpoles and insectivorous adult frogs. We report that close to one fifth of its 180 Tas2r genes are differentially expressed (22 genes enriched in adults and 11 in tadpoles). Tuning properties were determined for a subset of differentially expressed genes by a cell-based functional assay, with the adult-enriched Tas2r gene set covering a larger range of ligands compared to the tadpole-enriched subset. These results suggest a role of Tas2r genes in the ontogenetic dietary shift of frogs and potentially initiate a new avenue of ontogenetic analysis of diet-related genes in the animal kingdom.
Assuntos
Receptores Acoplados a Proteínas G , Paladar , Animais , Paladar/genética , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Filogenia , Evolução Molecular , Anuros/genética , Anuros/metabolismo , DietaRESUMO
The heterogeneity of idiopathic pulmonary fibrosis (IPF) limits its diagnosis and treatment. The association between the pathophysiological features and the serum protein signatures of IPF currently remains unclear. The present study analyzed the specific proteins and patterns associated with the clinical parameters of IPF based on a serum proteomic dataset by data-independent acquisition using MS. Differentiated proteins in sera distinguished patients with IPF into three subgroups in signal pathways and overall survival. Aging-associated signatures by weighted gene correlation network analysis coincidently provided clear and direct evidence that aging is a critical risk factor for IPF rather than a single biomarker. Expression of LDHA and CCT6A, which was associated with glucose metabolic reprogramming, was correlated with high serum lactic acid content in patients with IPF. Cross-model analysis and machine learning showed that a combinatorial biomarker accurately distinguished patients with IPF from healthy individuals with an area under the curve of 0.848 (95% CI = 0.684-0.941) and validated from another cohort and ELISA assay. This serum proteomic profile provides rigorous evidence that enables an understanding of the heterogeneity of IPF and protein alterations that could help in its diagnosis and treatment decisions.
Assuntos
Fibrose Pulmonar Idiopática , Proteômica , Humanos , Fibrose Pulmonar Idiopática/diagnóstico , Fibrose Pulmonar Idiopática/metabolismo , Fibrose Pulmonar Idiopática/patologia , Proteínas Sanguíneas , Biomarcadores , Chaperonina com TCP-1RESUMO
The evolution of taste perception is usually associated with the ecology and dietary changes of organisms. However, the association between feeding ecology and taste receptor evolution is unclear in some lineages of vertebrate animals. One example is the sweet taste receptor gene Tas1r2 Previous analysis of partial sequences has revealed that Tas1r2 has undergone equally strong purifying selection between insectivorous and frugivorous bats. To test whether the sweet taste function is also important in bats with contrasting diets, we examined the complete coding sequences of both sweet taste receptor genes (Tas1r2 and Tas1r3) in 34 representative bat species. Although these two genes are highly conserved between frugivorous and insectivorous bats at the sequence level, our behavioral experiments revealed that an insectivorous bat (Myotis ricketti) showed no preference for natural sugars, whereas the frugivorous species (Rousettus leschenaultii) showed strong preferences for sucrose and fructose. Furthermore, while both sweet taste receptor genes are expressed in the taste tissue of insectivorous and frugivorous bats, our cell-based assays revealed striking functional divergence: the sweet taste receptors of frugivorous bats are able to respond to natural sugars whereas those of insectivorous bats are not, which is consistent with the behavioral preference tests, suggesting that functional evolution of sweet taste receptors is closely related to diet. This comprehensive study suggests that using sequence conservation alone could be misleading in inferring protein and physiological function and highlights the power of combining behavioral experiments, expression analysis, and functional assays in molecular evolutionary studies.
Assuntos
Ageusia/genética , Quirópteros/fisiologia , Dieta , Genoma , Receptores Acoplados a Proteínas G/genética , Percepção Gustatória/genética , Ageusia/metabolismo , Animais , Quirópteros/classificação , Evolução Molecular , Cadeia Alimentar , Frutas , Expressão Gênica , Insetos , Filogenia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Seleção Genética , Paladar/genéticaRESUMO
Idiopathic pulmonary fibrosis (IPF) is a progressive fatal interstitial lung disease without an effective cure. Herein, we explore the role of 3,5,3'-triiodothyronine (T3) administration on lung alveolar regeneration and fibrosis at the single-cell level. T3 supplementation significantly altered the gene expression in fibrotic lung tissues. Immune cells were rapidly recruited into the lung after the injury; there were much more M2 macrophages than M1 macrophages in the lungs of bleomycin-treated mice; and M1 macrophages increased slightly, whereas M2 macrophages were significantly reduced after T3 treatment. T3 enhanced the resolution of pulmonary fibrosis by promoting the differentiation of Krt8+ transitional alveolar type II epithelial cells into alveolar type I epithelial cells and inhibiting fibroblast activation and extracellular matrix production potentially by regulation of Nr2f2. In addition, T3 regulated the crosstalk of macrophages with fibroblasts, and the Pros1-Axl signaling axis significantly facilitated the attenuation of fibrosis. The findings demonstrate that administration of a thyroid hormone promotes alveolar regeneration and resolves fibrosis mainly by regulation of the cellular state and cell-cell communication of alveolar epithelial cells, macrophages, and fibroblasts in mouse lungs in comprehensive ways.
Assuntos
Fibrose Pulmonar Idiopática , Camundongos , Animais , Fibrose Pulmonar Idiopática/tratamento farmacológico , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/metabolismo , Pulmão/patologia , Fibrose , Bleomicina/farmacologia , Fibroblastos/metabolismo , Hormônios Tireóideos/metabolismo , Análise de Sequência de RNARESUMO
The novel coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of COVID-19. The main receptor of SARS-CoV-2, angiotensin I converting enzyme 2 (ACE2), is now undergoing extensive scrutiny to understand the routes of transmission and sensitivity in different species. Here, we utilized a unique dataset of ACE2 sequences from 410 vertebrate species, including 252 mammals, to study the conservation of ACE2 and its potential to be used as a receptor by SARS-CoV-2. We designed a five-category binding score based on the conservation properties of 25 amino acids important for the binding between ACE2 and the SARS-CoV-2 spike protein. Only mammals fell into the medium to very high categories and only catarrhine primates into the very high category, suggesting that they are at high risk for SARS-CoV-2 infection. We employed a protein structural analysis to qualitatively assess whether amino acid changes at variable residues would be likely to disrupt ACE2/SARS-CoV-2 spike protein binding and found the number of predicted unfavorable changes significantly correlated with the binding score. Extending this analysis to human population data, we found only rare (frequency <0.001) variants in 10/25 binding sites. In addition, we found significant signals of selection and accelerated evolution in the ACE2 coding sequence across all mammals, and specific to the bat lineage. Our results, if confirmed by additional experimental data, may lead to the identification of intermediate host species for SARS-CoV-2, guide the selection of animal models of COVID-19, and assist the conservation of animals both in native habitats and in human care.
Assuntos
Betacoronavirus/fisiologia , Infecções por Coronavirus/metabolismo , Peptidil Dipeptidase A/química , Peptidil Dipeptidase A/genética , Pneumonia Viral/metabolismo , Aminoácidos , Animais , Betacoronavirus/metabolismo , Sítios de Ligação , COVID-19 , Infecções por Coronavirus/virologia , Evolução Molecular , Variação Genética , Especificidade de Hospedeiro , Humanos , Pandemias , Peptidil Dipeptidase A/metabolismo , Pneumonia Viral/virologia , Ligação Proteica , Receptores Virais/química , Receptores Virais/genética , Receptores Virais/metabolismo , SARS-CoV-2 , Seleção Genética , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo , VertebradosRESUMO
Sensory systems are attractive evolutionary models to address how organisms adapt to local environments that can cause ecological speciation. However, tests of these evolutionary models have focused on visual, auditory, and olfactory senses. Here, we show local adaptation of bitter taste receptor genes in two neighboring populations of a wild mammal-the blind mole rat Spalax galili-that show ecological speciation in divergent soil environments. We found that basalt-type bitter receptors showed higher response intensity and sensitivity compared with chalk-type ones using both genetic and cell-based functional analyses. Such functional changes could help animals adapted to basalt soil select plants with less bitterness from diverse local foods, whereas a weaker reception to bitter taste may allow consumption of a greater range of plants for animals inhabiting chalk soil with a scarcity of food supply. Our study shows divergent selection on food resources through local adaptation of bitter receptors, and suggests that taste plays an important yet underappreciated role in speciation.
Assuntos
Spalax , Adaptação Fisiológica/genética , Animais , Especiação Genética , Mamíferos , Spalax/genética , Paladar/genéticaRESUMO
Obligate scavenging on the dead and decaying animal matter is a rare dietary specialization that in extant vertebrates is restricted to vultures. These birds perform essential ecological services, yet many vulture species have undergone recent steep population declines and are now endangered. To test for molecular adaptations underlying obligate scavenging in vultures, and to assess whether genomic features might have contributed to their population declines, we generated high-quality genomes of the Himalayan and bearded vultures, representing both independent origins of scavenging within the Accipitridae, alongside a sister taxon, the upland buzzard. By comparing our data to published sequences from other birds, we show that the evolution of obligate scavenging in vultures has been accompanied by widespread positive selection acting on genes underlying gastric acid production, and immunity. Moreover, we find evidence of parallel molecular evolution, with amino acid replacements shared among divergent lineages of these scavengers. Our genome-wide screens also reveal that both the Himalayan and bearded vultures exhibit low levels of genetic diversity, equating to around a half of the mean genetic diversity of other bird genomes examined. However, demographic reconstructions indicate that population declines began at around the Last Glacial Maximum, predating the well-documented dramatic declines of the past three decades. Taken together, our genomic analyses imply that vultures harbor unique adaptations for processing carrion, but that modern populations are genetically depauperate and thus especially vulnerable to further genetic erosion through anthropogenic activities.
Assuntos
Falconiformes , Animais , Aves/genética , Evolução Molecular , Falconiformes/genética , Variação Genética , GenomaRESUMO
Adaptations to different diets represent a hallmark of animal diversity. The diets of birds are highly variable, making them an excellent model system for studying adaptive evolution driven by dietary changes. To test whether molecular adaptations to diet have occurred during the evolution of birds, we examined a dietary enzyme alanine-glyoxylate aminotransferase (AGT), which tends to target mitochondria in carnivorous mammals, peroxisomes in herbivorous mammals, and both mitochondria and peroxisomes in omnivorous mammals. A total of 31 bird species were examined in this study, which included representatives of most major avian lineages. Of these, 29 have an intact mitochondrial targeting sequence (MTS) of AGT. This finding is in stark contrast to mammals, which showed a number of independent losses of the MTS. Our cell-based functional assays revealed that the efficiency of AGT mitochondrial targeting was greatly reduced in unrelated lineages of granivorous birds, yet it tended to be high in insectivorous and carnivorous lineages. Furthermore, we found that proportions of animal tissue in avian diets were positively correlated with mitochondrial targeting efficiencies that were experimentally determined, but not with those that were computationally predicted. Adaptive evolution of AGT mitochondrial targeting in birds was further supported by the detection of positive selection on MTS regions. Our study contributes to the understanding of how diet drives molecular adaptations in animals, and suggests that caution must be taken when computationally predicting protein subcellular targeting.
Assuntos
Aves/fisiologia , Mitocôndrias/enzimologia , Transaminases/química , Transaminases/genética , Ração Animal , Animais , Proteínas Aviárias/química , Proteínas Aviárias/genética , Evolução Biológica , Aves/classificação , Aves/genética , Carnívoros , Dieta , Evolução Molecular , Herbivoria , Mitocôndrias/genética , FilogeniaRESUMO
Comprising more than 1,400 species, bats possess adaptations unique among mammals including powered flight, unexpected longevity, and extraordinary immunity. Some of the molecular mechanisms underlying these unique adaptations includes DNA repair, metabolism and immunity. However, analyses have been limited to a few divergent lineages, reducing the scope of inferences on gene family evolution across the Order Chiroptera. We conducted an exhaustive comparative genomic study of 37 bat species, one generated in this study, encompassing a large number of lineages, with a particular emphasis on multi-gene family evolution across immune and metabolic genes. In agreement with previous analyses, we found lineage-specific expansions of the APOBEC3 and MHC-I gene families, and loss of the proinflammatory PYHIN gene family. We inferred more than 1,000 gene losses unique to bats, including genes involved in the regulation of inflammasome pathways such as epithelial defence receptors, the natural killer gene complex and the interferon-gamma induced pathway. Gene set enrichment analyses revealed genes lost in bats are involved in defence response against pathogen-associated molecular patterns and damage-associated molecular patterns. Gene family evolution and selection analyses indicate bats have evolved fundamental functional differences compared to other mammals in both innate and adaptive immune system, with the potential to enhance antiviral immune response while dampening inflammatory signalling. In addition, metabolic genes have experienced repeated expansions related to convergent shifts to plant-based diets. Our analyses support the hypothesis that, in tandem with flight, ancestral bats had evolved a unique set of immune adaptations whose functional implications remain to be explored.
Assuntos
Quirópteros , Adaptação Fisiológica/genética , Animais , Quirópteros/genética , Evolução Molecular , Genoma , Genômica , Humanos , FilogeniaRESUMO
Diet is a key factor in determining and structuring animal diversity and adaptive radiations. The mammalian fossil record preserves phenotypic evidence of many dietary shifts, whereas genetic changes followed by dietary diversification in mammals remain largely unknown. To test whether living mammals preserve molecular evidence of dietary shifts, we examined the trehalase gene (Treh), which encodes an enzyme capable of digesting trehalose from insect blood, in bats and other mammals with diverse diets. Bats represent the largest dietary radiation among all mammalian orders, with independent origins of frugivory, nectarivory, carnivory, omnivory, and even sanguivory in an otherwise insectivorous clade. We found that Treh has been inactivated in unrelated bat lineages that independently radiated into noninsectivorous niches. Consistently, purifying selection has been markedly relaxed in noninsectivorous bats compared with their insectivorous relatives. Enzymatic assays of intestinal trehalase in bats suggest that trehalase activity tends to be lost or markedly reduced in noninsectivorous bats compared with their insectivorous relatives. Furthermore, our survey of Treh in 119 mammal species, which represent a deeper evolutionary timeframe, additionally identified a number of other independent losses of Treh in noninsectivorous species, recapitulating the evolutionary pattern that we found in bats. These results document a molecular record of dietary diversification in mammals, and suggest that such molecular signatures of dietary shifts would help us understand both historical and modern changes of animal diets.
Assuntos
Evolução Biológica , Quirópteros/genética , Dieta , Trealase/genética , Animais , Quirópteros/metabolismo , Trealase/metabolismoRESUMO
Through their unique use of sophisticated laryngeal echolocation bats are considered sensory specialists amongst mammals and represent an excellent model in which to explore sensory perception. Although several studies have shown that the evolution of vision is linked to ecological niche adaptation in other mammalian lineages, this has not yet been fully explored in bats. Recent molecular analysis of the opsin genes, which encode the photosensitive pigments underpinning color vision, have implicated high-duty cycle (HDC) echolocation and the adoption of cave roosting habits in the degeneration of color vision in bats. However, insufficient sampling of relevant taxa has hindered definitive testing of these hypotheses. To address this, novel sequence data was generated for the SWS1 and MWS/LWS opsin genes and combined with existing data to comprehensively sample species representing diverse echolocation types and niches (SWS1 n = 115; MWS/LWS n = 45). A combination of phylogenetic analysis, ancestral state reconstruction, and selective pressure analyses were used to reconstruct the evolution of these visual pigments in bats and revealed that although both genes are evolving under purifying selection in bats, MWS/LWS is highly conserved but SWS1 is highly variable. Spectral tuning analyses revealed that MWS/LWS opsin is tuned to a long wavelength, 555-560 nm in the bat ancestor and the majority of extant taxa. The presence of UV vision in bats is supported by our spectral tuning analysis, but phylogenetic analyses demonstrated that the SWS1 opsin gene has undergone pseudogenization in several lineages. We do not find support for a link between the evolution of HDC echolocation and the pseudogenization of the SWS1 gene in bats, instead we show the SWS1 opsin is functional in the HDC echolocator, Pteronotus parnellii. Pseudogenization of the SWS1 is correlated with cave roosting habits in the majority of pteropodid species. Together these results demonstrate that the loss of UV vision in bats is more widespread than was previously considered and further elucidate the role of ecological niche specialization in the evolution of vision in bats.
Assuntos
Evolução Biológica , Quirópteros/genética , Visão de Cores/genética , Ecolocação , Opsinas/fisiologia , Animais , CavernasRESUMO
Although cases of independent adaptation to the same dietary niche have been documented in mammalian ecology, the molecular correlates of such shifts are seldom known. Here, we used genomewide analyses of molecular evolution to examine two lineages of bats that, from an insectivorous ancestor, have both independently evolved obligate frugivory: the Old World family Pteropodidae and the neotropical subfamily Stenodermatinae. New genome assemblies from two neotropical fruit bats (Artibeus jamaicensis and Sturnira hondurensis) provide a framework for comparisons with Old World fruit bats. Comparative genomics of 10 bat species encompassing dietary diversity across the phylogeny revealed convergent molecular signatures of frugivory in both multigene family evolution and single-copy genes. Evidence for convergent molecular adaptations associated with frugivorous diets includes the composition of three subfamilies of olfactory receptor genes, losses of three bitter taste receptor genes, losses of two digestive enzyme genes and convergent amino acid substitutions in several metabolic genes. By identifying suites of adaptations associated with the convergent evolution of frugivory, our analyses both reveal the extent of molecular mechanisms under selection in dietary shifts and will facilitate future studies of molecular ecology in mammals.
Assuntos
Adaptação Fisiológica , Quirópteros , Adaptação Fisiológica/genética , Animais , Quirópteros/genética , Evolução Molecular , Família Multigênica , FilogeniaRESUMO
BACKGROUND: Vomeronasal type 1 receptor genes (V1Rs) are expected to detect intraspecific pheromones. It is believed that rodents rely heavily on pheromonal communication mediated by V1Rs, but pheromonal signals are thought to be confined in subterranean rodents that live in underground burrows. Thus, subterranean rodents may show a contrasting mode of V1R evolution compared with their superterranean relatives. RESULTS: We examined the V1R evolution in subterranean rodents by analyzing currently available genomes of 24 rodents, including 19 superterranean and 5 subterranean species from three independent lineages. We identified a lower number of putatively functional V1R genes in each subterranean rodent (a range of 22-40) compared with superterranean species (a range of 63-221). After correcting phylogenetic inertia, the positive correlation remains significant between the small V1R repertoire size and the subterranean lifestyle. To test whether V1Rs have been relaxed from functional constraints in subterranean rodents, we sequenced 22 intact V1Rs in 29 individuals of one subterranean rodent (Spalax galili) from two soil populations, which have been proposed to undergo incipient speciation. We found 12 of the 22 V1Rs to show significant genetic differentiations between the two natural populations, indicative of diversifying selection. CONCLUSION: Our study demonstrates convergent reduction of V1Rs in subterranean rodents from three independent lineages. Meanwhile, it is noteworthy that most V1Rs in the two Spalax populations are under diversifying selection rather than relaxed selection, suggesting that functional constraints on these genes may have retained in some subterranean species.
Assuntos
Evolução Molecular , Receptores Acoplados a Proteínas G/metabolismo , Receptores Odorantes/metabolismo , Spalax/genética , Animais , Feromônios/metabolismo , Filogenia , Receptores Acoplados a Proteínas G/genética , Receptores Odorantes/genética , Seleção Genética , Spalax/classificação , Spalax/fisiologia , Órgão Vomeronasal/metabolismoRESUMO
Divalent and trivalent salts exhibit a complex taste profile. They are perceived as being astringent/drying, sour, bitter, and metallic. We hypothesized that human bitter-taste receptors may mediate some taste attributes of these salts. Using a cell-based functional assay, we found that TAS2R7 responds to a broad range of divalent and trivalent salts, including zinc, calcium, magnesium, copper, manganese, and aluminum, but not to potassium, suggesting TAS2R7 may act as a metal cation receptor mediating bitterness of divalent and trivalent salts. Molecular modeling and mutagenesis analysis identified 2 residues, H943.37 and E2647.32, in TAS2R7 that appear to be responsible for the interaction of TAS2R7 with metallic ions. Taste receptors are found in both oral and extraoral tissues. The responsiveness of TAS2R7 to various mineral salts suggests it may act as a broad sensor, similar to the calcium-sensing receptor, for biologically relevant metal cations in both oral and extraoral tissues.
Assuntos
Alumínio/farmacologia , Cálcio/farmacologia , Metais Pesados/farmacologia , Receptores Acoplados a Proteínas G/metabolismo , Administração Oral , Alumínio/administração & dosagem , Alumínio/química , Cálcio/administração & dosagem , Cálcio/química , Humanos , Metais Pesados/administração & dosagem , Metais Pesados/química , Modelos Moleculares , Mutagênese Sítio-Dirigida , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/genéticaRESUMO
Nectar may contain many secondary metabolites that are commonly toxic and bitter-tasting. It has been hypothesized that such bitter-tasting secondary metabolites might keep the nectar exclusive to only a few pollinators. To test this hypothesis, we examined functional changes of bitter taste receptor genes (Tas2rs) in a species of nectar-feeding bird (Anna's hummingbird) by comparing these genes with those from two closely related insect-feeding species (chimney swift and chuck-will's widow). We previously identified a larger number of Tas2rs in the hummingbird than in its close insectivorous relatives. In the present study, we demonstrate higher sensitivity and new functions in the hummingbird Tas2r gene copies generated by a lineage-specific duplication, which has been shaped by positive selection. These results suggest that the bitter taste may lead to increased sensitivities and specialized abilities of the hummingbird to detect bitter-tasting nectar. Moreover, this study potentially supports the hypothesis that bitter-tasting nectar may have been specialized for some pollinators, thus enforcing plant-pollinator mutualism.
Assuntos
Néctar de Plantas , Paladar , Animais , Aves , Receptores Acoplados a Proteínas GRESUMO
WUS and WOX5, which are expressed, respectively, in the organizing center (OC) and the quiescent center (QC), are essential for shoot/root apical stem-cell maintenance in flowering plants. However, little is known about how these stem-cell factors evolved their functions in flowering plants. Here, we show that the WUS/WOX5 proteins acquired two distinct capabilities by a two-step functional innovation process in the course of plant evolution. The first-step is the apical stem-cell maintenance activity of WUS/WOX5, which originated in the common ancestor of ferns and seed plants, as evidenced by the interspecies complementation experiments, showing that ectopic expression of fern Ceratopteris richardii WUS-like (CrWUL) surrounding OC/QC, or exclusive OC-/QC-expressed gymnosperms/angiosperms WUS/WOX5 in Arabidopsis wus-1 and wox5-1 mutants, could rescue their phenotypes. The second-step is the intercellular mobility that emerged in the common ancestor of seed plants after divergence from the ferns. Evidence for this includes confocal imaging of GFP fusion proteins, showing that WUS/WOX5 from seed plants, rather than from the fern CrWUL, can migrate into cells adjacent to the OC/QC. Evolutionary analysis showed that the WUS-like gene was duplicated into two copies prior to the divergence of gymnosperms/angiosperms. Then the two gene copies (WUS and WOX5) have undergone similar levels of purifying selection, which is consistent with their conserved functions in angiosperm shoot/root stem-cell maintenance and floral organ formation. Our results highlight the critical roles and the essential prerequisites that the two-step functional innovation of these genes performs and represents in the origin of flowering plants.
Assuntos
Evolução Biológica , Proteínas de Homeodomínio/genética , Células-Tronco/fisiologia , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Evolução Molecular , Regulação da Expressão Gênica de Plantas , Técnicas de Inativação de Genes , Genes de Plantas , Proteínas de Homeodomínio/metabolismo , Meristema/genética , Meristema/metabolismo , Filogenia , Proteínas de Plantas/genética , Raízes de Plantas/genética , Fator de Células-Tronco/metabolismo , Células-Tronco/metabolismoRESUMO
It is commonly, although not universally, accepted that most intra and interspecific genome sequence variations are more or less neutral, whereas a large fraction of organism-level phenotypic variations are adaptive. Gene expression levels are molecular phenotypes that bridge the gap between genotypes and corresponding organism-level phenotypes. Yet, it is unknown whether natural variations in gene expression levels are mostly neutral or adaptive. Here we address this fundamental question by genome-wide profiling and comparison of gene expression levels in nine yeast strains belonging to three closely related Saccharomyces species and originating from five different ecological environments. We find that the transcriptome-based clustering of the nine strains approximates the genome sequence-based phylogeny irrespective of their ecological environments. Remarkably, only â¼0.5% of genes exhibit similar expression levels among strains from a common ecological environment, no greater than that among strains with comparable phylogenetic relationships but different environments. These and other observations strongly suggest that most intra and interspecific variations in yeast gene expression levels result from the accumulation of random mutations rather than environmental adaptations. This finding has profound implications for understanding the driving force of gene expression evolution, genetic basis of phenotypic adaptation, and general role of stochasticity in evolution.
Assuntos
Saccharomyces/genética , Adaptação Fisiológica/genética , Meio Ambiente , Evolução Molecular , Expressão Gênica , Perfilação da Expressão Gênica/métodos , Regulação Fúngica da Expressão Gênica/genética , Variação Genética/genética , Genoma Fúngico/genética , Genótipo , Mutação , Fenótipo , Filogenia , Saccharomyces cerevisiae/genética , TranscriptomaRESUMO
Detection of evolutionary shifts in sensory systems is challenging. By adopting a molecular approach, our earlier study proposed a sensory trade-off hypothesis between a loss of colour vision and an origin of high-duty-cycle (HDC) echolocation in Old World bats. Here, we test the hypothesis in New World bats, which include HDC echolocators that are distantly related to Old World HDC echolocators, as well as vampire bats, which have an infrared sensory system apparently unique among bats. Through sequencing the short-wavelength opsin gene (SWS1) in 16 species (29 individuals) of New World bats, we identified a novel SWS1 polymorphism in an HDC echolocator: one allele is pseudogenized but the other is intact, while both alleles are either intact or pseudogenized in other individuals. Strikingly, both alleles were found to be pseudogenized in all three vampire bats. Since pseudogenization, transcriptional or translational changes could separately result in functional loss of a gene, a pseudogenized SWS1 indicates a loss of dichromatic colour vision in bats. Thus, the same sensory trade-off appears to have repeatedly occurred in the two divergent lineages of HDC echolocators, and colour vision may have also been traded off against the infrared sense in vampire bats.
Assuntos
Evolução Biológica , Quirópteros/fisiologia , Ecolocação , Polimorfismo Genético , Opsinas de Bastonetes/genética , América , Animais , Quirópteros/genética , Filogenia , Opsinas de Bastonetes/metabolismo , Análise de Sequência de DNA/veterináriaRESUMO
By generating raw genetic material and diverse biological functions, gene duplication represents a major evolutionary mechanism that is of fundamental importance in ecological adaptation. The lineage-specific duplication events of bitter taste receptor genes (Tas2rs) have been identified in a number of vertebrates, but functional evolution of new Tas2r copies after duplication remains largely unknown. Here, we present the largest data set of bat Tas2rs to date, identified from existing genome sequences of 15 bat species and newly sequenced from 17 bat species, and demonstrate lineage-specific duplications of Tas2r16, Tas2r18 and Tas2r41 that only occurred in Myotis bats. Myotis bats are highly speciose and represent the only mammalian genus that is naturally distributed on every continent except Antarctica. The occupation of such diverse habitats might have driven the Tas2r gene expansion. New copies of Tas2rs in Myotis bats have shown molecular adaptation and functional divergence. For example, three copies of Tas2r16 in Myotis davidii showed differential sensitivities to arbutin and salicin that may occur in their insect prey, as suggested by cell-based functional assays. We hypothesize that functional differences among Tas2r copies in Myotis bats would increase their survival rate through preventing the ingestion of an elevated number of bitter-tasting dietary toxins from their insect prey, which may have facilitated their adaptation to diverse habitats. Our study demonstrates functional changes of new Tas2r copies after lineage-specific duplications in Myotis bats and highlights the potential role of taste perception in exploiting new environments.