RESUMO
Freshwater scarcity threatens human survival, particularly in extreme environments like deserts, oceans, and space. Compatible atmospheric water harvesting and undrinkable water purification offer an affordable approach to solving freshwater scarcity in these extreme environments. Nonetheless, developing composite sorbent to attain efficient atmospheric water harvesting and undrinkable water purification remains challenging. Hence, a portable hybrid hygroscopic powder (HLC powder) consisting of hydroxypropyl chitosan, dibenzaldehyde-functional poly(ethylene glycol), lithium chloride (LiCl), and nano carbon black is proposed. The HLC powder with optimized LiCl load can capture moisture from the air, showing a high water uptake of 1.76 g g-1 at 34% relative humidity (RH) and appropriate over a wide humidity from 34% to 75% RH. pH-responsive sol-gel transition induced by Schiff base bonds transforms the HLC solution into hydrogel, inhibiting hydrated salt leakage. Meanwhile, to achieve efficient undrinkable water purification, the LiCl-free hybrid powder is utilized to convert the undrinkable water, including seawater, dye water, and human urine, to photothermal hydrogel evaporators with low evaporation enthalpies and high evaporation rates ranging from 1.81 to 2.05 kg m-2 h-1 under one sun. This strategy establishes a new path to conveniently obtaining freshwater, breaking hydrological restrictions.
RESUMO
Solar-driven interfacial evaporation is a potential water purification solution. Here, a novel regenerable hydrogel interfacial evaporator is designed with tunable water production. Such an evaporator is fabricated by readily mixing hydroxypropyl chitosan (HPCS) and dibenzaldehyde-functional poly(ethylene glycol) (DF-PEG) at ambient conditions. Dynamic Schiff base bonds bestow on the HPCS/DF-PEG hydrogel (HDH) evaporator self-adaptivity and pH responsiveness. The as-prepared HDH is enabled to spontaneously change shape to adapt to different molds, endowing the evaporator with adjustable evaporation area. The water production performance of the intelligent evaporator is first evaluated using tunable evaporation index (TEI, the tunable evaporated water mass per hour), which can be altered from 0 kg h-1 to 3.21 kg h-1 under one sun. Besides, the large-scale evaporator can be expediently fabricated by virtue of the self-adaptivity. Benefiting from the pH responsiveness, the HDH evaporator is successfully regenerated with the removal of organic dye by the liquefaction-dialysis-regeneration operations. Meanwhile, the re-created evaporator maintains the self-adaptive characteristic and almost constant water evaporation rate compared to that of the initial evaporator. Therefore, this distinctive concept provides a facile strategy to develop smart and recyclable solar-driven interfacial evaporators for flexible water purification.
RESUMO
Smart superwetting membranes with finely tunable properties have attracted increased attention recently. However, they mostly focus on controllable wettability rather than controllable permeability. Also, the oil/water separation performance is usually tested with laboratory-simulated samples, making it hard for the materials to meet practical applications. Herein, we fabricate thermally responsive superwetting membranes with wax, polystyrene-B-poly(ethylene-ran-butylene)-B-polys (SEBS, a kind of elastomer), and polydopamine (PDA) to realize emulsion separation with controllable permeability. Benefiting from the elasticity of SEBS and the fluidity difference of wax at different temperatures, the pore size of the membrane could be readily tuned, resulting in different permeability. The separation flux is 0 at ambient temperature (pore size 0.394 µm) and is over 100 L m-2 h-1 at a high temperature (pore size 0.477 µm). The membrane could realize the separation of simulated oil-in-water emulsions with efficiency above 99.4%. Furthermore, it successfully achieved crude oil-in-water emulsion separation from the oil field with oil residues of less than 300 mg L-1 in the temperature range of 60-80 °C, which is the actual working temperature adopted in industrial production. Such a polydopamine/wax-SEBS modified membrane with unprecedented controllable permeability can promote the development of the emulsion treatment field and provide a new direction for designing smart superwetting materials.
RESUMO
Catalytic transformation of levulinic acid (LA) to γ-valerolactone (γ-GVL) is an important route for biomass upgradation. Because both Bro̷nsted and Lewis acidic sites are required in the cascade reaction, herein we fabricate a series of H3PW12O40@Zr-based metal-organic framework (HPW@MOF-808) by a facile impregnation method. The synthesized HPW@MOF-808 is active for the conversion of LA to γ-GVL using isopropanol as a hydrogen donor. Interestingly, with the increase in the HPW loading amount, the yield of γ-GVL increases first and then decreases, and 14%-HPW@MOF-808 gave the highest γ-GVL yield (86%). The excellent catalytic performance was ascribed to the synergistic effect between the accessible Lewis acidic Zr4+ sites in MOF-808 and Bro̷nsted acidic HPW sites. Based on the experimental results, a plausible reaction mechanism was proposed: the Zr4+ sites catalyze the transfer hydrogenation of carbonyl groups and the HPW clusters promote the esterification of LA with isopropanol and lactonization to afford γ-GVL. Moreover, HPW@MOF-808 is resistant to leaching and can be reused for five cycles without significant loss of its catalytic activity.
Assuntos
Lactonas/química , Ácidos Levulínicos/química , Ácidos de Lewis/química , Estruturas Metalorgânicas/química , Compostos de Tungstênio/química , Zircônio/química , 2-Propanol/química , Biomassa , Estruturas Metalorgânicas/síntese química , Modelos Moleculares , Estrutura MolecularRESUMO
Superwetting membranes with responsive properties have attracted heightened attention because of their fine-tunable surface wettability. However, their functional diversity is severely limited by the "black-or-white" wettability transition. Herein, we describe a coating strategy to fabricate multifunctional responsive superwetting membranes with SiO2 /octadecylamine patterns. The adjustable patterns in the responsive region are the key factor for functional diversity. Specifically, the coated part of the membrane displayed a superhydrophobicity/superhydrophilicity transition at different pH values, whereas the uncoated part exhibited invariant superhydrophilicity. On the basis of this anisotropy/isotropy transition, the membranes can serve as either responsive permeable membranes or signal-expression membranes, thus enabling the responsive separation and permeation of liquids with satisfactory separation efficiency (>99.90 %) and flux (ca. 60â L m-2 h), as well as real-time liquid signal expression with alterable signals.
RESUMO
Polymer synthesis via multicomponent reactions (MCRs) has opened avenues in polymer chemistry and led to the development of various types of functional polymers. Herein, we developed a strategy to prepare multifunctional polymers via the successive modification of dihydropyrimidin-2(1H)-thione (DHPMT), which can be generated by the tricomponent Biginelli reaction. Four hydrophobic polymers were efficiently prepared by using DHPMT derivatives. These polymers can be dip-coated onto the oxidized copper mesh to obtain superhydrophobic meshes because of the strong attractive forces between the DHPMT derivatives and Cu(II). The optimized mesh has self-cleaning properties and outstanding stability in various liquid environments; it has also been successfully applied for oil/water separation with high separation efficiency and good durability. These results demonstrate that successive modification of DHPMT is a promising method for fabricating multifunctional polymers, which may have applications in polymer chemistry and materials science.
RESUMO
Engineering anti-adhesion coatings always focuses on a specific hierarchy and surface free energy, which passively endures water scouring to wash away the loosely attached foulants. Certain foulants, however, especially those that are highly adhesive or covalently attached on the coatings, cannot be removed off the designed surfaces easily. Inspired by the active self-hunting behavior of the filter-feeding animal Daphnia, herein, we propose a universal antifouling strategy with both passive and active adhesion repellency capabilities. The premise for this protocol is that the as-fabricated liquid-like surface is able to repel the settlement of general foulants upon static conditions. Under steady thermal stimuli, the dynamic liquid-like surface behaves like a boxer with an active prevention ability against highly adhesive foulant adhesion, e.g., proteins, crude oils, and even covalently adhered mussel species. The enhanced biocide-free anti-adhesion performance is attributed to the reversible non-covalent interactions of pollutants in the initial contact with the surface, which was innovatively proved by AFM tapping tests to elucidate the physicochemical interactions between the foulants and coating surfaces. We envision that such an active anti-covalent adhesion surface may have great potential in diverse fields, including marine antifouling, fluid handling and transportation, and energy-harvesting devices.
Assuntos
Bivalves , Proteínas , Animais , Propriedades de Superfície , ÁguaRESUMO
Shortage of freshwater and deterioration of the marine environment have a serious effect on the human body and ecological environment. Here, we demonstrated a facile way to prepare a multiple-target superwetting porous material to obtain available water without cumbersome steps. Through the facile immersion and hydrothermal method, a charge-enhanced membrane material combining superwettability, electrostatic interaction, and the steric effect is prepared. Such a material breaks through the limitations of single size sieving and has a universal effect on different kinds of contaminants with accurate wettability manipulation and fluid separation control. The protonation and deprotonation of active carboxyl groups at the novel created solid/liquid interface facilitate the surface wettability and flux transition, which will bring out superior continuous separation and surface lubrication control.