Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Mater ; 17(5): 416-420, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29610487

RESUMO

The possibility of driving phase transitions in low-density condensates through the loss of phase coherence alone has far-reaching implications for the study of quantum phases of matter. This has inspired the development of tools to control and explore the collective properties of condensate phases via phase fluctuations. Electrically gated oxide interfaces1,2, ultracold Fermi atoms3,4 and cuprate superconductors5,6, which are characterized by an intrinsically small phase stiffness, are paradigmatic examples where these tools are having a dramatic impact. Here we use light pulses shorter than the internal thermalization time to drive and probe the phase fragility of the Bi2Sr2CaCu2O8+δ cuprate superconductor, completely melting the superconducting condensate without affecting the pairing strength. The resulting ultrafast dynamics of phase fluctuations and charge excitations are captured and disentangled by time-resolved photoemission spectroscopy. This work demonstrates the dominant role of phase coherence in the superconductor-to-normal state phase transition and offers a benchmark for non-equilibrium spectroscopic investigations of the cuprate phase diagram.

2.
Proc Natl Acad Sci U S A ; 112(38): 11795-9, 2015 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-26351697

RESUMO

Monolayer graphene exhibits many spectacular electronic properties, with superconductivity being arguably the most notable exception. It was theoretically proposed that superconductivity might be induced by enhancing the electron-phonon coupling through the decoration of graphene with an alkali adatom superlattice [Profeta G, Calandra M, Mauri F (2012) Nat Phys 8(2):131-134]. Although experiments have shown an adatom-induced enhancement of the electron-phonon coupling, superconductivity has never been observed. Using angle-resolved photoemission spectroscopy (ARPES), we show that lithium deposited on graphene at low temperature strongly modifies the phonon density of states, leading to an enhancement of the electron-phonon coupling of up to λ ≃ 0.58. On part of the graphene-derived π*-band Fermi surface, we then observe the opening of a Δ ≃ 0.9-meV temperature-dependent pairing gap. This result suggests for the first time, to our knowledge, that Li-decorated monolayer graphene is indeed superconducting, with Tc ≃ 5.9 K.

3.
Phys Rev Lett ; 112(7): 076802, 2014 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-24579623

RESUMO

We study the manipulation of the spin polarization of photoemitted electrons in Bi2Se3 by spin- and angle-resolved photoemission spectroscopy. General rules are established that enable controlling the photoelectron spin-polarization. We demonstrate the ± 100% reversal of a single component of the measured spin-polarization vector upon the rotation of light polarization, as well as full three-dimensional manipulation by varying experimental configuration and photon energy. While a material-specific density-functional theory analysis is needed for the quantitative description, a minimal yet fully generalized two-atomic-layer model qualitatively accounts for the spin response based on the interplay of optical selection rules, photoelectron interference, and topological surface-state complex structure. It follows that photoelectron spin-polarization control is generically achievable in systems with a layer-dependent, entangled spin-orbital texture.

4.
Rev Sci Instrum ; 95(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38517258

RESUMO

We present the development of a versatile apparatus for 6.2 eV laser-based time and angle-resolved photoemission spectroscopy with micrometer spatial resolution (time-resolved µ-ARPES). With a combination of tunable spatial resolution down to ∼11 µm, high energy resolution (∼11 meV), near-transform-limited temporal resolution (∼280 fs), and tunable 1.55 eV pump fluence up to 3 mJ/cm2, this time-resolved µ-ARPES system enables the measurement of ultrafast electron dynamics in exfoliated and inhomogeneous materials. We demonstrate the performance of our system by correlating the spectral broadening of the topological surface state of Bi2Se3 with the spatial dimension of the probe pulse, as well as resolving the spatial inhomogeneity contribution to the observed spectral broadening. Finally, after in situ exfoliation, we performed time-resolved µ-ARPES on a ∼30 µm flake of transition metal dichalcogenide WTe2, thus demonstrating the ability to access ultrafast electron dynamics with momentum resolution on micro-exfoliated materials.

5.
NPJ Quantum Mater ; 8(1): 60, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38666239

RESUMO

FeSe1-xSx remains one of the most enigmatic systems of Fe-based superconductors. While much is known about the orthorhombic parent compound, FeSe, the tetragonal samples, FeSe1-xSx with x > 0.17, remain relatively unexplored. Here, we provide an in-depth investigation of the electronic states of tetragonal FeSe0.81S0.19, using scanning tunneling microscopy and spectroscopy (STM/S) measurements, supported by angle-resolved photoemission spectroscopy (ARPES) and theoretical modeling. We analyze modulations of the local density of states (LDOS) near and away from Fe vacancy defects separately and identify quasiparticle interference (QPI) signals originating from multiple regions of the Brillouin zone, including the bands at the zone corners. We also observe that QPI signals coexist with a much stronger LDOS modulation for states near the Fermi level whose period is independent of energy. Our measurements further reveal that this strong pattern appears in the STS measurements as short range stripe patterns that are locally two-fold symmetric. Since these stripe patterns coexist with four-fold symmetric QPI around Fe-vacancies, the origin of their local two-fold symmetry must be distinct from that of nematic states in orthorhombic samples. We explore several aspects related to the stripes, such as the role of S and Fe-vacancy defects, and whether they can be explained by QPI. We consider the possibility that the observed stripe patterns may represent incipient charge order correlations, similar to those observed in the cuprates.

6.
Phys Rev Lett ; 109(4): 043003, 2012 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-23006083

RESUMO

We experimentally investigate the effect of quantum resonance in the rotational excitation of the simplest quantum rotor--a diatomic molecule. Using the techniques of high-resolution femtosecond pulse shaping and rotational state-resolved detection, we measure directly the amount of energy absorbed by molecules interacting with a periodic train of laser pulses, and study their dependence on the train period. We show that the energy transfer is significantly enhanced at quantum resonance, and use this effect to demonstrate selective rotational excitation of two nitrogen isotopologs, (14)N(2) and (15)N(2). Moreover, by tuning the period of the pulse train in the vicinity of a fractional quantum resonance, we achieve selective rotational excitation of para- and ortho-isomers of (15)N(2).

7.
Nat Commun ; 13(1): 3096, 2022 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-35654938

RESUMO

In spintronics, the two main approaches to actively control the electrons' spin involve static magnetic or electric fields. An alternative avenue relies on the use of optical fields to generate spin currents, which can bolster spin-device performance, allowing for faster and more efficient logic. To date, research has mainly focused on the optical injection of spin currents through the photogalvanic effect, and little is known about the direct optical control of the intrinsic spin-splitting. To explore the optical manipulation of a material's spin properties, we consider the Rashba effect. Using time- and angle-resolved photoemission spectroscopy (TR-ARPES), we demonstrate that an optical excitation can tune the Rashba-induced spin splitting of a two-dimensional electron gas at the surface of Bi2Se3. We establish that light-induced photovoltage and charge carrier redistribution - which in concert modulate the Rashba spin-orbit coupling strength on a sub-picosecond timescale - can offer an unprecedented platform for achieving optically-driven spin logic devices.

8.
Sci Adv ; 8(23): eabm5180, 2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35675409

RESUMO

Quantum materials are notoriously sensitive to their environments, where small perturbations can tip a system toward one of several competing ground states. Graphene hosts a rich assortment of such competing phases, including a bond density wave instability ("Kekulé distortion") that couples electrons at the K/K' valleys and breaks the lattice symmetry. Here, we report observations of a ubiquitous Kekulé distortion across multiple graphene systems. We show that extremely dilute concentrations of surface atoms (less than three adsorbed atoms every 1000 graphene unit cells) can self-assemble and trigger the onset of a global Kekulé density wave phase. Combining complementary momentum-sensitive angle-resolved photoemission spectroscopy (ARPES) and low-energy electron diffraction (LEED) measurements, we confirm the presence of this density wave phase and observe the opening of an energy gap. Our results reveal an unexpected sensitivity of the graphene lattice to dilute surface disorder and show that adsorbed atoms offer an attractive route toward designing novel phases in two-dimensional materials.

9.
Phys Rev Lett ; 107(24): 243004, 2011 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-22242996

RESUMO

Trains of ultrashort laser pulses separated by the time of rotational revival (typically, tens of picoseconds) have been exploited for creating ensembles of aligned molecules. In this work we introduce a chiral pulse train--a sequence of linearly polarized pulses with the polarization direction rotating from pulse to pulse by a controllable angle. The chirality of such a train, expressed through the period and direction of its polarization rotation, is used as a new control parameter for achieving selectivity and directionality of laser-induced rotational excitation. The method employs chiral trains with a large number of pulses separated on the time scale much shorter than the rotational revival (a few hundred femtosecond), enabling the use of conventional pulse shapers.

10.
Rev Sci Instrum ; 90(8): 083001, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31472611

RESUMO

With its direct correspondence to electronic structure, angle-resolved photoemission spectroscopy (ARPES) is a ubiquitous tool for the study of solids. When extended to the temporal domain, time-resolved (TR)-ARPES offers the potential to move beyond equilibrium properties, exploring both the unoccupied electronic structure as well as its dynamical response under ultrafast perturbation. Historically, ultrafast extreme ultraviolet sources employing high-order harmonic generation (HHG) have required compromises that make it challenging to achieve a high energy resolution-which is highly desirable for many TR-ARPES studies-while producing high photon energies and a high photon flux. We address this challenge by performing HHG inside a femtosecond enhancement cavity, realizing a practical source for TR-ARPES that achieves a flux of over 1011 photons/s delivered to the sample, operates over a range of 8-40 eV with a repetition rate of 60 MHz. This source enables TR-ARPES studies with a temporal and energy resolution of 190 fs and 22 meV, respectively. To characterize the system, we perform ARPES measurements of polycrystalline Au and MoTe2, as well as TR-ARPES studies on graphite.

11.
Sci Adv ; 5(11): eaaw5593, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31723598

RESUMO

Graphene is a powerful playground for studying a plethora of quantum phenomena. One of the remarkable properties of graphene arises when it is strained in particular geometries and the electrons behave as if they were under the influence of a magnetic field. Previously, these strain-induced pseudomagnetic fields have been explored on the nano- and micrometer-scale using scanning probe and transport measurements. Heteroepitaxial strain, in contrast, is a wafer-scale engineering method. Here, we show that pseudomagnetic fields can be generated in graphene through wafer-scale epitaxial growth. Shallow triangular nanoprisms in the SiC substrate generate strain-induced uniform fields of 41 T, enabling the observation of strain-induced Landau levels at room temperature, as detected by angle-resolved photoemission spectroscopy, and confirmed by model calculations and scanning tunneling microscopy measurements. Our work demonstrates the feasibility of exploiting strain-induced quantum phases in two-dimensional Dirac materials on a wafer-scale platform, opening the field to new applications.

12.
Science ; 366(6470): 1231-1236, 2019 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-31806810

RESUMO

Ultrafast spectroscopies have become an important tool for elucidating the microscopic description and dynamical properties of quantum materials. In particular, by tracking the dynamics of nonthermal electrons, a material's dominant scattering processes can be revealed. Here, we present a method for extracting the electron-phonon coupling strength in the time domain, using time- and angle-resolved photoemission spectroscopy (TR-ARPES). This method is demonstrated in graphite, where we investigate the dynamics of photoinjected electrons at the [Formula: see text] point, detecting quantized energy-loss processes that correspond to the emission of strongly coupled optical phonons. We show that the observed characteristic time scale for spectral weight transfer mediated by phonon-scattering processes allows for the direct quantitative extraction of electron-phonon matrix elements for specific modes.

14.
Phys Rev Lett ; 100(10): 103004, 2008 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-18352183

RESUMO

We propose and experimentally demonstrate the method of population transfer by piecewise adiabatic passage between two quantum states. Coherent excitation of a two-level system with a train of ultrashort laser pulses is shown to reproduce the effect of an adiabatic passage, conventionally achieved with a single frequency-chirped pulse. By properly adjusting the amplitudes and phases of the pulses in the excitation pulse train, we achieve complete and robust population transfer to the target state. The piecewise nature of the process suggests a possibility for the selective population transfer in complex quantum systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA