Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Food Chem X ; 23: 101642, 2024 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-39113743

RESUMO

Panax notoginseng and Panax quinquefolium are important economic plants that utilize dried roots for medicinal and food dual purposes; there is still insufficient research of their stems and leaves, which also contain triterpenoid saponins. The extraction process was developed with a total saponin content of 12.30 ± 0.34% and 12.19 ± 0.64% for P. notoginseng leaves (PNL) and P. quinquefolium leaves (PQL) extracts, respectively. PNL and PQL saponin extracts showed good antioxidant, antihypertensive, hypoglycemic, and anti-inflammatory properties in vitro and RAW264.7 cells. A total of 699 metabolites were identified in PNL and PQL saponin extracts, with the majority being triterpenoid saponins, flavonoids and amino acids. Fourteen ginsenosides, 18 flavonoids or alkaloids, and 16 amino acids were enriched in both saponin extracts. Overall, the utilization of saponins from medicinal plants PNL and PQL has been developed to facilitate systematic research in the functional food and natural product industries.

2.
Mol Biol Rep ; 40(8): 4691-9, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23657595

RESUMO

The paleoherb species Asarum caudigerum (Aristolochiaceae) is important for research into the origin and evolution of angiosperm flowers due to its basal position in the angiosperm phylogeny. In this study, four MADS-box-containing transcripts were isolated from A. caudigerum by rapid amplification of cDNA ends (RACE). Sequence comparisons and phylogenetic analyses indicated that they possess high homology to AP3 subfamily genes, which have been shown previously to be involved in petal and stamen development in eudicots. Reverse-transcription quantitative PCR (RT-qPCR) and in situ hybridization analyses showed AcAP3-A expression mainly in the second whorl (stamens) and AcAP3-B expression in whorls 1 and 3 (perianth and carpels). Compared with eudicot AP3 homologs, premature translation termination codons were caused by an insertion in the K1 domain of AcAP3-C, and by a deletion in the 7th exon of AcAP3-D. Sequence analyses suggested that the A. caudigerum AP3 lineage had undergone gene duplication and subfunctionalization, diverging in expression patterns during perianth, stamen, and carpel development. Based on comparative genomic and phylogenetic analyses, we concluded that subfunctionalization has likely contributed to the persistence of two functional AP3 paralogs, that two other copies may have become pseudogenes, and that these AP3 duplication and subfunctionalization events may have contributed to the evolution of the unusual floral morphology of A. caudigerum.


Assuntos
Asarum/genética , Flores/metabolismo , Duplicação Gênica/genética , Regulação da Expressão Gênica de Plantas/genética , Proteínas de Domínio MADS/genética , Filogenia , Asarum/metabolismo , Sequência de Bases , Análise por Conglomerados , Códon de Terminação/genética , Primers do DNA/genética , Flores/genética , Genômica/métodos , Hibridização In Situ , Funções Verossimilhança , Modelos Genéticos , Dados de Sequência Molecular , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA
3.
Front Nutr ; 9: 1058639, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36570153

RESUMO

Introduction: Radix Notoginseng, one of the most famous Chinese traditional medicines, is the dried root of Panax notoginseng (Araliaceae). Stems and leaves of P. notoginseng (SLPN) are rich in secondary metabolites and nutrients, and authorized as a food resource, however, its utilization needs further research. Methods: A SLPN-instant beverage was manufactured from SLPN through optimization by response surface design with 21-fold of 48.50% ethanol for 39 h, and this extraction was repeated twice; the extraction solution was concentrated to 1/3 volume using a vacuum rotatory evaporator at 45°C, and then spray dried at 110°C. Nutritional components including 14 amino acids, ten mineral elements, 15 vitamins were detected in the SLPN-instant beverage; forty-three triterpenoid saponins, e.g., ginsenoside La, ginsenoside Rb3, notoginsenoside R1, and two flavonoid glycosides, as well as dencichine were identified by UPLC-MS. Results: The extraction rate of SLPN-instant beverage was 37.89 ± 0.02%. The majority nutrients were Gly (2.10 ± 0.63 mg/g), His (1.23 ± 0.07 mg/g), α-VE (18.89 ± 1.87 µg/g), ß-VE (17.53 ± 1.98 µg/g), potassium (49.26 ± 2.70 mg/g), calcium (6.73 ± 0.27 mg/g). The total saponin of the SLPN-instant beverage was 403.05 ± 34.98 mg/g, majority was notoginsenoside Fd and with contents of 227 ± 2.02 mg/g. In addition, catechin and γ-aminobutyric acid were detected with levels of 24.57 ± 0.21 mg/g and 7.50 ± 1.85 mg/g, respectively. The SLPN-instant beverage showed good antioxidant activities with half maximal inhibitory concentration (IC50) for scavenging hydroxyl (OH-) radicals, superoxide anion (O2-) radicals, 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate) (ABTS+) radicals were 0.1954, 0.2314, 0.4083, and 0.3874 mg/mL, respectively. Conclusion: We optimized an analytical method for in depth analysis of the newly authorized food resource SLPN. Together, an instant beverage with antioxidant activity, rich in nutrients and secondary metabolites, was manufactured from SLPN, which may improve the utilization of SLPN.

4.
PLoS One ; 16(9): e0255679, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34473732

RESUMO

Saururus chinensis is a core member of Saururaceae, an ancient, perianthless (lacking petals or sepals) family of the magnoliids in the Mesangiospermae, which is important for understanding the origin and evolution of early flowers due to its unusual floral composition and petaloid bracts. To compare their transcriptomes, RNA-seq abundance analysis identified 43,463 genes that were found to be differentially expressed in S. chinensis bracts. Of these, 5,797 showed significant differential expression, of which 1,770 were up-regulated and 4,027 down-regulated in green compared to white bracts. The expression profiles were also compared using cDNA microarrays, which identified 166 additional differentially expressed genes. Subsequently, qRT-PCR was used to verify and extend the cDNA microarray results, showing that the A and B class MADS-box genes were up-regulated in the white bracts. Phylogenetic analysis was performed on putative S. chinensis A and B-class of MADS-box genes to infer evolutionary relationships within the A and B-class of MADS-box gene family. In addition, nature selection and protein interactions of B class MADS-box proteins were inferred that B-class genes free from evolutionary pressures. The results indicate that petaloid bracts display anatomical and gene expression features normally associated with petals, as found in petaloid bracts of other species, and support an evolutionarily conserved developmental program for petaloid bracts.


Assuntos
Flores/crescimento & desenvolvimento , Proteínas de Domínio MADS/genética , Saururaceae/crescimento & desenvolvimento , Flores/genética , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Filogenia , Proteínas de Plantas , Saururaceae/genética , Saururaceae/metabolismo , Transcriptoma
5.
Planta ; 231(2): 265-76, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19904556

RESUMO

Asarum caudigerum (Aristolochiaceae) is a paleoherb species that is important for research in origin and evolution of angiosperm flowers due to its basal position in the angiosperm phylogeny. In this study, a subtracted floral cDNA library from floral buds of A. caudigerum was constructed and cDNA arrays by suppression subtractive hybridization were generated. cDNAs of floral buds at different stages before flower opening and of leaves at the seedling stage were used. The macroarray analyses of expression profiles of isolated floral genes showed that 157 genes out of the 612 unique ESTs tested revealed higher transcript abundance in the floral buds and uppermost leaves. Among them, 78 genes were determined to be differentially expressed in the perianth, 62 in the stamens, and 100 genes in the carpels. Quantitative real-time PCR of selected genes validated the macroarray results. Remarkably, APETALA3 (AP3) B-class genes isolated from A. caudigerum were upregulated in the perianth, stamens and carpels, implying that the expression domain of B-class genes in this basal angiosperm was broader than those in their eudicot counterparts.


Assuntos
Asarum/genética , Evolução Biológica , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Proteínas de Domínio MADS/genética , Proteínas de Plantas/genética , Sequência de Aminoácidos , Asarum/citologia , Asarum/crescimento & desenvolvimento , Asarum/ultraestrutura , Sequência Conservada , Flores/citologia , Flores/genética , Flores/crescimento & desenvolvimento , Flores/ultraestrutura , Hibridização In Situ , Proteínas de Domínio MADS/química , Proteínas de Domínio MADS/metabolismo , Modelos Genéticos , Dados de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Filogenia , Folhas de Planta/genética , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reprodutibilidade dos Testes , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Alinhamento de Sequência , Homologia de Sequência do Ácido Nucleico , Regulação para Cima/genética
6.
PLoS One ; 8(1): e53019, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23382831

RESUMO

Saururus chinensis is a core member of Saururaceae, a perianthless (lacking petals or sepals) family. Due to its basal phylogenetic position and unusual floral composition, study of this plant family is important for understanding the origin and evolution of perianthless flowers and petaloid bracts among angiosperm species. To isolate genes involved in S. chinensis flower development, subtracted floral cDNA libraries were constructed by using suppression subtractive hybridization (SSH) on transcripts isolated from developing inflorescences and seedling leaves. The subtracted cDNA libraries contained a total of 1,141 ESTs and were used to create cDNA microarrays to analyze transcript profiles of developing inflorescence tissues. Subsequently, qRT-PCR analyses of eight MADS-box transcription factors and in situ hybridizations of two B-class MADS-box transcription factors were performed to verify and extend the cDNA microarray results. Finally, putative phylogenetic relationships within the B-class MADS-box gene family were determined using the discovered S. chinensis B-class genes to compare K-domain sequences with B genes from other basal angiosperms. Two hundred seventy-seven of the 1,141 genes were found to be expressed differentially between S. chinensis inflorescence tissues and seedling leaves, 176 of which were grouped into at least one functional category, including transcription (14.75%), energy (12.59%), metabolism (9.12%), protein-related function (8.99%), and cellular transport (5.76%). qRT-PCR and in situ hybridization of selected MADS-box genes supported our microarray data. Phylogenetic analysis indicated that a total of six B-class MADS-box genes were isolated from S. chinensis. The differential regulation of S. chinensis B-class MADS-box transcription factors likely plays a role during the development of subtending bracts and perianthless flowers. This study contributes to our understanding of inflorescence development in Saururus, and represents an initial step toward understanding the formation of petaloid bracts in this species.


Assuntos
Flores , Proteínas de Domínio MADS/genética , Magnoliopsida/genética , Folhas de Planta/genética , Evolução Biológica , Etiquetas de Sequências Expressas , Flores/genética , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Biblioteca Gênica , Hibridização In Situ , Filogenia , Folhas de Planta/crescimento & desenvolvimento , Saururaceae/genética , Saururaceae/crescimento & desenvolvimento
7.
Genomics ; 90(1): 121-31, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17498921

RESUMO

Foxtail millet is a gramineous crop with low water requirement. Despite its high water use efficiency, less attention has been paid to the molecular genetics of foxtail millet. This article reports the construction of subtracted cDNA libraries from foxtail millet seedlings under dehydration stress and the expression profile analysis of 1947 UniESTs from the subtracted cDNA libraries by a cDNA microarray. The results showed that 95 and 57 ESTs were upregulated by dehydration stress, respectively, in roots and shoots of seedlings and that 10 and 27 ESTs were downregulated, respectively, in roots and shoots. The expression profile analysis showed that genes induced in foxtail millet roots were different from those in shoots during dehydration stress and that the early response to dehydration stress in foxtail millet roots was the activation of the glycolysis metabolism. Moreover, protein degradation pathway may also play a pivotal role in drought-tolerant responses of foxtail millet. Finally, Northern blot analysis validated well the cDNA microarray data.


Assuntos
Desidratação/genética , Etiquetas de Sequências Expressas , Biblioteca Gênica , Setaria (Planta)/genética , DNA Complementar/genética , Glicólise , Dados de Sequência Molecular , Doenças das Plantas/genética
8.
Ann Bot ; 98(1): 157-63, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16675604

RESUMO

BACKGROUND AND AIMS: Asarum caudigerum (Aristolochiaceae) is an important species of paleoherb in relation to understanding the origin and evolution of angiosperm flowers, due to its basal position in the angiosperms. The aim of this study was to isolate floral-related genes from A. caudigerum, and to infer evolutionary relationships among florally expression-related genes, to further illustrate the origin and diversification of flowers in angiosperms. METHODS: A subtracted floral cDNA library was constructed from floral buds using suppression subtractive hybridization (SSH). The cDNA of floral buds and leaves at the seedling stage were used as a tester and a driver, respectively. To further identify the function of putative MADS-box transcription factors, phylogenetic trees were reconstructed in order to infer evolutionary relationships within the MADS-box gene family. KEY RESULTS: In the forward-subtracted floral cDNA library, 1920 clones were randomly sequenced, from which 567 unique expressed sequence tags (ESTs) were obtained. Among them, 127 genes failed to show significant similarity to any published sequences in GenBank and thus are putatively novel genes. CONCLUSIONS: Phylogenetic analysis indicated that a total of 29 MADS-box transcription factors were members of the APETALA3(AP3) subfamily, while nine others were putative MADS-box transcription factors that formed a cluster with MADS-box genes isolated from Amborella, the basal-most angiosperm, and those from the gymnosperms. This suggests that the origin of A. caudigerum is intermediate between the angiosperms and gymnosperms.


Assuntos
Asarum/genética , Etiquetas de Sequências Expressas , Flores/genética , Filogenia , Asarum/classificação , Evolução Molecular , Flores/classificação , Biblioteca Gênica , Proteínas de Domínio MADS/genética , Hibridização de Ácido Nucleico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA