Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
1.
J Biol Chem ; 300(6): 107343, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38705395

RESUMO

Rieske nonheme iron aromatic ring-hydroxylating oxygenases (RHOs) play pivotal roles in determining the substrate preferences of polycyclic aromatic hydrocarbon (PAH) degraders. However, their potential to degrade high molecular weight PAHs (HMW-PAHs) has been relatively unexplored. NarA2B2 is an RHO derived from a thermophilic Hydrogenibacillus sp. strain N12. In this study, we have identified four "hotspot" residues (V236, Y300, W316, and L375) that may hinder the catalytic capacity of NarA2B2 when it comes to HMW-PAHs. By employing structure-guided rational enzyme engineering, we successfully modified NarA2B2, resulting in NarA2B2 variants capable of catalyzing the degradation of six different types of HMW-PAHs, including pyrene, fluoranthene, chrysene, benzo[a]anthracene, benzo[b]fluoranthene, and benzo[a]pyrene. Three representative variants, NarA2B2W316I, NarA2B2Y300F-W316I, and NarA2B2V236A-W316I-L375F, not only maintain their abilities to degrade low-molecular-weight PAHs (LMW-PAHs) but also exhibited 2 to 4 times higher degradation efficiency for HMW-PAHs in comparison to another isozyme, NarAaAb. Computational analysis of the NarA2B2 variants predicts that these modifications alter the size and hydrophobicity of the active site pocket making it more suitable for HMW-PAHs. These findings provide a comprehensive understanding of the relationship between three-dimensional structure and functionality, thereby opening up possibilities for designing improved RHOs that can be more effectively used in the bioremediation of PAHs.

2.
Proc Natl Acad Sci U S A ; 119(17): e2119032119, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35439051

RESUMO

Iodine-induced cleavage at phosphorothioate DNA (PT-DNA) is characterized by extremely high sensitivity (∼1 phosphorothioate link per 106 nucleotides), which has been used for detecting and sequencing PT-DNA in bacteria. Despite its foreseeable potential for wide applications, the cleavage mechanism at the PT-modified site has not been well established, and it remains unknown as to whether or not cleavage of the bridging P-O occurs at every PT-modified site. In this work, we conducted accurate ωB97X-D calculations and high-performance liquid chromatography-mass spectrometry to investigate the process of PT-DNA cleavage at the atomic and molecular levels. We have found that iodine chemoselectively binds to the sulfur atom of the phosphorothioate link via a strong halogen-chalcogen interaction (a type of halogen bond, with binding affinity as high as 14.9 kcal/mol) and thus triggers P-O bond cleavage via phosphotriester-like hydrolysis. Additionally, aside from cleavage of the bridging P-O bond, the downstream hydrolyses lead to unwanted P-S/P-O conversions and a loss of the phosphorothioate handle. The mechanism we outline helps to explain specific selectivity at the PT-modified site but also predicts the dynamic stoichiometry of P-S and P-O bond breaking. For instance, Tris is involved in the cascade derivation of S-iodo-phosphorothioate to S-amino-phosphorothioate, suppressing the S-iodo-phosphorothioate hydrolysis to a phosphate diester. However, hydrolysis of one-third of the Tris-O-grafting phosphotriester results in unwanted P-S/P-O conversions. Our study suggests that bacterial DNA phosphorothioation may more frequently occur than previous bioinformatic estimations have predicted from iodine-induced deep sequencing data.


Assuntos
Iodo , Clivagem do DNA , DNA Bacteriano/genética , Iodetos , Fosfatos/química , Enxofre
3.
Appl Environ Microbiol ; 90(3): e0225523, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38415602

RESUMO

Flavoprotein monooxygenases catalyze reactions, including hydroxylation and epoxidation, involved in the catabolism, detoxification, and biosynthesis of natural substrates and industrial contaminants. Among them, the 6-hydroxy-3-succinoyl-pyridine (HSP) monooxygenase (HspB) from Pseudomonas putida S16 facilitates the hydroxylation and C-C bond cleavage of the pyridine ring in nicotine. However, the mechanism for biodegradation remains elusive. Here, we refined the crystal structure of HspB and elucidated the detailed mechanism behind the oxidative hydroxylation and C-C cleavage processes. Leveraging structural information about domains for binding the cofactor flavin adenine dinucleotide (FAD) and HSP substrate, we used molecular dynamics simulations and quantum/molecular mechanics calculations to demonstrate that the transfer of an oxygen atom from the reactive FAD peroxide species (C4a-hydroperoxyflavin) to the C3 atom in the HSP substrate constitutes a rate-limiting step, with a calculated reaction barrier of about 20 kcal/mol. Subsequently, the hydrogen atom was rebounded to the FAD cofactor, forming C4a-hydroxyflavin. The residue Cys218 then catalyzed the subsequent hydrolytic process of C-C cleavage. Our findings contribute to a deeper understanding of the versatile functions of flavoproteins in the natural transformation of pyridine and HspB in nicotine degradation.IMPORTANCEPseudomonas putida S16 plays a pivotal role in degrading nicotine, a toxic pyridine derivative that poses significant environmental challenges. This study highlights a key enzyme, HspB (6-hydroxy-3-succinoyl-pyridine monooxygenase), in breaking down nicotine through the pyrrolidine pathway. Utilizing dioxygen and a flavin adenine dinucleotide cofactor, HspB hydroxylates and cleaves the substrate's side chain. Structural analysis of the refined HspB crystal structure, combined with state-of-the-art computations, reveals its distinctive mechanism. The crucial function of Cys218 was never discovered in its homologous enzymes. Our findings not only deepen our understanding of bacterial nicotine degradation but also open avenues for applications in both environmental cleanup and pharmaceutical development.


Assuntos
Oxigenases de Função Mista , Nicotina , Succinatos , Oxigenases de Função Mista/metabolismo , Nicotina/metabolismo , Flavina-Adenina Dinucleotídeo/metabolismo , Flavoproteínas/metabolismo , Hidroxilação , Piridinas/metabolismo
4.
Cereb Cortex ; 33(8): 4350-4359, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36124829

RESUMO

Recent studies in many kinds of mammals have established the existence of multiple γ rhythms in the cerebral cortex subserving different functions. In the primary visual cortex (V1), visually induced γ rhythms are dependent on stimulus features. However, experimental findings of γ power induced by varying the size of the drifting grating are inconsistent. Here, we reinvestigated the spatial summation properties of visually induced spike and γ rhythm activities in mouse V1. Our results show that drifting sinusoidal grating stimuli mainly induce 2 γ band rhythms, including a low-frequency band (25-45 Hz) and a high-frequency band (55-75 Hz). Unlike previous findings, we discovered that visually induced γ power could also exhibit extrareceptive field (ERF) modulatory properties. The modulation by ERF stimulation could be either suppressive, countersuppressive, or nonsuppressive, mostly similar to the local spike activity. Moreover, further analysis of the neuron group exhibiting surround suppression in both spike and γ activity revealed that the strength of the surround suppression and the receptive field size showed moderate correlations between measurements by spike and γ rhythm activity. Our findings improve the understanding of the characteristics and neural mechanisms of induced γ rhythms in visual spatial summation.


Assuntos
Córtex Visual , Campos Visuais , Animais , Camundongos , Ritmo Gama , Córtex Visual Primário , Córtex Visual/fisiologia , Estimulação Luminosa/métodos , Mamíferos
5.
Phys Chem Chem Phys ; 25(42): 29289-29302, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37876253

RESUMO

Bacterial DNA phosphorothioate (PT) modification provides a specific anchoring site for sulfur-binding proteins (SBDs). Besides, their recognition patterns include phosphate links and bases neighboring the PT-modified site, thereby bringing about genome sequence-dependent properties in PT-related epigenetics. Here, we analyze the contributions of the DNA backbone (phosphates and deoxyribose) and bases bound with two SBD proteins in Streptomyces pristinaespiralis and coelicolor (SBDSco and SBDSpr). The chalcogen-hydrophobic interactions remained constantly at the anchoring site while the adjacent bases formed conditional and distinctive non-covalent interactions. More importantly, SBD/PT-DNA interactions were not limited within the traditional "4-bp core" range from 5'-I to 3'-III but extended to upstream 5'-II and 5'-III bases and even 5''-I to 5''-III at the non-PT-modified complementary strand. From the epigenetic viewpoint, bases 3'-II, 5''-I, and 5''-III of SBDSpr and 3'-II, 5''-II, and 5''-III of SBDSco present remarkable differentiations in the molecular recognitions. From the protein viewpoint, H102 in SBDSpr and R191 in SBDSco contribute significantly while proline residues at the PT-bound site are strictly conserved for the PT-chalcogen bond. The mutual and make-up mutations are proposed to alter the SBD/PT-DNA recognition pattern, besides additional chiral phosphorothioate modifications on phosphates 5'-II, 5'-II, 3'-I, and 3'-II.


Assuntos
Calcogênios , DNA , DNA/química , DNA Bacteriano/química , Proteínas de Bactérias/metabolismo , Fosfatos/química
6.
Phys Chem Chem Phys ; 24(16): 9176-9187, 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35383346

RESUMO

Bacterial DNA phosphorothioation (PT) physiologically and stereo-specifically replaces a non-bridging oxygen in a phosphate link with a sulfur atom, which can be recognized by a highly conserved sulfur-binding domain (SBD). Here we conducted thermodynamic integration (TI), molecular dynamics simulation, and quantum chemical calculations to decipher the specific molecular interactions between PT-DNA and SBD in Streptomyces coelicolor type IV restriction enzyme ScoMcrA. The TI-calculated binding affinity of (5'-CCGRp-PSGCCGG-3')2 is larger than that of (5'-CCGGCCGG-3')2 by about 7.4-7.7 kcal mol-1. The binding difference dominantly stems from hydration energy of non-phosphorothioate DNA (9.8-10.6 kcal mol-1) in aqueous solution, despite the persistent preference of 2.6-3.2 kcal mol-1 in the DNA-SBD MD simulations. Furthermore, the quantum chemical calculations reveal an unusual non-covalent interaction in the phosphorothioate-binding scenario, where the PS⋯NP165 chalcogen bond prevails the PS⋯HCß vdW interactions from the adjacent residues H116-R117-Y164-P165-A168. Thus, the chalcogen-hydrophobic interaction pulls PT-DNA into the SBD binding pocket while the water cage pulls a normal DNA molecule out. The synergetic mechanism suggests the special roles of the proline pyrrolidine group in the SBD proteins, consistent with the experimental observations in the X-ray crystallography and structural bioinformatics analysis.


Assuntos
Enxofre , Água , DNA/química , DNA Bacteriano , Interações Hidrofóbicas e Hidrofílicas , Fosfatos/química , Enxofre/química
7.
Nucleic Acids Res ; 48(15): 8755-8766, 2020 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-32621606

RESUMO

The sulfur atom of phosphorothioated DNA (PT-DNA) is coordinated by a surface cavity in the conserved sulfur-binding domain (SBD) of type IV restriction enzymes. However, some SBDs cannot recognize the sulfur atom in some sequence contexts. To illustrate the structural determinants for sequence specificity, we resolved the structure of SBDSpr, from endonuclease SprMcrA, in complex with DNA of GPSGCC, GPSATC and GPSAAC contexts. Structural and computational analyses explained why it binds the above PT-DNAs with an affinity in a decreasing order. The structural analysis of SBDSpr-GPSGCC and SBDSco-GPSGCC, the latter only recognizes DNA of GPSGCC, revealed that a positively charged loop above the sulfur-coordination cavity electrostatically interacts with the neighboring DNA phosphate linkage. The structural analysis indicated that the DNA-protein hydrogen bonding pattern and weak non-bonded interaction played important roles in sequence specificity of SBD protein. Exchanges of the positively-charged amino acid residues with the negatively-charged residues in the loop would enable SBDSco to extend recognization for more PT-DNA sequences, implying that type IV endonucleases can be engineered to recognize PT-DNA in novel target sequences.


Assuntos
Enzimas de Restrição do DNA/genética , Proteínas de Ligação a DNA/genética , DNA/genética , Enxofre/química , Sequência de Aminoácidos/genética , Cristalografia por Raios X , DNA/química , Enzimas de Restrição do DNA/química , Proteínas de Ligação a DNA/química , Escherichia coli/genética , Ligação de Hidrogênio , Ligação Proteica/genética , Domínios Proteicos/genética , Streptomyces/enzimologia
8.
Proteins ; 89(5): 558-568, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33389775

RESUMO

Polyene polyketides amphotericin B (AMB) and nystatin (NYS) are important antifungal drugs. Thioesterases (TEs), located at the last module of PKS, control the release of polyketides by cyclization or hydrolysis. Intrigued by the tiny structural difference between AMB and NYS, as well as the high sequence identity between AMB TE and NYS TE, we constructed four systems to study the structural characteristics, catalytic mechanism, and product release of AMB TE and NYS TE with combined MD simulations and quantum mechanics/molecular mechanics calculations. The results indicated that compared with AMB TE, NYS TE shows higher specificity on its natural substrate and R26 as well as D186 were proposed to a key role in substrate recognition. The energy barrier of macrocyclization in AMB-TE-Amb and AMB-TE-Nys systems were calculated to be 14.0 and 22.7 kcal/mol, while in NYS-TE-Nys and NYS-TE-Amb systems, their energy barriers were 17.5 and 25.7 kcal/mol, suggesting the cyclization with their natural substrates were more favorable than that with exchanged substrates. At last, the binding free energy obtained with the MM-PBSA.py program suggested that it was easier for natural products to leave TE enzymes after cyclization. And key residues to the departure of polyketide product from the active site were highlighted. We provided a catalytic overview of AMB TE and NYS TE including substrate recognition, catalytic mechanism and product release. These will improve the comprehension of polyene polyketide TEs and benefit for broadening the substrate flexibility of polyketide TEs.


Assuntos
Anfotericina B/química , Proteínas de Bactérias/química , Nistatina/química , Streptomyces/enzimologia , Tioléster Hidrolases/química , Anfotericina B/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Biocatálise , Domínio Catalítico , Ciclização , Ligação de Hidrogênio , Hidrólise , Interações Hidrofóbicas e Hidrofílicas , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Cinética , Modelos Moleculares , Simulação de Dinâmica Molecular , Mutação , Nistatina/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Teoria Quântica , Streptomyces/química , Especificidade por Substrato , Termodinâmica , Tioléster Hidrolases/genética , Tioléster Hidrolases/metabolismo
9.
J Am Chem Soc ; 143(15): 5605-5609, 2021 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-33834778

RESUMO

Hirsutellones are fungal natural products containing a macrocyclic para-cyclophane connected to a decahydrofluorene ring system. We have elucidated the biosynthetic pathway for pyrrocidine B (3) and GKK1032 A2 (4). Two small hypothetical proteins, an oxidoreductase and a lipocalin-like protein, function cooperatively in the oxidative cyclization of the cyclophane, while an additional hypothetical protein in the pyrrocidine pathway catalyzes the exo-specific cycloaddition to form the cis-fused decahydrofluorene.


Assuntos
Produtos Biológicos/metabolismo , Hidrocarbonetos Aromáticos com Pontes/metabolismo , Fungos/química , Compostos Heterocíclicos de 4 ou mais Anéis/metabolismo , Pirrolidinonas/metabolismo , Acremonium/química , Acremonium/metabolismo , Produtos Biológicos/química , Hidrocarbonetos Aromáticos com Pontes/química , Catálise , Reação de Cicloadição , Fungos/metabolismo , Compostos Heterocíclicos de 4 ou mais Anéis/química , Hypocreales/química , Hypocreales/metabolismo , Conformação Molecular , Oxirredução , Oxirredutases/metabolismo , Pirrolidinonas/química , Estereoisomerismo
10.
J Am Chem Soc ; 141(14): 5659-5663, 2019 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-30905148

RESUMO

The pericyclases are a growing superfamily of enzymes that catalyze pericyclic reactions. We report a pericyclase IccD catalyzing an inverse-electron demand Diels-Alder (IEDDA) reaction with a rate acceleration of 3 × 105-fold in the biosynthesis of fungal natural product ilicicolin H. We demonstrate IccD is highly periselective toward the IEDDA cycloaddition over a competing normal electron demand Diels-Alder (NEDDA) reaction from an ambimodal transition state. A predicted flavoenzyme IccE was identified to epimerize the IEDDA product 8- epi-ilicicolin H to ilicicolin H, a step that is critical for the observed antifungal activity of ilicicolin H. Our results reveal the ilicicolin H biosynthetic pathway and add to the collection of pericyclic reactions that are catalyzed by pericyclases.


Assuntos
Antifúngicos/síntese química , Benzaldeídos/síntese química , Biocatálise , Enzimas/metabolismo , Antifúngicos/química , Benzaldeídos/química , Reação de Cicloadição , Transporte de Elétrons , Modelos Moleculares , Conformação Molecular
11.
Langmuir ; 35(9): 3498-3506, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30726670

RESUMO

Aggregation behavior of proteins on the surface of gold nanoparticles (AuNPs) has been extensively studied for its promising applications in biosensing, bioimaging, photodynamic therapy, drug delivery, etc. In this work, we studied adsorption kinetics of an antimicrobial protein, regenerating islet-derived protein 3-alpha (REG3A), on the surface of as-synthesized citrate-capped AuNPs under the influence of lipopolysaccharides (LPSs), with a combined method of UV-vis spectroscopy, multivariate analysis, and molecular dockings. In the AuNPs-REG3A binary system, a component with an "up-and-down" signal was detected by the in-depth data analysis on time-resolved spectroscopic data, corresponding to the protein agglomeration and exfoliation observed in transmission electron microscopy and atomic force microscopy experiments. Intriguingly, LPSs can rescue the spectral oddity-the adsorption pattern in the AuNPs-REG3A-LPS ternary system becomes normal and similar to a typical single-layer mode as in our previous study of the serum albumin-AuNP system ( Ren , X. ; et al., Spectrosc. Lett. , 2016 , 49 , 434 - 443 ). The following molecular modeling suggests that LPS molecules mainly interact with three segments of REG3A amino acid sequences, i.e., P109-T110-Q111-G112, P115-N116, and P137-S138-T139. The latter two protein-ligand interactions impair the REG3A-REG3A protein-protein interaction between the two subunits (E114-P115-N116-G117-E118 and N136-P137-S138-T139-I140). Thus, our results elucidate the LPS inhibitory effect on fibrous protein self-aggregation at the AuNP surface, and molecular dockings give a plausible mechanism to rationalize the competition among protein-protein and protein-ligand interactions.


Assuntos
Lipopolissacarídeos/química , Nanopartículas Metálicas/química , Proteínas Associadas a Pancreatite/metabolismo , Multimerização Proteica/efeitos dos fármacos , Adsorção , Ouro/química , Humanos , Simulação de Acoplamento Molecular , Análise Multivariada , Agregados Proteicos , Ressonância de Plasmônio de Superfície
12.
J Chem Inf Model ; 59(1): 316-325, 2019 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-30571108

RESUMO

Akt (known as protein kinase B or PKB) is a serine/threonine kinase that regulates multiple biological processes, including cell growth, survival, and differentiation. Akt plays a critical role in the intracellular signaling network through conformational changes responsive to diverse signal inputs, and dysregulation of Akt activity could give rise to a number of diseases. However, understanding of Akt's dynamic structures and conformational transitions between active and inactive states remains unclear. In this work, classical MD simulations and QM/MM calculations were carried out to unveil the structural characteristics of Akt1, especially in its active state. The doubly protonated H194 was investigated, and both ATP-Akt1 and ADP-Akt1 complexes were constructed to demonstrate the significance of ATP in maintaining the ATP-K179-E198 salt bridge and the corresponding allosteric pathway. Besides, conformational transitions from the inactive state to the active state showed different permeation patterns of water molecules in the ATP pocket. The coordination modes of Mg2+ in the dominant representative conformations ( I and I') are presented. Unlike the water-free conformation I', three water molecules appear around Mg2+ in the water-occupied conformation I, which can finally exert an influence on the catalytic mechanism of Akt1. Furthermore, QM/MM calculations were performed to study the phosphoryl-transfer reaction of Akt1. The transfer of ATP γ-phosphate was achieved through a reversible conformational change from the reactant to a critical prereaction state, with a water molecule moving into the reaction center to coordinate with Mg2+, after which the γ-phosphate group was transferred from ATP to the substrate. Taken together, our results elucidate the structural characteristics of the Akt1 active state and shed new light on the catalytic mechanism of Akt kinases.


Assuntos
Simulação de Dinâmica Molecular , Proteínas Proto-Oncogênicas c-akt/química , Proteínas Proto-Oncogênicas c-akt/metabolismo , Biocatálise , Domínio Catalítico , Magnésio/metabolismo , Permeabilidade , Prótons , Água/química
13.
Int J Mol Sci ; 20(4)2019 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-30781619

RESUMO

As a polyene antibiotic of great pharmaceutical significance, pimaricin has been extensively studied to enhance its productivity and effectiveness. In our previous studies, pre-reaction state (PRS) has been validated as one of the significant conformational categories before macrocyclization, and is critical to mutual recognition and catalytic preparation in thioesterase (TE)-catalyzed systems. In our study, molecular dynamics (MD) simulations were conducted on pimaricin TE-polyketide complex and PRS, as well as pre-organization state (POS), a molecular conformation possessing a pivotal intra-molecular hydrogen bond, were detected. Conformational transition between POS and PRS was observed in one of the simulations, and POS was calculated to be energetically more stable than PRS by 4.58 kcal/mol. The structural characteristics of PRS and POS-based hydrogen-bonding, and hydrophobic interactions were uncovered, and additional simulations were carried out to rationalize the functions of several key residues (Q29, M210, and R186). Binding energies, obtained from MM/PBSA calculations, were further decomposed to residues, in order to reveal their roles in product release. Our study advanced a comprehensive understanding of pimaricin TE-catalyzed macrocyclization from the perspectives of conformational change, protein-polyketide recognition, and product release, and provided potential residues for rational modification of pimaricin TE.


Assuntos
Natamicina/metabolismo , Tioléster Hidrolases/química , Tioléster Hidrolases/metabolismo , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Simulação de Dinâmica Molecular , Mutação/genética , Conformação Proteica , Especificidade por Substrato , Tioléster Hidrolases/genética
14.
J Am Chem Soc ; 140(39): 12645-12654, 2018 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-30247889

RESUMO

Diaryl ketones are important building blocks for synthesizing pharmaceuticals and are generally regarded as "difficult-to-reduce" ketones due to the large steric hindrance of their two bulky aromatic side chains. Alcohol dehydrogenase from Kluyveromyces polyspora ( KpADH) has been identified as a robust biocatalyst due to its high conversion of diaryl ketone substrate (4-chlorophenyl)(pyridine-2-yl)ketone (CPMK) with a moderate R-selectivity of 82% ee. To modulate the stereoselectivity of KpADH, a "polarity scanning" strategy was proposed, in which six key residues inside and at the entrance of the substrate binding pocket were identified. After iterative combinatorial mutagenesis, variants Mu-R2 and Mu-S5 with enhanced (99.2% ee, R) and inverted (97.8% ee, S) stereoselectivity were obtained. The crystal structures of KpADH and two mutants in complex with NADPH were resolved to elucidate the evolution of enantioselective inversion. Based on MD simulation, Mu-R2-CPMKProR and Mu-S5-CPMKProS were more favorable in the formation of prereaction states. Interestingly, a quadrilateral plane formed by α-carbons of four residues (N136, V161, C237, and G214) was identified at the entrance of the substrate binding pocket of Mu-S5; this plane acts as a "polar gate" for substrates. Due to the discrepancy in charge characteristics between chlorophenyl and pyridine substituents, the pro- S orientation of CPMK is defined when it passes through the "polar gate" in Mu-S5, whereas the similar plane in wild-type is blocked by several aromatic residues. Our result paves the way for engineering stereocomplementary ADH toward bulky diaryl ketones and provides structural insight into the mechanism of stereoselective inversion.


Assuntos
Álcool Desidrogenase/química , Derivados de Benzeno/química , Cetonas/química , Álcool Desidrogenase/genética , Álcool Desidrogenase/metabolismo , Derivados de Benzeno/síntese química , Sítios de Ligação , Cristalografia por Raios X , Cetonas/síntese química , Cinética , Kluyveromyces/enzimologia , Simulação de Acoplamento Molecular , Mutagênese , NADP/química , NADP/metabolismo , Estereoisomerismo
15.
J Ind Microbiol Biotechnol ; 45(5): 335-344, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29572612

RESUMO

Nonribosomal peptide synthetases (NRPSs) are multi-modular enzymes involved in the biosynthesis of natural products. Bacillamide C was synthesized by Bacillus atrophaeus C89. A nonribosomal peptide synthetase (NRPS) cluster found in the genome of B. atrophaeus C89 was hypothesized to be responsible for the biosynthesis of bacillamide C using alanine and cysteine as substrates. Here, the structure analysis of adenylation domains based on homologous proteins with known crystal structures indicated locations of the substrate-binding pockets. Molecular docking suggested alanine and cysteine as the potential substrates for the two adenylation domains in the NRPS cluster. Furthermore, biochemical characterization of the purified recombinant adenylation domains proved that alanine and cysteine were the optimum substrates for the two adenylation domains. The results provided the in vitro evidence for the hypothesis that the two adenylation domains in the NRPS of B. atrophaeus C89 preferentially select alanine and cysteine, respectively, as a substrate to synthesize bacillamide C. Furthermore, this study on substrates selectivity of adenylation domains provided basis for rational design of bacillamide analogs.


Assuntos
Bacillus/metabolismo , Peptídeo Sintases/metabolismo , Tiazóis/metabolismo , Triptaminas/metabolismo , Bacillus/genética , Cisteína/metabolismo , Simulação de Acoplamento Molecular , Domínios Proteicos , Especificidade por Substrato
16.
Mol Microbiol ; 91(5): 1009-21, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24397579

RESUMO

N-heterocyclic compounds from industrial wastes, including nicotine, are environmental pollutants or toxicants responsible for a variety of health problems. Microbial biodegradation is an attractive strategy for the removal of N-heterocyclic pollutants, during which carbon-nitrogen bonds in N-heterocycles are converted to amide bonds and subsequently severed by amide hydrolases. Previous studies have failed to clarify the molecular mechanism through which amide hydrolases selectively recognize diverse amide substrates and complete the biodenitrogenation process. In this study, structural, computational and enzymatic analyses showed how the N-formylmaleamate deformylase Nfo and the maleamate amidase Ami, two pivotal amide hydrolases in the nicotine catabolic pathway of Pseudomonas putida S16, specifically recognize their respective substrates. In addition, comparison of the α-ß-α groups of amidases, which include Ami, pinpointed several subgroup-characteristic residues differentiating the two classes of amide substrates as containing either carboxylate groups or aromatic rings. Furthermore, this study reveals the molecular mechanism through which the specially tailored active sites of deformylases and amidases selectively recognize their unique substrates. Our work thus provides a thorough elucidation of the molecular mechanism through which amide hydrolases accomplish substrate-specific recognition in the microbial N-heterocycles biodenitrogenation pathway.


Assuntos
Amidas/metabolismo , Hidrolases/química , Hidrolases/metabolismo , Pseudomonas putida/enzimologia , Sequência de Aminoácidos , Aminoácidos/metabolismo , Biodegradação Ambiental , Domínio Catalítico , Cristalografia por Raios X , Compostos Heterocíclicos , Hidrólise , Cinética , Maleatos/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Mutantes/metabolismo , Mutação/genética , Relação Estrutura-Atividade , Especificidade por Substrato
17.
Org Biomol Chem ; 13(44): 10825-33, 2015 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-26313718

RESUMO

It has been demonstrated that passenger strand cleavage is important for the activation of RNA-induced silencing complex (RISC), which is a crucial step for siRNA-mediated gene silencing. Herein, we report that isonucleotide (isoNA) modification around the cleavage site of the passenger strand would affect the in vitro potency of modified siRNAs by altering the motion pattern of the Ago2-PAZ domain. According to western blotting, q-PCR and antiviral test results, we proved that D-isonucleotide (isoNA) modification at the position 8 of the passenger strand (siMek1-S08D), which is adjacent to the cleavage site, markedly improved the in vitro potency of the modified siRNA, whereas siRNAs with D-isoNA incorporation at position 9 (siMek1-S09D) or L-isoNA incorporation at positions 8 and 9 (siMek1-S08L, siMek1-S09L) displayed lower activity compared to native siRNA. Kinetics evaluation of passenger strand cleavage induced by T. thermophilus Ago (Tt-Ago) showed that D-isoNA modification at position 8 of the passenger strand had no significant influence on the cleavage rate, but L-isoNA modification at position 8 slowed the cleavage rate markedly. Moreover, the results of molecular dynamics simulations showed that D-isoNA modification at position 8 affected the open-close motion of the PAZ domain in the Ago/siRNA complex, which may promote the loading of RISC and release of a passenger strand cleavage product, and consequently accelerate the activation of RISC and enhance silencing activity. However, D-isoNA modification at position 9 or L-isoNA modification at position 8 or 9 exerted opposite influences on the motion of the Ago-PAZ domain.


Assuntos
Proteínas Argonautas/metabolismo , Proteínas de Bactérias/metabolismo , RNA Interferente Pequeno/metabolismo , Thermus thermophilus/metabolismo , Proteínas Argonautas/química , Proteínas de Bactérias/química , Sequência de Bases , Células HEK293 , Humanos , Modelos Moleculares , Estrutura Terciária de Proteína , Interferência de RNA , RNA Interferente Pequeno/química , RNA Interferente Pequeno/genética , Thermus thermophilus/química , Transfecção
18.
Phys Chem Chem Phys ; 17(44): 29597-607, 2015 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-26477512

RESUMO

Laccase catalyzes the oxidation of natural phenols and thereby is believed to initialize reactions in lignification and delignification. Numerous phenolic mediators have also been applied in laccase-mediator systems. However, reaction details after the primary O-H rupture of phenols remain obscure. In this work two types of isomeric phenols, EUG (eugenol) and ISO (trans-/cis-isoeugenol), were used as chemical probes to explore the enzymatic reaction pathways, with the combined methods of time-resolved UV-Vis absorption spectra, MCR-ALS, HPLC-MS, and quantum mechanical (QM) calculations. It has been found that the EUG-consuming rate is linear to its concentration, while the ISO not. Besides, an o-methoxy quinone methide intermediate, (E/Z)-4-allylidene-2-methoxycyclohexa-2,5-dienone, was evidenced in the case of EUG with the UV-Vis measurement, mass spectra and TD-DFT calculations; in contrast, an ISO-generating phenoxyl radical, a (E/Z)-2-methoxy-4-(prop-1-en-1-yl) phenoxyl radical, was identified in the case of ISO. Furthermore, QM calculations indicated that the EUG-generating phenoxyl radical (an O-centered radical) can easily transform into an allylic radical (a C-centered radical) by hydrogen atom transfer (HAT) with a calculated activation enthalpy of 5.3 kcal mol(-1) and then be fast oxidized to the observed eugenol quinone methide, rather than an O-radical alkene addition with barriers above 12.8 kcal mol(-1). In contrast, the ISO-generating phenoxyl radical directly undergoes a radical coupling (RC) process, with a barrier of 4.8 kcal mol(-1), while the HAT isomerization between O- and C-centered radicals has a higher reaction barrier of 8.0 kcal mol(-1). The electronic conjugation of the benzyl-type radical and the aromatic allylic radical leads to differentiation of the two pathways. These results imply that competitive reaction pathways exist for the nascent reactive intermediates generated in the laccase-catalyzed oxidation of natural phenols, which is important for understanding the lignin polymerization and may shed some light on the development of efficient laccase-mediator systems.


Assuntos
Eugenol/química , Lacase/química , Fenóis/química , Catálise , Cromatografia Líquida de Alta Pressão , Cinética , Espectrometria de Massas , Oxirredução , Teoria Quântica , Trametes/enzimologia
19.
Mol Microbiol ; 87(6): 1237-44, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23347155

RESUMO

Nicotine is an environmental toxicant in tobacco waste, imposing a serious hazard for human health. Some bacteria including Pseudomonas spp. strains are able to metabolize nicotine to non-toxic compounds. The pyrrolidine pathway of nicotine degradation in Pseudomonas putida S16 has recently been revealed. The maleate isomerase (Pp-Iso) catalyses the last step in nicotine degradation of P. putida S16, the cis-trans isomerization of maleate to fumarate. In this study, we determined the crystal structures of both wild type isomerase by itself and its C200A point mutant in complex with its substrate maleate, to resolutions of 2.95 Å and 2.10 Å respectively. Our structures reveal that Asn17 and Asn169 play critical roles in recognizing the maleate by site-directed mutants' analysis. Surprisingly, our structure shows that the maleate is completely wrapped inside the isomerase. Examination of the structure prompted us to hypothesize that the ß2-α2 loop and the ß6-α7 loop have a breathing motion that regulates substrate/solvent entry and product departure. Our results of molecular dynamics simulation and enzymatic activity assay are fully consistent with this hypothesis. The isomerase probably uses this breathing motion to prevent the solvent from entering the active site and prohibit unproductive side reactions from happening.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Simulação de Dinâmica Molecular , Pseudomonas putida/enzimologia , cis-trans-Isomerases/química , cis-trans-Isomerases/metabolismo , Biotransformação , Cristalografia por Raios X , Análise Mutacional de DNA , Fumaratos/metabolismo , Malatos/metabolismo , Ligação Proteica , Conformação Proteica , Pseudomonas putida/química
20.
Nucleic Acids Res ; 40(18): 9115-24, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22772986

RESUMO

Diverse bacteria contain DNA with sulfur incorporated stereo-specifically into their DNA backbone at specific sequences (phosphorothioation). We found that in vitro oxidation of phosphorothioate (PT) DNA by hydrogen peroxide (H(2)O(2)) or peracetic acid has two possible outcomes: DNA backbone cleavage or sulfur removal resulting in restoration of normal DNA backbone. The physiological relevance of this redox reaction was investigated by challenging PT DNA hosting Salmonella enterica cells using H(2)O(2). DNA phosphorothioation was found to correlate with increasing resistance to the growth inhibition by H(2)O(2). Resistance to H(2)O(2) was abolished when each of the three dnd genes, required for phosphorothioation, was inactivated. In vivo, PT DNA is more resistant to the double-strand break damage caused by H(2)O(2) than PT-free DNA. Furthermore, sulfur on the modified DNA was consumed and the DNA was converted to PT-free state when the bacteria were incubated with H(2)O(2). These findings are consistent with a hypothesis that phosphorothioation modification endows DNA with reducing chemical property, which protects the hosting bacteria against peroxide, explaining why this modification is maintained by diverse bacteria.


Assuntos
Antioxidantes/química , DNA Bacteriano/química , Tionucleotídeos/química , Quebras de DNA de Cadeia Dupla , Clivagem do DNA , DNA Bacteriano/metabolismo , Peróxido de Hidrogênio/farmacologia , Oxidantes/farmacologia , Oxirredução , Ácido Peracético , Oligonucleotídeos Fosforotioatos/química , Substâncias Redutoras/química , Salmonella enterica/efeitos dos fármacos , Salmonella enterica/genética , Enxofre/química , Tionucleotídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA