Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros

Base de dados
Tipo de documento
País/Região como assunto
Intervalo de ano de publicação
1.
Environ Res ; 245: 118015, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38141920

RESUMO

Heavy metals (HMs) contamination of water bodies severely threatens human and ecosystem health. There is growing interest in the use of duckweeds for HMs biomonitoring and phytoremediation due to their fast growth, low cultivation costs, and excellent HM uptake efficiency. In this review, we summarize the current state of knowledge on duckweeds and their suitability for HM biomonitoring and phytoremediation. Duckweeds have been used for phytotoxicity assays since the 1930s. Some toxicity tests based on duckweeds have been listed in international guidelines. Duckweeds have also been recognized for their ability to facilitate HM phytoremediation in aquatic environments. Large-scale screening of duckweed germplasm optimized for HM biomonitoring and phytoremediation is still essential. We further discuss the morphological, physiological, and molecular effects of HMs on duckweeds. However, the existing data are clearly insufficient, especially in regard to dissection of the transcriptome, metabolome, proteome responses and molecular mechanisms of duckweeds under HM stresses. We also evaluate the influence of environmental factors, exogenous substances, duckweed community composition, and HM interactions on their HM sensitivity and HM accumulation, which need to be considered in practical application scenarios. Finally, we identify challenges and propose approaches for improving the effectiveness of duckweeds for bioremediation from the aspects of selection of duckweed strain, cultivation optimization, engineered duckweeds. We foresee great promise for duckweeds as phytoremediation agents, providing environmentally safe and economically efficient means for HM removal. However, the primary limiting issue is that so few researchers have recognized the outstanding advantages of duckweeds. We hope that this review can pique the interest and attention of more researchers.


Assuntos
Metais Pesados , Poluentes do Solo , Humanos , Biodegradação Ambiental , Monitoramento Biológico , Ecossistema , Poluentes do Solo/análise , Metais Pesados/toxicidade , Metais Pesados/análise , Solo
2.
New Phytol ; 238(4): 1386-1402, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36856336

RESUMO

The greater duckweed (Spirodela polyrhiza 7498) exhibits trophic diversity (photoautotrophic, heterotrophic, photoheterotrophic, and mixotrophic growth) depending on the availability of exogenous organic carbon sources and light. Here, we show that the ability to transition between various trophic growth conditions is an advantageous trait, providing great phenotypic plasticity and metabolic flexibility in S. polyrhiza 7498. By comparing S. polyrhiza 7498 growth characteristics, metabolic acclimation, and cellular ultrastructure across these trophic modes, we show that mixotrophy decreases photosynthetic performance and relieves the CO2 limitation of photosynthesis by enhancing the CO2 supply through the active respiration pathway. Proteomic and metabolomic analyses corroborated that S. polyrhiza 7498 increases its intracellular CO2 and decreases reactive oxygen species under mixotrophic and heterotrophic conditions, which substantially suppressed the wasteful photorespiration and oxidative-damage pathways. As a consequence, mixotrophy resulted in a higher biomass yield than the sum of photoautotrophy and heterotrophy. Our work provides a basis for using trophic transitions in S. polyrhiza 7498 for the enhanced accumulation of value-added products.


Assuntos
Adaptação Fisiológica , Araceae , Dióxido de Carbono/farmacologia , Dióxido de Carbono/metabolismo , Fotossíntese , Proteômica
3.
Plant Physiol ; 190(3): 1777-1791, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-35984299

RESUMO

In heterophyllous plants, leaf shape shows remarkable plasticity in response to environmental conditions. However, transgenic studies of heterophylly are lacking and the molecular mechanism remains unclear. Here, we cloned the KNOTTED1-LIKE HOMEOBOX family gene SHOOT MERISTEMLESS (STM) from the heterophyllous plant Hygrophila difformis (Acanthaceae). We used molecular, morphogenetic, and biochemical tools to explore its functions in heterophylly. HdSTM was detected in different organs of H. difformis, and its expression changed with environmental conditions. Heterologous, ectopic expression of HdSTM in Arabidopsis (Arabidopsis thaliana) increased leaf complexity and CUP-SHAPED COTYLEDON (CUC) transcript levels. However, overexpression of HdSTM in H. difformis did not induce the drastic leaf change in the terrestrial condition. Overexpression of HdSTM in H. difformis induced quick leaf variations in submergence, while knockdown of HdSTM led to disturbed leaf development and weakened heterophylly in H. difformis. HdCUC3 had the same spatiotemporal expression pattern as HdSTM. Biochemical analysis revealed a physical interaction between HdSTM and HdCUC3. Our results provide genetic evidence that HdSTM is involved in regulating heterophylly in H. difformis.


Assuntos
Acanthaceae , Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Acanthaceae/metabolismo , Proteínas de Homeodomínio/metabolismo , Arabidopsis/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Meristema/genética , Meristema/metabolismo
4.
BMC Plant Biol ; 22(1): 308, 2022 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-35751022

RESUMO

BACKGROUND: GARP transcription factors perform critical roles in plant development and response to environmental stimulus, especially in the phosphorus (P) and nitrogen (N) sensing and uptake. Spirodela polyrhiza (giant duckweed) is widely used for phytoremediation and biomass production due to its rapid growth and efficient N and P removal capacities. However, there has not yet been a comprehensive analysis of the GRAP gene family in S. polyrhiza. RESULTS: We conducted a comprehensive study of GRAP superfamily genes in S. polyrhiza. First, we investigated 35 SpGARP genes which have been classified into three groups based on their gene structures, conserved motifs, and phylogenetic relationship. Then, we identified the duplication events, performed the synteny analysis, and calculated the Ka/Ks ratio in these SpGARP genes. The regulatory and co-expression networks of SpGARPs were further constructed using cis-acting element analysis and weighted correlation network analysis (WGCNA). Finally, the expression pattern of SpGARP genes were analyzed using RNA-seq data and qRT-PCR, and several NIGT1 transcription factors were found to be involved in both N and P starvation responses. CONCLUSIONS: The study provides insight into the evolution and function of GARP superfamily in S. polyrhiza, and lays the foundation for the further functional verification of SpGARP genes.


Assuntos
Araceae , Fósforo , Araceae/genética , Regulação da Expressão Gênica de Plantas , Nitrogênio/metabolismo , Fósforo/metabolismo , Filogenia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
5.
Genomics ; 113(4): 1761-1777, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33862182

RESUMO

WRKY is one of the largest transcription factor families across higher plant species and is involved in important biological processes and plant responses to various biotic/abiotic stresses. However, only a few investigations on WRKYs have been conducted in aquatic plants. This study first systematically analyzed the gene structure, protein properties, and phylogenetic relationship of 693 WRKYs in nine aquatic and two wetland plants at the genome-wide level. The pattern of WRKY groups in two aquatic ferns provided new evidence for the origin and evolution of WRKY genes. ARE cis-regulatory elements show an unusual high frequency in the promoter region of WRKY genes, indicating the adaptation to the aquatic habitat in aquatic plants. The WRKY gene family experienced a series of gene loss events in aquatic plants, especially group III. Further studies were conducted on the interaction network of SpWRKYs, their target genes, and non-coding RNAs. The expression profile of SpWRKYs under phosphate starvation, cold, and submergence conditions revealed that most SpWRKYs are involved in the response to abiotic stresses. Our investigations lay the foundation for further study on the mechanism of WRKYs responding to abiotic stresses in aquatic plants.


Assuntos
Araceae , Proteínas de Plantas , Araceae/genética , Regulação da Expressão Gênica de Plantas , Família Multigênica , Filogenia , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
6.
Int J Mol Sci ; 23(18)2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-36142399

RESUMO

Growth-regulating factors (GRFs) are plant-specific transcription factors that play essential roles in regulating plant growth and stress response. The GRF gene families have been described in several terrestrial plants, but a comprehensive analysis of these genes in diverse aquatic species has not been reported yet. In this study, we identified 130 GRF genes in 13 aquatic plants, including floating plants (Azolla filiculoides, Wolffia australiana, Lemna minuta, Spirodela intermedia, and Spirodela polyrhiza), floating-leaved plants (Nymphaea colorata and Euryale ferox), submersed plants (Zostera marina, Ceratophyllum demersum, Aldrovanda vesiculosa, and Utricularia gibba), an emergent plant (Nelumbo nucifera), and an amphibious plant (Cladopus chinensis). The gene structures, motifs, and cis-acting regulatory elements of these genes were analyzed. Phylogenetic analysis divided these GRFs into five clusters, and ABRE cis-elements were highly enriched in the promoter region of the GRFs in floating plants. We found that abscisic acid (ABA) is efficient at inducing the turion of Spirodela polyrhiza (giant duckweed), accompanied by the fluctuated expression of SpGRF genes in their fronds. Our results provide information about the GRF gene family in aquatic species and lay the foundation for future studies on the functions of these genes.


Assuntos
Ácido Abscísico , Araceae , Araceae/genética , Filogenia , Plantas , Fatores de Transcrição/genética
7.
BMC Plant Biol ; 21(1): 387, 2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34416853

RESUMO

BACKGROUND: The plant body in duckweed species has undergone reduction and simplification from the ancient Spirodela species towards more derived Wolffia species. Among the five duckweed genera, Wolffia members are rootless and represent the smallest and most reduced species. A better understanding of Wolffia frond architecture is necessary to fully explore duckweed evolution. RESULTS: We conducted a comprehensive study of the morphology and anatomy of Wolffia globosa, the only Wolffia species in China. We first used X-ray microtomography imaging to reveal the three-dimensional and internal structure of the W. globosa frond. This showed that new fronds rapidly budded from the hollow reproductive pocket of the mother fronds and that several generations at various developmental stages could coexist in a single W. globosa frond. Using light microscopy, we observed that the meristem area of the W. globosa frond was located at the base of the reproductive pocket and composed of undifferentiated cells that continued to produce new buds. A single epidermal layer surrounded the W. globosa frond, and the mesophyll cells varied from small and dense palisade-like parenchyma cells to large, vacuolated cells from the ventral to the dorsal part. Furthermore, W. globosa fronds contained all the same organelles as other angiosperms; the most prominent organelles were chloroplasts with abundant starch grains. CONCLUSIONS: Our study revealed that the reproductive strategy of W. globosa plants enables the rapid accumulation of biomass and the wide distribution of this species in various habitats. The reduced body plan and size of Wolffia are consistent with our observation that relatively few cell types are present in these plants. We also propose that W. globosa plants are not only suitable for the study of structural reduction in higher plants, but also an ideal system to explore fundamental developmental processes of higher plants that cannot be addressed using other model plants.


Assuntos
Lilianae/anatomia & histologia , Lilianae/crescimento & desenvolvimento , Lilianae/genética , Folhas de Planta/anatomia & histologia , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/genética , Evolução Biológica , China , Lilianae/ultraestrutura , Folhas de Planta/ultraestrutura
8.
Ecotoxicol Environ Saf ; 227: 112907, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34673410

RESUMO

As a pollutant, Cd causes severe impact to the environment and damages living organisms. It can be uptaken from the environment by the natural resistance-associated macrophage protein (Nramp) in plants. However, the ion absorption function of Nramp transporter genes in Spirodela polyrhiza has not been reported. In this study, SpNramp1, SpNramp2, and SpNramp3 from S. polyrhiza were cloned and their functions were analyzed in S. polyrhiza and yeast. Growth parameters and physicochemical indices of wild-type and transgenic lines were measured under Cd stress. Results revealed that SpNramp1, SpNramp2, and SpNramp3 were identified as plasma membrane-localized transporters, and their roles in transporting Cd were verified in yeast. In S. polyrhiza, SpNramp1 overexpression significantly increased the content of Cd, Fe, Mn, and fresh weight. SpNramp2 overexpression increased Mn and Cd. SpNramp3 overexpression increased Fe and Mn concentrations. These results indicate that SpNramp1, SpNramp2, and SpNramp3 had a different preference for ion absorption. Two S. polyrhiza transgenic lines (OE1 and OE3) were obtained. One of them (OE1) showed a stronger accumulation ability, and the other one (OE3) exhibited tolerance capacity to Cd. This study provides new insight into the functions of SpNramp1, SpNramp2, and SpNramp3 and obtains important enrichment lines (OE1) for manipulating Cd accumulation, phytoremediation, and ecological safety.


Assuntos
Araceae , Proteínas de Transporte de Cátions , Araceae/metabolismo , Biodegradação Ambiental , Cádmio/metabolismo , Cádmio/toxicidade , Proteínas de Transporte de Cátions/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
9.
Int J Mol Sci ; 22(2)2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33466729

RESUMO

Plants adapt to environmental changes by regulating their development and growth. As an important interface between plants and their environment, leaf morphogenesis varies between species, populations, or even shows plasticity within individuals. Leaf growth is dependent on many environmental factors, such as light, temperature, and submergence. Phytohormones play key functions in leaf development and can act as molecular regulatory elements in response to environmental signals. In this review, we discuss the current knowledge on the effects of different environmental factors and phytohormone pathways on morphological plasticity and intend to summarize the advances in leaf development. In addition, we detail the molecular mechanisms of heterophylly, the representative of leaf plasticity, providing novel insights into phytohormones and the environmental adaptation in plants.


Assuntos
Aclimatação , Reguladores de Crescimento de Plantas/metabolismo , Fenômenos Fisiológicos Vegetais , Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Desenvolvimento Vegetal , Reguladores de Crescimento de Plantas/genética , Folhas de Planta/anatomia & histologia , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Plantas/anatomia & histologia , Plantas/genética
10.
Int J Mol Sci ; 22(12)2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34203933

RESUMO

Natural resistance-associated macrophage proteins (Nramps) are specific metal transporters in plants with different functions among various species. The evolutionary and functional information of the Nramp gene family in Spirodela polyrhiza has not been previously reported in detail. To identify the Nramp genes in S. polyrhiza, we performed genome-wide identification, characterization, classification, and cis-elements analysis among 22 species with 138 amino acid sequences. We also conducted chromosomal localization and analyzed the synteny relationship, promoter, subcellular localization, and expression patterns in S. polyrhiza. ß-Glucuronidase staining indicated that SpNramp1 and SpNramp3 mainly accumulated in the root and joint between mother and daughter frond. Moreover, SpNramp1 was also widely displayed in the frond. SpNramp2 was intensively distributed in the root and frond. Quantitative real-time PCR results proved that the SpNramp gene expression level was influenced by Cd stress, especially in response to Fe or Mn deficiency. The study provides detailed information on the SpNramp gene family and their distribution and expression, laying a beneficial foundation for functional research.


Assuntos
Araceae/genética , Cádmio/toxicidade , Proteínas de Transporte de Cátions/genética , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Família Multigênica , Proteínas de Plantas/genética , Estresse Fisiológico/genética , Motivos de Aminoácidos , Sequência de Aminoácidos , Araceae/efeitos dos fármacos , Proteínas de Transporte de Cátions/química , Proteínas de Transporte de Cátions/metabolismo , Cromossomos de Plantas/genética , Sequência Conservada , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas/genética , Estresse Fisiológico/efeitos dos fármacos , Sintenia/genética
11.
Opt Express ; 28(6): 8843-8852, 2020 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-32225502

RESUMO

We demonstrate a novel Er:LuSGG active gain medium emitting laser wavelength at 2795 nm for the first time. The Er:LuSGG crystal is grown successfully by the Czochralski method with high crystalline and optical quality. The spectra properties, including absorption and fluorescence emission cross-section are presented in contrast with similar Er-doped garnet crystals. The fluorescence lifetimes of the upper (4I11/2) and lower (4I13/2) laser levels are 1.75 and 4.64 ms, respectively. Under 973 nm laser diode pumping, a maximum output power of 789 mW in continuous-wave mode, corresponding to optical-to-optical efficiency of 20.2% and slope efficiency of 24.4%, is achieved with high laser beam quality. The results show that the Er:LuSGG is a promising MIR laser material operated at 2.8 µm.

12.
Plant Cell Rep ; 39(6): 737-750, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32146519

RESUMO

KEY MESSAGE: This is the first report of a highly efficient Agrobacterium tumefaciens-mediated transformation protocol for Acanthaceae and its utilization in revealing important roles of cytokinin in regulating heterophylly in Hygrophila difformis. Plants show amazing morphological differences in leaf form in response to changes in the surrounding environment, which is a phenomenon called heterophylly. Previous studies have shown that the aquatic plant Hygrophila difformis (Acanthaceae) is an ideal model for heterophylly study. However, low efficiency and poor reproducibility of genetic transformation restricted H. difformis as a model plant. In this study, we reported successful induction of callus, shoots and the establishment of an efficient stable transformation protocol as mediated by Agrobacterium tumefaciens LBA4404. We found that the highest callus induction efficiency was achieved with 1 mg/L 1-Naphthaleneacetic acid (NAA) and 2 mg/L 6-benzyladenine (6-BA), that efficient shoot induction required 0.1 mg/L NAA and 0.1 mg/L 6-BA and that high transformation efficiency required 100 µM acetosyringone. Due to the importance of phytohormones in the regulation of heterophylly and the inadequate knowledge about the function of cytokinin (CK) in this process, we analyzed the function of CK in the regulation of heterophylly by exogenous CK application and endogenous CK detection. By using our newly developed transformation system to detect CK signals, contents and distribution in H. difformis, we revealed an important role of CK in environmental mediated heterophylly.


Assuntos
Acanthaceae/genética , Agrobacterium tumefaciens/genética , Citocininas/isolamento & purificação , Transformação Genética , Acanthaceae/metabolismo , Calo Ósseo/efeitos dos fármacos , Calo Ósseo/crescimento & desenvolvimento , Proliferação de Células , Ácidos Naftalenoacéticos/farmacologia , Fenótipo , Reguladores de Crescimento de Plantas/farmacologia , Folhas de Planta , Brotos de Planta , Plantas Geneticamente Modificadas/efeitos dos fármacos , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento
13.
Opt Express ; 26(22): 28421-28428, 2018 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-30470018

RESUMO

We demonstrate a laser diode (LD) end-pumped Er:YAP laser with dual-wavelength outputs of 2710 and 2728 nm. The maximum average powers of 739 and 738 mW are achieved in the continuous wave (CW) and pulse modes, which corresponds to optical-to-optical efficiencies of 10.1% and 12.3%, and the slope efficiencies of 12.1% and 13.8%, respectively. In addition, a comparison of laser performance on differently sized crystals indicates that the 1 × 1 × 5 mm3 Er:YAP crystal has a best cooling efficiency. This helps to decrease the thermal lensing effect, which contributes to improving laser efficiency and beam quality.

14.
Opt Lett ; 43(17): 4312-4315, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-30160715

RESUMO

We demonstrate a 966 nm laser diode (LD) side-pumped Er,Pr:GYSGG laser crystal operated at 2.79 µm under a high repetition rate. The lifetimes of the upper level I11/24 and lower level I13/24 are 0.66 and 0.85 ms, respectively. The laser performance under different repetition rates and pulse widths is experimentally studied with the optimal cavity structure. A maximum output power of 8.86 W is achieved at 125 Hz and 200 µs pulse widths, corresponding to the slope efficiency of 14.8% and electrical-to-optical efficiency of 7.7%. With increasing frequency from 50 to 200 Hz, the slope efficiency varies from 24.7% to 11.7% operated at a 125 µs pulse width. Moreover, the Mx2/My2 factors of 7.52/7.59 and Θx/Θy far-field divergences of 16.1/16.5 mrad are also measured. The results indicate that a high-performance 2.79 µm laser could be realized on the Er,Pr:GYSGG radiation resistant crystal by deactivation and LD side-pumping.

15.
Opt Express ; 25(18): 21349-21357, 2017 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-29041434

RESUMO

We demonstrate the thermal analysis and laser performance of a GYSGG/Cr,Er,Pr:GYSGG composite crystal. The lifetime ratio of lower and upper levels of Er3+ in Cr,Er,Pr:GYSGG crystal is further reduced due to the optimized doping concentrations. The thermal effect of composite crystal is lower than that of Cr,Er,Pr:GYSGG crystal. A maximum pulse energy 342.8 mJ operated at 5 Hz and 2.79 µm is obtained on the composite crystal, corresponding to electrical-to-optical efficiency of 0.86% and slope efficiency of 1.08%. Under the same condition, these values on the Cr,Er,Pr:GYSGG crystal are only 315.8 mJ, 0.79% and 1.04%, respectively. Moreover, the composite crystal has also a relative high laser beam quality, exhibiting obvious advantage in reducing thermal effects and improving laser performances.

16.
Opt Lett ; 40(18): 4194-7, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26371894

RESUMO

We demonstrate the growth, spectroscopy, and laser performance of a 2.79 µm Cr,Er,Pr:GYSGG radiation-resistant crystal. The lifetimes for the upper laser level (4)I(11/2) and lower laser level (4)I(13/2) are 0.59 and 0.84 ms, respectively, which are due to the doping of the Pr(3+) ions. A maximum pulse energy of 278 mJ operated at 10 Hz and 2.79 µm is obtained when pumped with a flash lamp, which corresponds to the electrical-to-optical efficiency of 0.6% and a slope efficiency of 0.7%. A maximum average power of 2.9 W at 60 Hz is achieved, which corresponds to the electrical-to-optical efficiency of 0.4% and slope efficiency of 0.8%. Compared with a Cr,Er:YSGG crystal, the Cr,Er,Pr:GYSGG crystal can be operated at a higher pulse repetition rate. These results suggest that doping deactivator Pr(3+) ions can effectively decrease the lower laser level lifetime and improve the laser repetition rate. Therefore, the application fields and range of the Cr,Er,Pr:GYSGG laser can be extended greatly due to its properties of radiation resistance and high repetition frequency.


Assuntos
Lasers de Estado Sólido , Análise Espectral , Absorção de Radiação
17.
Exp Mol Med ; 56(2): 461-477, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38409448

RESUMO

The P53-destabilizing TBC1D15-NOTCH protein interaction promotes self-renewal of tumor-initiating stem-like cells (TICs); however, the mechanisms governing the regulation of this pathway have not been fully elucidated. Here, we show that TBC1D15 stabilizes NOTCH and c-JUN through blockade of E3 ligase and CDK8 recruitment to phosphodegron sequences. Chromatin immunoprecipitation (ChIP-seq) analysis was performed to determine whether TBC1D15-dependent NOTCH1 binding occurs in TICs or non-TICs. The TIC population was isolated to evaluate TBC1D15-dependent NOTCH1 stabilization mechanisms. The tumor incidence in hepatocyte-specific triple knockout (Alb::CreERT2;Tbc1d15Flox/Flox;Notch1Flox/Flox;Notch2Flox/Flox;HCV-NS5A) Transgenic (Tg) mice and wild-type mice was compared after being fed an alcohol-containing Western diet (WD) for 12 months. The NOTCH1-TBC1D15-FIS1 interaction resulted in recruitment of mitochondria to the perinuclear region. TBC1D15 bound to full-length NUMB and to NUMB isoform 5, which lacks three Ser phosphorylation sites, and relocalized NUMB5 to mitochondria. TBC1D15 binding to NOTCH1 blocked CDK8- and CDK19-mediated phosphorylation of the NOTCH1 PEST phosphodegron to block FBW7 recruitment to Thr-2512 of NOTCH1. ChIP-seq analysis revealed that TBC1D15 and NOTCH1 regulated the expression of genes involved in mitochondrial metabolism-related pathways required for the maintenance of TICs. TBC1D15 inhibited CDK8-mediated phosphorylation to stabilize NOTCH1 and protect it from degradation The NUMB-binding oncoprotein TBC1D15 rescued NOTCH1 from NUMB-mediated ubiquitin-dependent degradation and recruited NOTCH1 to the mitochondrial outer membrane for the generation and expansion of liver TICs. A NOTCH-TBC1D15 inhibitor was found to inhibit NOTCH-dependent pathways and exhibited potent therapeutic effects in PDX mouse models. This unique targeting of the NOTCH-TBC1D15 interaction not only normalized the perinuclear localization of mitochondria but also promoted potent cytotoxic effects against TICs to eradicate patient-derived xenografts through NOTCH-dependent pathways.


Assuntos
Mitocôndrias , Ubiquitina-Proteína Ligases , Humanos , Animais , Camundongos , Ubiquitina-Proteína Ligases/genética , Membranas Mitocondriais , Fosforilação , Imunoprecipitação da Cromatina , Modelos Animais de Doenças , Proteínas de Membrana/genética , Proteínas Mitocondriais , Quinase 8 Dependente de Ciclina , Proteínas Ativadoras de GTPase , Quinases Ciclina-Dependentes
18.
Ecol Evol ; 13(8): e10434, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37589037

RESUMO

Plant genetic diversity differs in habitat's oscillations, especially species distributed under heterogeneous environmental conditions. Freshwater ecosystems are vulnerable to biotic and abiotic impacts, which affect the genetic and epigenetic variations in aquatic plants. The extent of environmental heterogeneous attributes can be examined based on genetic and epigenetic variations. Such variations under environmental gradient can provide evidence for understanding the correlations between rapid environmental changes and species evolution. In this study, we performed amplified fragment polymorphism length and methylated-sensitive amplified polymorphism analysis to depict the genetic and epigenetic variations of Vallisneria natans in a subtropical lake. Results showed that this species maintained a relatively high genetic diversity (mean H E = 0.320, I = 0.474, PPL = 85.93%) and epigenetic variation (mean eH E = 0.282, eI = 0.428, ePPL = 83.91%). Water body temperature and chlorophyll a density were positively correlated to the genetic and epigenetic variations. The clonal generates of V. natans depicted a relative high methylation level and shew ancestral scenario between the genet and the second clonal generation. These findings revealed that species diversity is unevenly distributed under environmental heterogeneity, even at a fine geographic scale. Environmental characteristics in relation to temperature and chlorophyll a should be considered in the analysis of the genetic and epigenetic variations. Additionally, epigenetic variations between genets and ramets should be considered with caution when applied to analysis of other aquatic species.

19.
Cell Death Discov ; 9(1): 141, 2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37117191

RESUMO

RNA-binding protein Musashi 2 (MSI2) is elevated in several cancers and is linked to poor prognosis. Here, we tested if MSI2 promotes MYC and viral mRNA translation to induce self-renewal via an internal ribosome entry sequence (IRES). We performed RIP-seq using anti-MSI2 antibody in tumor-initiating stem-like cells (TICs). MSI2 binds the internal ribosome entry site (IRES)-containing oncogene mRNAs including MYC, JUN and VEGFA as well as HCV IRES to increase their synthesis and promote self-renewal and tumor-initiation at the post-transcriptional level. MSI2 binds a lncRNA to interfere with processing of a miRNA that reduced MYC translation in basal conditions. Deregulation of this integrated MSI2-lncRNA-MYC regulatory loop drives self-renewal and tumorigenesis through increased IRES-dependent translation of MYC mRNA. Overexpression of MSI2 in TICs promoted their self-renewal and tumor-initiation properties. Inhibition of MSI2-RNA binding reduced HCV IRES activity, viral replication and liver hyperplasia in humanized mice predisposed by virus infection and alcohol high-cholesterol high-fat diet. Together MSI2, integrating the MYC oncogenic pathway, can be employed as a therapeutic target in the treatment of HCC patients. A hypothetical model shows that MSI2 binds and activates cap-independent translation of MYC, c-JUN mRNA and HCV through MSI2-binding to Internal Ribosome Entry Sites (IRES) resulting in upregulated MYC, c-JUN and viral protein synthesis and subsequent liver oncogenesis. Inhibitor of the interaction between MYC IRES and MSI2 reduces liver hyperplasia, viral mRNA translation and tumor formation.

20.
J Hazard Mater ; 432: 128646, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35325863

RESUMO

Global anthropogenic changes are altering the temperature and nutrients of the ecosystem, which might also affect the extent of cadmium (Cd) toxicity in organisms. This study aimed to investigate the combined effects of temperature and nutrient availability (here, nitrogen [N] and phosphorus [P]) on Cd toxicity in duckweed (Lemna aequinoctialis). The growth parameters, nutrient uptake, and Cd tolerance of plantlets reached their highest values for duckweed grown in medium with 28 mg/L N and 2.4 mg/L P (N:P = 11.67) at 25 °C under 1 mg/L CdCl2 exposure. Raising the temperature (from 18 °C to 25 °C) and levels of N and P (from 0.01 N/P to 2 N/P) enhanced photosynthetic capacity and nutrient uptake, thus promoting plant growth and diluting the toxic effects of Cd. Although Cd uptake increased with increasing temperature, duckweed with relatively high biomass exhibited a lower accumulation of the toxic metal because their growth rate exceeded Cd uptake rate. Increasing N and P supply also enhanced the tolerance of duckweed to Cd by limiting Cd bioavailability. Our study therefore suggests the importance of combined effects from temperature and nutrients for Cd toxicity and provides novel insights for a comprehensive analysis of Cd toxicity associated with the environmental factors of a particular ecosystem.


Assuntos
Araceae , Cádmio , Cádmio/toxicidade , Ecossistema , Nutrientes , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA