Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 212
Filtrar
1.
Circulation ; 149(21): 1670-1688, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38314577

RESUMO

BACKGROUND: Preeclampsia is a serious disease of pregnancy that lacks early diagnosis methods or effective treatment, except delivery. Dysregulated uterine immune cells and spiral arteries are implicated in preeclampsia, but the mechanistic link remains unclear. METHODS: Single-cell RNA sequencing and spatial transcriptomics were used to identify immune cell subsets associated with preeclampsia. Cell-based studies and animal models including conditional knockout mice and a new preeclampsia mouse model induced by recombinant mouse galectin-9 were applied to validate the pathogenic role of a CD11chigh subpopulation of decidual macrophages (dMφ) and to determine its underlying regulatory mechanisms in preeclampsia. A retrospective preeclampsia cohort study was performed to determine the value of circulating galectin-9 in predicting preeclampsia. RESULTS: We discovered a distinct CD11chigh dMφ subset that inhibits spiral artery remodeling in preeclampsia. The proinflammatory CD11chigh dMφ exhibits perivascular enrichment in the decidua from patients with preeclampsia. We also showed that trophoblast-derived galectin-9 activates CD11chigh dMφ by means of CD44 binding to suppress spiral artery remodeling. In 3 independent preeclampsia mouse models, placental and plasma galectin-9 levels were elevated. Galectin-9 administration in mice induces preeclampsia-like phenotypes with increased CD11chigh dMφ and defective spiral arteries, whereas galectin-9 blockade or macrophage-specific CD44 deletion prevents such phenotypes. In pregnant women, increased circulating galectin-9 levels in the first trimester and at 16 to 20 gestational weeks can predict subsequent preeclampsia onset. CONCLUSIONS: These findings highlight a key role of a distinct perivascular inflammatory CD11chigh dMφ subpopulation in the pathogenesis of preeclampsia. CD11chigh dMφ activated by increased galectin-9 from trophoblasts suppresses uterine spiral artery remodeling, contributing to preeclampsia. Increased circulating galectin-9 may be a biomarker for preeclampsia prediction and intervention.


Assuntos
Decídua , Galectinas , Macrófagos , Pré-Eclâmpsia , Remodelação Vascular , Pré-Eclâmpsia/metabolismo , Pré-Eclâmpsia/imunologia , Gravidez , Feminino , Animais , Galectinas/metabolismo , Macrófagos/metabolismo , Macrófagos/imunologia , Macrófagos/patologia , Camundongos , Humanos , Decídua/metabolismo , Decídua/patologia , Camundongos Knockout , Útero/metabolismo , Útero/irrigação sanguínea , Modelos Animais de Doenças , Receptores de Hialuronatos/metabolismo , Receptores de Hialuronatos/genética , Estudos Retrospectivos , Camundongos Endogâmicos C57BL , Antígenos CD11
2.
Cell Mol Life Sci ; 81(1): 208, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38710919

RESUMO

Trophoblast stem cells (TSCs) can be chemically converted from embryonic stem cells (ESCs) in vitro. Although several transcription factors (TFs) have been recognized as essential for TSC formation, it remains unclear how differentiation cues link elimination of stemness with the establishment of TSC identity. Here, we show that PRDM14, a critical pluripotent circuitry component, is reduced during the formation of TSCs. The reduction is further shown to be due to the activation of Wnt/ß-catenin signaling. The extinction of PRDM14 results in the erasure of H3K27me3 marks and chromatin opening in the gene loci of TSC TFs, including GATA3 and TFAP2C, which enables their expression and thus the initiation of the TSC formation process. Accordingly, PRDM14 reduction is proposed here as a critical event that couples elimination of stemness with the initiation of TSC formation. The present study provides novel insights into how induction signals initiate TSC formation.


Assuntos
Diferenciação Celular , Proteínas de Ligação a DNA , Fatores de Transcrição , Trofoblastos , Via de Sinalização Wnt , Trofoblastos/metabolismo , Trofoblastos/citologia , Animais , Camundongos , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Diferenciação Celular/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Fator de Transcrição GATA3/metabolismo , Fator de Transcrição GATA3/genética , Fator de Transcrição AP-2/metabolismo , Fator de Transcrição AP-2/genética , Células-Tronco/metabolismo , Células-Tronco/citologia , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Histonas/metabolismo , Histonas/genética
3.
Environ Sci Technol ; 58(10): 4500-4509, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38415582

RESUMO

Tire wear particles (TWPs) have caused increasing concerns due to their detrimental effects on the soil ecosystem. However, the role of weathering in altering the toxicity of TWP to soil organisms is poorly understood. In this study, the toxicity of original and photoaged TWP was compared using earthworms (Eisenia fetida) as soil model organisms. The obtained results indicated that photoaging of TWP resulted in an increase of environmentally persistent free radicals (EPFRs) from 3.69 × 1017 to 5.20 × 1017 spin/g. Meanwhile, photoaged TWP induced the changes of toxic endpoint in E. fetide, i.e., the increase of the weight loss and death ratio from 0.0425 to 0.0756 g/worm and 23.3 to 50% compared to original TWP under a 10% concentration, respectively. Analyses of transcriptomics, antioxidant enzyme activity, and histopathology demonstrated that the enhanced toxicity was mainly due to oxidative damage, which was induced by disruption in the antioxidant defense system. Free-radical quenching and correlation analysis further suggested that the excessive production of ex vivo reactive oxygen species, induced by EPFRs, led to the exhaustion of the antioxidant defense system. Overall, this work provides new insights into the potential hazard of the weathered TWP in a soil environment and has significant implications for the recycling and proper disposal of spent tire particles.


Assuntos
Oligoquetos , Poluentes do Solo , Animais , Antioxidantes/farmacologia , Ecossistema , Poluentes do Solo/toxicidade , Estresse Oxidativo , Espécies Reativas de Oxigênio/farmacologia , Solo
4.
Nature ; 562(7726): 245-248, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30305741

RESUMO

Metal halide perovskite materials are an emerging class of solution-processable semiconductors with considerable potential for use in optoelectronic devices1-3. For example, light-emitting diodes (LEDs) based on these materials could see application in flat-panel displays and solid-state lighting, owing to their potential to be made at low cost via facile solution processing, and could provide tunable colours and narrow emission line widths at high photoluminescence quantum yields4-8. However, the highest reported external quantum efficiencies of green- and red-light-emitting perovskite LEDs are around 14 per cent7,9 and 12 per cent8, respectively-still well behind the performance of organic LEDs10-12 and inorganic quantum dot LEDs13. Here we describe visible-light-emitting perovskite LEDs that surpass the quantum efficiency milestone of 20 per cent. This achievement stems from a new strategy for managing the compositional distribution in the device-an approach that simultaneously provides high luminescence and balanced charge injection. Specifically, we mixed a presynthesized CsPbBr3 perovskite with a MABr additive (where MA is CH3NH3), the differing solubilities of which yield sequential crystallization into a CsPbBr3/MABr quasi-core/shell structure. The MABr shell passivates the nonradiative defects that would otherwise be present in CsPbBr3 crystals, boosting the photoluminescence quantum efficiency, while the MABr capping layer enables balanced charge injection. The resulting 20.3 per cent external quantum efficiency represents a substantial step towards the practical application of perovskite LEDs in lighting and display.

5.
BMC Pulm Med ; 24(1): 46, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38254043

RESUMO

OBJECTIVE: To investigate the effect of interferon-γ (IFN-γ) on the immune microenvironment and the polarity of tumor-associated macrophages (TAMs) in stage IA non-small cell lung cancer (NSCLC) and its mechanisms. METHODS: Human non-small cell lung cancer A549 cells were treated with a series of IFN-γ concentrations (0, 50, 100, 150, 200, 250, and 300 ng/mL). Tumor tissues from patients with stage IA NSCLC were cultured using the air-liquid interface culture technique to establish a tumor microenvironment (TME) organ model. The NSCLC model was constructed by subcutaneously embedding small tumor pieces into the back of nonobese diabetic severe combined immune deficiency (NOD SCID) mice. The size and weight of the tumors were recorded, and the tumor volume was calculated. CCK-8 assays were used to investigate cell proliferation, flow cytometry and TUNEL staining were used to evaluate cell apoptosis, colony formation was investigated by cloning experiments, and cell invasion and migration were evaluated by Transwell assays and scratch tests. The expression of apoptosis-related proteins (Bax, Bcl-2 and C-caspase 3), M2 polarization-related markers (CD163, CD206 and IDO1), and marker proteins of cytotoxic T cells and helper T cells (CD8 and CD4) was detected by Western blot. The expression of Ki-67 and IDO1 was detected by immunohistochemistry, and the levels of IL-6, IL-10, IL-13 and TNF-α were measured by ELISA. The expression of CD68 was measured by RT‒qPCR, and the phagocytosis of TAMs was evaluated by a Cell Trace CFSE kit and cell probe staining. RESULTS: The proliferation activity of A549 cells increased with increasing IFN-γ concentration and peaked when the concentration reached 200 ng/mL, and the proliferation activity of A549 cells was suppressed thereafter. After treatment with 200 ng/mL IFN-γ, the apoptosis rate of cells decreased, the number of cell colonies increased, the invasion and migration of cells were promoted, the expression of Bax and C-caspase 3 was downregulated, and the expression of Bcl-2 was upregulated in cells and the TME model. In the TME model, CD163, CD206, IDO1 and Ki-67 were upregulated, CD8 and CD4 were downregulated, apoptosis was reduced, the levels of IL-6 and TNF-α were decreased, and the levels of IL-10 and IL-13 were increased. IL-4 induced TAMs to express CD163 and CD206, reduced the levels of IL-6 and TNF-α, increased the levels of IL-10 and IL-13, and weakened the phagocytic function of TAMs. IFN-γ treatment further enhanced the effect of IL-4 and enhanced the viability of A549 cells. IDO1 decreased the viability of T cells and NK cells, while suppressing the effect of IFN-γ. In mice, compared with NSCLC mice, the tumor volume and weight of the IFN-γ group were increased, the expression of CD163, CD206, IDO1, Ki-67 and Bcl-2 in tumor tissue was upregulated, the expression of Bax and C-caspase 3 was downregulated, and apoptosis was reduced. The levels of IL-6 and TNF-α were decreased, and the levels of IL-10 and IL-13 were increased in the serum of mice. CONCLUSION: In stage IA NSCLC, a low concentration of IFN-γ promotes the polarization of TAMs to the M2 phenotype in the TME model by upregulating the expression of IDO1, promoting the viability of cancer cells, inhibiting the viability of T cells and NK cells, and thus establishing an immune microenvironment conducive to tumor progression.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Interferon gama , Neoplasias Pulmonares , Microambiente Tumoral , Animais , Humanos , Camundongos , Proteína X Associada a bcl-2 , Carcinoma Pulmonar de Células não Pequenas/imunologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Caspase 3 , Interferon gama/farmacologia , Interleucina-10 , Interleucina-13 , Interleucina-4 , Interleucina-6 , Antígeno Ki-67 , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/metabolismo , Camundongos SCID , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia , Fator de Necrose Tumoral alfa
6.
J Med Internet Res ; 26: e49848, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38728685

RESUMO

BACKGROUND: Acute myocardial infarction (AMI) is one of the most severe cardiovascular diseases and is associated with a high risk of in-hospital mortality. However, the current deep learning models for in-hospital mortality prediction lack interpretability. OBJECTIVE: This study aims to establish an explainable deep learning model to provide individualized in-hospital mortality prediction and risk factor assessment for patients with AMI. METHODS: In this retrospective multicenter study, we used data for consecutive patients hospitalized with AMI from the Chongqing University Central Hospital between July 2016 and December 2022 and the Electronic Intensive Care Unit Collaborative Research Database. These patients were randomly divided into training (7668/10,955, 70%) and internal test (3287/10,955, 30%) data sets. In addition, data of patients with AMI from the Medical Information Mart for Intensive Care database were used for external validation. Deep learning models were used to predict in-hospital mortality in patients with AMI, and they were compared with linear and tree-based models. The Shapley Additive Explanations method was used to explain the model with the highest area under the receiver operating characteristic curve in both the internal test and external validation data sets to quantify and visualize the features that drive predictions. RESULTS: A total of 10,955 patients with AMI who were admitted to Chongqing University Central Hospital or included in the Electronic Intensive Care Unit Collaborative Research Database were randomly divided into a training data set of 7668 (70%) patients and an internal test data set of 3287 (30%) patients. A total of 9355 patients from the Medical Information Mart for Intensive Care database were included for independent external validation. In-hospital mortality occurred in 8.74% (670/7668), 8.73% (287/3287), and 9.12% (853/9355) of the patients in the training, internal test, and external validation cohorts, respectively. The Self-Attention and Intersample Attention Transformer model performed best in both the internal test data set and the external validation data set among the 9 prediction models, with the highest area under the receiver operating characteristic curve of 0.86 (95% CI 0.84-0.88) and 0.85 (95% CI 0.84-0.87), respectively. Older age, high heart rate, and low body temperature were the 3 most important predictors of increased mortality, according to the explanations of the Self-Attention and Intersample Attention Transformer model. CONCLUSIONS: The explainable deep learning model that we developed could provide estimates of mortality and visual contribution of the features to the prediction for a patient with AMI. The explanations suggested that older age, unstable vital signs, and metabolic disorders may increase the risk of mortality in patients with AMI.


Assuntos
Aprendizado Profundo , Mortalidade Hospitalar , Infarto do Miocárdio , Humanos , Infarto do Miocárdio/mortalidade , Feminino , Masculino , Estudos Retrospectivos , Pessoa de Meia-Idade , Idoso , Algoritmos , Fatores de Risco , Curva ROC
7.
Plant Physiol ; 189(2): 1050-1064, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35253881

RESUMO

The homeostasis of histone methylation is maintained by histone methyltransferases and demethylases, which are important for the regulation of gene expression. Here, we report a histone demethylase from rice (Oryza sativa), Jumonji C domain-containing protein (JMJ710), which belongs to the JMJD6 group and plays an important role in the response to drought stress. Overexpression of JMJ710 causes a drought-sensitive phenotype, while RNAi and clustered regularly interspaced short palindromic repeats (CRISPR)-knockout mutant lines show drought tolerance. In vitro and in vivo assays showed that JMJ710 is a histone demethylase. It targets to MYB TRANSCRIPTION FACTOR 48 (MYB48-1) chromatin, demethylates H3K36me2, and negatively regulates the expression of MYB48-1, a positive regulator of drought tolerance. Under drought stress, JMJ710 is downregulated and the expression of MYB48-1 increases, and the subsequent activation of its downstream drought-responsive genes leads to drought tolerance. This research reports a negative regulator of drought stress-responsive genes, JMJ710, that ensures that the drought tolerance mechanism is not mis-activated under normal conditions but allows quick activation upon drought stress.


Assuntos
Oryza , Secas , Regulação da Expressão Gênica de Plantas , Histona Desmetilases/metabolismo , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética
8.
Reproduction ; 166(1): 37-53, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37184079

RESUMO

In brief: The establishment and maintenance of embryo implantation and pregnancy require decidualization of endometrial stromal cells. This paper reveals that SHP2 ensures the correct subcellular localization of progesterone receptor, thereby safeguarding the process of decidualization. Abstract: Decidualization is the process of conversion of endometrial stromal cells into decidual stromal cells, which is caused by progesterone production that begins during the luteal phase of the menstrual cycle and then increases throughout pregnancy dedicated to support embryonic development. Decidualization deficiency is closely associated with various pregnancy complications, such as recurrent miscarriage (RM). Here, we reported that Src-homology-2-containing phospho-tyrosine phosphatase (SHP2), a key regulator in the signal transduction process downstream of various receptors, plays an indispensable role in decidualization. SHP2 expression was upregulated during decidualization. SHP2 inhibitor RMC-4550 and shRNA-mediated SHP2 reduction resulted in a decreased level of phosphorylation of ERK and aberrant cytoplasmic localization of progesterone receptor (PR), coinciding with reduced expression of IGFBP1 and various other target genes of decidualization. Solely inhibiting ERK activity recapitulated these observations. Administration of RMC-4550 led to decidualization deficiency and embryo absorption in mice. Moreover, reduced expression of SHP2 was detected in the decidua of RM patients. Our results revealed that SHP2 is key to PR's nuclear localization, thereby indispensable for decidualization and that reduced expression of SHP2 might be engaged in the pathogenesis of RM.


Assuntos
Decídua , Proteína Tirosina Fosfatase não Receptora Tipo 11 , Receptores de Progesterona , Animais , Feminino , Camundongos , Gravidez , Decídua/metabolismo , Implantação do Embrião , Endométrio/metabolismo , Fosforilação , Progesterona/metabolismo , Receptores de Progesterona/metabolismo , Células Estromais/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo
9.
Nature ; 541(7635): 62-67, 2017 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-27974803

RESUMO

'Blinking', or 'fluorescence intermittency', refers to a random switching between 'ON' (bright) and 'OFF' (dark) states of an emitter; it has been studied widely in zero-dimensional quantum dots and molecules, and scarcely in one-dimensional systems. A generally accepted mechanism for blinking in quantum dots involves random switching between neutral and charged states (or is accompanied by fluctuations in charge-carrier traps), which substantially alters the dynamics of radiative and non-radiative decay. Here, we uncover a new type of blinking effect in vertically stacked, two-dimensional semiconductor heterostructures, which consist of two distinct monolayers of transition metal dichalcogenides (TMDs) that are weakly coupled by van der Waals forces. Unlike zero-dimensional or one-dimensional systems, two-dimensional TMD heterostructures show a correlated blinking effect, comprising randomly switching bright, neutral and dark states. Fluorescence cross-correlation spectroscopy analyses show that a bright state occurring in one monolayer will simultaneously lead to a dark state in the other monolayer, owing to an intermittent interlayer carrier-transfer process. Our findings suggest that bilayer van der Waals heterostructures provide unique platforms for the study of charge-transfer dynamics and non-equilibrium-state physics, and could see application as correlated light emitters in quantum technology.

10.
Acta Biochim Biophys Sin (Shanghai) ; 55(1): 51-61, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36647725

RESUMO

Lithocholic acid (LCA) is a classical secondary bile acid formed by the metabolism of gut microbiota. The TGR5 receptor (also known as G protein-coupled receptor 1, GPBAR1) is an important bile acid membrane receptor that mediates a variety of metabolic processes in vivo. In recent years, most studies have focused on the role of bile acid receptors in the intestine and liver. However, there are few reports on its effect on skeletal muscle regeneration, and the specific mechanism remains unclear. Therefore, it is necessary to investigate the mechanism of the TGR5 receptor in the regulation of skeletal muscle regeneration. The results demonstrate that muscle injection with LCA significantly reduces the necrosis rate of injured muscle and improves muscle injury. Moreover, treatment of C2C12 cells with LCA significantly increases AKT/mTOR/FoxO3 phosphorylation through the TGR5 receptor, enhances MyoG transcription and reduces FBXO32 transcription. These findings indicate that LCA can activate the TGR5/AKT signaling pathway, inhibit protein degradation and promote protein synthesis to enhance the myogenic process and promote skeletal muscle regeneration.


Assuntos
Ácido Litocólico , Receptores Acoplados a Proteínas G , Receptores Acoplados a Proteínas G/metabolismo , Ácido Litocólico/farmacologia , Ácido Litocólico/metabolismo , Proteínas Proto-Oncogênicas c-akt , Ácidos e Sais Biliares , Músculo Esquelético/metabolismo
11.
Nano Lett ; 2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36150019

RESUMO

The strong interaction between charge and lattice vibration gives rise to a polaron, which has a profound effect on optical and transport properties of matters. In magnetic materials, polarons are involved in spin dependent transport, which can be potentially tailored for spintronic and opto-spintronic device applications. Here, we identify the signature of ultrafast formation of polaronic states in CrBr3. The polaronic states are long-lived, having a lifetime on the time scale of nanoseconds to microseconds, which coincides with the emission lifetime of ∼4.3 µs. Transition of the polaronic states is strongly screened by the phonon, generating a redshift of the transition energy ∼0.2 eV. Moreover, energy-dependent localization of polaronic states is discovered followed by transport/annihilation properties. These results shed light on the nature of the polarons and their formation and transport dynamics in layered magnetic materials, which paves the way for the rational design of two-dimensional magnetic devices.

12.
Reproduction ; 163(5): 241-250, 2022 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35174787

RESUMO

Decidual stromal cells (DSCs) modulate the function of trophoblasts through various factors. Wnt signaling pathway is active at the maternal-fetal interface. Here, we isolated endometrial stromal cells (ESCs) from women of reproductive ages and DSCs from normal pregnancy during the first trimester (6-10 weeks). Real-time quantitative PCR and western blotting were used to screen out the most variable WNT ligands between ESCs and DSCs, which turned out to be WNT16. Both culture mediums from DSCs and recombinant protein of human WNT16 enhanced the survival and invasion of HTR8/SVneo trophoblastic cells. Furthermore, the regulation of DSCs on trophoblast was partly blockaded after we knocked down WNT16 in DSCs. Treating HTR8/SVneo trophoblastic cells with small molecular inhibitors and small interfering RNA (siRNA), we found that the activity of AKT/beta-catenin (CTNNB1) correlated with the effect of WNT16. The crosstalk of WNT16/AKT/beta-catenin between DSCs and trophoblasts was determined to be downregulated in unexplained recurrent spontaneous abortion. This study suggests that WNT16 from DSCs promotes HTR8/SVneo trophoblastic cells invasion and survival via AKT/beta-catenin pathway at the maternal-fetal interface in human early pregnancy. The disturbance of this crosstalk between DSCs and trophoblasts might cause pregnancy failure.


Assuntos
Aborto Habitual , Trofoblastos , Aborto Habitual/metabolismo , Movimento Celular , Feminino , Humanos , Gravidez , Primeiro Trimestre da Gravidez , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células Estromais/metabolismo , Trofoblastos/metabolismo , Proteínas Wnt/metabolismo , Via de Sinalização Wnt , beta Catenina/metabolismo
13.
Appl Opt ; 61(7): D75-D84, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35297830

RESUMO

Hyperspectral imaging can obtain considerable flame information, which can improve the prediction accuracy of combustion characteristics. This paper studies the hyperspectral characteristics of methane flames and proposes several prediction models. The experimental results show that the radiation intensity and radiation types of free radicals are related to the equivalent ratio, and the radiation region of free radicals becomes larger with the increase of the Reynolds number. The polynomial regression prediction models include the linear model and quadratic model. It takes C2∗/CH∗ as input parameters, and results can be available immediately. The three-dimensional convolutional neural network (3D-CNN) prediction model takes all spectral and spatial information in the flame hyperspectral image as input parameters. By improving the structural parameters of the convolution network, the final prediction errors of the equivalent ratio and Reynolds number are 2.84% and 3.11%, respectively. The method of combining the 3D-CNN model with hyperspectral imaging significantly improves the prediction accuracy, and it can be used to predict other combustion characteristics such as pollutant emissions and combustion efficiency.

14.
Nano Lett ; 21(7): 3331-3339, 2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33797259

RESUMO

Exciton-polaritons, hybrid light-matter bosonic quasiparticles, can condense into a single quantum state, i.e., forming a polariton Bose-Einstein condensate (BEC), which represents a crucial step for the development of nanophotonic technology. Recently, atomically thin transition-metal dichalcogenides (TMDs) emerged as promising candidates for novel polaritonic devices. Although the formation of robust valley-polaritons has been realized up to room temperature, the demonstration of polariton lasing remains elusive. Herein, we report for the first time the realization of this important milestone in a TMD microcavity at room temperature. Continuous wave pumped polariton lasing is evidenced by the macroscopic occupation of the ground state, which undergoes a nonlinear increase of the emission along with the emergence of temporal coherence, the presence of an exciton fraction-controlled threshold and the buildup of linear polarization. Our work presents a critically important step toward exploiting nonlinear polariton-polariton interactions, as well as offering a new platform for thresholdless lasing.

15.
Reproduction ; 161(5): 573-580, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33780908

RESUMO

Decidualization is the functional transformation process of endometrium in response to ovarian steroids dedicated to support embryo development. Defective decidualization is closely associated with various pregnancy complications such as recurrent miscarriage (RM). Dual specificity MAPK phosphatases (MKPs) are a family of phosphatases specifically regulating mitogen-activated protein kinase (MAPK) signaling with dual specificity for threonine and tyrosine. Here, using RNA-seq,we found that dual specificity phosphatase 1 (DUSP1) expression was prominently elevated among the MKP family members in db-cAMP treated primary human endometrial stromal cells (ESCs). We verified that its induction by db-cAMP in ESCs was in a dose- and time-dependent manner and that primary human decidual stromal cells (DSCs) present higher expression of DUSP1 than ESCs. A protein kinase A (PKA) inhibitor H-89 abolished its induction in ESCs, but not ESI-09, an EPAC1/2 inhibitor. Knock-down of TORC2/3 but not CREB by siRNA in ESCs diminished its induction by db-cAMP. Furthermore, knock-down of DUSP1, as well as TORC2/3 by siRNA caused abnormal activation of JNK during db-cAMP induction in ESCs, accompanied by decreased IGFBP1 expression, an ESC decidualization indicator, which could be fully rescued by a JNK inhibitor SP600125. In addition, Western blot showed that DUSP1 expression was reduced in the DSCs of patients with RM, along with JNK overactivation and decreased IGFBP1 expression. In conclusion, our results demonstrated that TORC2/3-mediated DUSP1 upregulation in response to the cAMP/PKA signaling safeguards IGFBP1 expression via restraining JNK activity, indicating its involvement in ESC decidualization, and that aberrant expression of DUSP1 in DSCs might engage in the pathogenesis of RM.


Assuntos
Aborto Habitual/patologia , Decídua/patologia , Fosfatase 1 de Especificidade Dupla/metabolismo , Endométrio/patologia , Células Estromais/patologia , Fatores de Transcrição/metabolismo , Aborto Habitual/genética , Aborto Habitual/metabolismo , Estudos de Casos e Controles , Decídua/metabolismo , Fosfatase 1 de Especificidade Dupla/genética , Endométrio/metabolismo , Feminino , Humanos , Gravidez , RNA-Seq , Transdução de Sinais , Células Estromais/metabolismo , Fatores de Transcrição/genética
16.
Pharmacol Res ; 169: 105659, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33971268

RESUMO

The rising prevalence of obesity and being overweight is a worldwide health concern. Food reward dysregulation is the basic factor for the development of obesity. Dopamine (DA) neurons in the ventral tegmental area (VTA) play a vital role in food reward. Toll-like receptor 4 (TLR4) is a transmembrane pattern recognition receptor that can be activated by saturated fatty acids. Here, we show that the deletion of TLR4 specifically in DA neurons increases body weight, increases food intake, and decreases food reward. Conditional deletion of TLR4 also decreased the activity of DA neurons while suppressing the expression of tyrosine hydroxylase (TH) in the VTA, which regulates the concentration of DA in the nucleus accumbens (NAc) to affect food reward. Meanwhile, AAV-Cre-GFP mediated VTA-specific TLR4-deficient mice recapitulates food reward of DAT-TLR4-KO mice. Food reward could be rescued by re-expressing TLR4 in VTA DA neurons. Moreover, effects of intra-VTA infusion of lauric acid (a saturated fatty acid with 12 carbon) on food reward were abolished in mice lacking TLR4 in DA neurons. Our study demonstrates the critical role of TLR4 signaling in regulating the activity of VTA DA neurons and the normal function of the mesolimbic DA system that may contribute to food reward.


Assuntos
Neurônios Dopaminérgicos/fisiologia , Recompensa , Receptor 4 Toll-Like/metabolismo , Animais , Western Blotting , Condicionamento Operante , Neurônios Dopaminérgicos/metabolismo , Imunofluorescência , Alimentos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptor 4 Toll-Like/fisiologia
17.
Bioorg Med Chem Lett ; 50: 128338, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34469710

RESUMO

7-Hydroxyneolamellarin A (7-OH-Neo A, 1), a natural marine product derived from sponge Dendrilla nigra, was first synthesized with 10% overall yield under the instruction of convergent synthetic strategy. We found that 7-OH-Neo A could attenuate the accumulation of hypoxia-inducible factor-1α (HIF-1α) protein and inhibit vascular epidermal growth factor (VEGF) transcriptional activity, showing well inhibitory effect on HIF-1 signaling pathway. Meantime, 7-OH-Neo A had the well anti-tumor activities, such as inhibiting tumor angiogenesis, proliferation, migration and invasion. More importantly, 7-OH-Neo A exhibited profound anti-tumor effect in mice breast cancer model by suppressing the accumulation of HIF-1α in tumor tissue. Mechanism study demonstrated that 7-OH-Neo A might target the protein with the ability of stabilizing HIF-1α in hypoxia. Due to the excellent water solubility, superior anti-tumor activity and good biocompatibility, 7-OH-Neo A shows the promising potential for being exploited as an anti-tumor agent in near future.


Assuntos
Antineoplásicos/farmacologia , Produtos Biológicos/farmacologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/antagonistas & inibidores , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Produtos Biológicos/síntese química , Produtos Biológicos/química , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Poríferos , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
18.
Bioorg Chem ; 116: 105355, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34592689

RESUMO

Photodynamic therapy (PDT) is a non-invasive treatment method for tumors by exciting photosensitizers (PS) upon light irradiation to generate cytotoxic reactive oxygen species (ROS). However, the low oxygen concentration near the tumor tissue limits the therapeutic effect of PDT. Herein, we synthesized six chlorin e6 derivatives containing NO-donors to enhance their antitumor activity by synergistic effect of ROS and NO. The results revealed that the new NO-donor containing photosensitizers (PS-NO) exhibited more potent photodynamic activity than chlorin e6, and the introduction of NO donor moieties to chlorin e6 increased the level of NO and ROS in cells. The addition of Ferrostatin-1, a ferroptosis inhibitor, markedly reduced the photodynamic activity of PS-NO as well as the level of NO and ROS in cells. Mechanism studies further showed that PS-NO could reduce intracellular GSH level, inhibit GPX4 activity and promote malondialdehyde (MDA) accumulation upon light irradiation, which suggested the ferroptosis mechanism underlying the PDT effect of PS-NO.


Assuntos
Cicloexilaminas/farmacologia , Fenilenodiaminas/farmacologia , Fármacos Fotossensibilizantes/farmacologia , Cicloexilaminas/síntese química , Cicloexilaminas/química , Relação Dose-Resposta a Droga , Ferroptose/efeitos dos fármacos , Células HeLa , Humanos , Estrutura Molecular , Óxido Nítrico/análise , Óxido Nítrico/metabolismo , Fenilenodiaminas/síntese química , Fenilenodiaminas/química , Fármacos Fotossensibilizantes/síntese química , Fármacos Fotossensibilizantes/química , Relação Estrutura-Atividade , Células Tumorais Cultivadas
19.
Bioorg Chem ; 116: 105298, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34454298

RESUMO

Selaginellins are a type of rare natural products from the genus Selaginella with unusual alkynyl phenol skeletons and extensive biological activities. Previous structural simplification of these natural compounds afforded a series of diaryl acetylene derivatives with hypoxia-inducible factor 1 (HIF-1) inhibitory activity. In this study, we synthesized thirty compounds by stepwise optimization using methyl 3-(4-methoxylphenyl ethynyl)-[4'-methoxyl-1,1'-biphenyl]-2-carboxylate (1a) as a lead compound and evaluated their HIF-1 inhibitory activity by dual luciferase reporter assay. Among them, compound 9i displayed the most potent HIF-1 inhibitory activity (IC50 = 1.5 ± 0.03 µM) with relatively low cytotoxicity. Under hypoxia, compound 9i showed no effect on the accumulation of HIF-1α protein in western blot analysis, but could down-regulate the expression of VEGF mRNA, the downstream target gene of HIF-1 pathway. Cell-based activity assay demonstrated that compound 9i could inhibit the hypoxia-induced migration, invasion and proliferation of HeLa cells at the concentrations of 1 ~ 5 µM. In mouse breast cancer xenograft model, compound 9i exhibited obvious tumor growth inhibition and very low toxicity at a dose of 15 mg/kg. The results suggested that compound 9i would be a potential antitumor agent via HIF-1 pathway inhibition.


Assuntos
Antineoplásicos/farmacologia , Compostos de Bifenilo/farmacologia , Ácidos Carboxílicos/farmacologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/antagonistas & inibidores , Antineoplásicos/síntese química , Antineoplásicos/química , Compostos de Bifenilo/síntese química , Compostos de Bifenilo/química , Ácidos Carboxílicos/síntese química , Ácidos Carboxílicos/química , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Células HeLa , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , Células Tumorais Cultivadas
20.
Nano Lett ; 20(7): 5359-5366, 2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32543201

RESUMO

Two-dimensional (2D) van der Waals heterostructures have attracted enormous research interests due to their emergent electrical and optical properties. The comprehensive understanding and efficient control of interlayer couplings in such devices are crucial for realizing their functionalities, as well as for improving their performance. Here, we report a successful manipulation of interlayer charge transfer between 2D materials by varying different stacking layers consisting of graphene, hexagonal boron nitride, and tungsten disulfide. Under visible-light excitation, despite being separated by few-layer boron nitride, the graphene and tungsten disulfide exhibit clear modulation of their doping level, i.e., a change of the Fermi level in graphene as large as 120 meV and a net electron accumulation in WS2. By using a combination of micro-Raman and photoluminescence spectroscopy, we demonstrate that the modulation is originated from simultaneous manipulation of charge and/or energy transfer between each of the two adjacent layers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA