Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 21(4): 5014-24, 2013 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-23482034

RESUMO

Near-infrared Hong-Ou-Mandel quantum interference is observed in silicon nanophotonic directional couplers with raw visibilities on-chip at 90.5%. Spectrally-bright 1557-nm two-photon states are generated in a periodically-poled KTiOPO4 waveguide chip, serving as the entangled photon source and pumped with a self-injection locked laser, for the photon statistical measurements. Efficient four-port coupling in the communications C-band and in the high-index-contrast silicon photonics platform is demonstrated, with matching theoretical predictions of the quantum interference visibility. Constituents for the residual quantum visibility imperfection are examined, supported with theoretical analysis of the sequentially-triggered multipair biphoton, towards scalable high-bitrate quantum information processing and communications. The on-chip HOM interference is useful towards scalable high-bitrate quantum information processing and communications.


Assuntos
Refratometria/instrumentação , Silício/química , Ressonância de Plasmônio de Superfície/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Raios Infravermelhos , Luz , Teste de Materiais , Fótons , Espalhamento de Radiação
2.
Appl Opt ; 52(20): 4813-9, 2013 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-23852193

RESUMO

Optical soliton pulses offer many applications within optical communication systems, but by definition a soliton is only subjected to second-order anomalous group-velocity-dispersion; an understanding of higher-order dispersion is necessary for practical implementation of soliton pulses. A numerical model of a waveguide was developed using the nonlinear Schrödinger equation, with parameters set to ensure the input pulse energy would be equal to the fundamental soliton energy. Higher-order group-velocity-dispersion was gradually increased, for various temporal widths and waveguide dispersions. A minimum pulse duration of 100 fs was determined to be necessary for fundamental soliton pulse propagation in practical photonic crystal waveguides.

3.
Nano Lett ; 12(5): 2299-305, 2012 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-22471420

RESUMO

We demonstrate a new optomechanical device system which allows highly efficient transduction of femtogram nanobeam resonators. Doubly clamped nanomechanical resonators with mass as small as 25 fg are embedded in a high-finesse two-dimensional photonic crystal nanocavity. Optical transduction of the fundamental flexural mode around 1 GHz was performed at room temperature and ambient conditions, with an observed displacement sensitivity of 0.94 fm/Hz(1/2). Comparison of measurements from symmetric and asymmetric double-beam devices reveals hybridization of the mechanical modes where the structural symmetry is shown to be the key to obtain a high mechanical quality factor. Our novel configuration opens the way for a new category of "NEMS-in-cavity" devices based on optomechanical interaction at the nanoscale.

4.
Opt Express ; 20(24): 26486-98, 2012 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-23187504

RESUMO

We present the design and experimental comparison of femtogram L3-nanobeam photonic crystal cavities for optomechanical studies. Two symmetric nanobeams are created by placing three air slots in a silicon photonic crystal slab where three holes are removed. The nanobeams' mechanical frequencies are higher than 600 MHz with ultrasmall effective modal masses at approximately 20 femtograms. The optical quality factor (Q) is optimized up to 53,000. The optical and mechanical modes are dispersively coupled with a vacuum optomechanical coupling rate g(0)/2π exceeding 200 kHz. The anchor-loss-limited mechanical Q of the differential beam mode is evaluated to be greater than 10,000 for structures with ideally symmetric beams. The influence of variations on the air slot width and position is also investigated. The devices can be used as ultrasensitive sensors of mass, force, and displacement.


Assuntos
Desenho Assistido por Computador , Nanotecnologia/instrumentação , Óptica e Fotônica/instrumentação , Fótons , Silício , Cristalização , Desenho de Equipamento , Humanos
5.
Opt Express ; 19(13): 12480-9, 2011 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-21716487

RESUMO

We examine the cavity resonance tuning of high-Q silicon photonic crystal heterostructures by localized laser-assisted thermal oxidation using a 532 nm continuous wave laser focused to a 2.5 µm radius spot-size. The total shift is consistent with the parabolic rate law. A tuning range of up to 8.7 nm is achieved with ∼ 30 mW laser powers. Over this tuning range, the cavity Qs decreases from 3.2×10(5) to 1.2×10(5). Numerical simulations model the temperature distributions in the silicon photonic crystal membrane and the cavity resonance shift from oxidation.


Assuntos
Cristalização/métodos , Nanotecnologia/métodos , Óptica e Fotônica/métodos , Dióxido de Silício/química , Silício/química , Cristalização/instrumentação , Análise de Elementos Finitos , Lasers , Microscopia Eletrônica de Varredura , Modelos Teóricos , Nanoestruturas , Nanotecnologia/instrumentação , Óptica e Fotônica/instrumentação , Oxirredução , Temperatura , Água/química
6.
Opt Lett ; 36(8): 1431-3, 2011 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-21499380

RESUMO

A high-efficiency, ultrabroadband dielectric internal reflection grating with rhombus-shaped grooves is designed by a rigorous coupled-wave analysis, and an effective method for predicting spectral bandwidths of gratings from their efficiency maps is presented. The grating can be fabricated from a single dielectric material, and its reflection diffraction efficiency of the -1st order can reach more than 0.99. More importantly, an ultrabroadband top-hat diffraction spectrum with efficiency exceeding 0.98 over 170 nm wavelength wide is achieved, which makes the gratings suitable for applications associated with broadband illumination, such as ultrashort pulses.

7.
Opt Express ; 18(23): 23844-56, 2010 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-21164729

RESUMO

We describe the strong optomechanical dynamical interactions in ultrahigh-Q/V slot-type photonic crystal cavities. The dispersive coupling is based on mode-gap photonic crystal cavities with light localization in an air mode with 0.02(λ/n)3 modal volumes while preserving optical cavity Q up to 5×10(6). The mechanical mode is modeled to have fundamental resonance Ωm/2π of 460 MHz and a quality factor Qm estimated at 12,000. For this slot-type optomechanical cavity, the dispersive coupling gom is numerically computed at up to 940 GHz/nm (Lom of 202 nm) for the fundamental optomechanical mode. Dynamical parametric oscillations for both cooling and amplification, in the resolved and unresolved sideband limit, are examined numerically, along with the displacement spectral density and cooling rates for various operating parameters.

8.
Opt Express ; 18(11): 11969-78, 2010 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-20589059

RESUMO

The application of rectangular-groove fused-silica gratings as polarizing beam splitters (PBSs) under Littrow incidence is investigated. Based on the simple modal method, two different cases of PBS gratings are designed. The achieved solutions, which are independent on the incident wavelength, are verified by the rigorous coupled-wave analysis and expressed in several polynomials instead of listing one or two numerical solutions. More importantly, on the basis of the designed PBS gratings, a porous fused silica antireflective film is introduced to improve their performances. Theoretical results indicate that such modified rectangular-groove PBS gratings exhibit higher diffraction efficiencies (over 0.99) and larger spectral bandwidths.


Assuntos
Refratometria/instrumentação , Dióxido de Silício/química , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento
9.
Appl Opt ; 49(24): 4506-13, 2010 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-20733620

RESUMO

Double femtosecond laser pulses are usually generated by using a Michelson structure. We propose a novel and simple device by using two high-density transmissive gratings for generation of double pulses and conversion between single and double laser pulses by shifting one of the two gratings by a quarter period. The apparatus has the advantages of compact volume, simple structure, and convenience in manipulation. Experimental outputs of the double laser pulses are well verified in experiment, which can be properly explained by numerical simulation with the rigorous coupled-wave theory. This structure provides an interesting approach for generation of double pulses and conversion between single and double laser pulses for practical applications of the femtosecond laser.

10.
Laser Photon Rev ; 14(5)2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-34712367

RESUMO

Modern navigation systems integrate the global positioning system (GPS) with an inertial navigation system (INS), which complement each other for correct attitude and velocity determination. The core of the INS integrates accelerometers and gyroscopes used to measure forces and angular rate in the vehicular inertial reference frame. With the help of gyroscopes and by integrating the acceleration to compute velocity and distance, precision and compact accelerometers with sufficient accuracy can provide small-error location determination. Solid-state implementations, through coherent readout, can provide a platform for high performance acceleration detection. In contrast to prior accelerometers using piezoelectric or capacitive readout techniques, optical readout provides narrow-linewidth high-sensitivity laser detection along with low-noise resonant optomechanical transduction near the thermodynamical limits. Here an optomechanical inertial sensor with an 8.2 µg Hz-1/2 velocity random walk (VRW) at an acquisition rate of 100 Hz and 50.9 µg bias instability is demonstrated, suitable for applications, such as, inertial navigation, inclination sensing, platform stabilization, and/or wearable device motion detection. Driven into optomechanical sustained-oscillation, the slot photonic crystal cavity provides radio-frequency readout of the optically-driven transduction with an enhanced 625 µg Hz-1 sensitivity. Measuring the optomechanically-stiffened oscillation shift, instead of the optical transmission shift, provides a 220× VRW enhancement over pre-oscillation mode detection.

11.
Appl Opt ; 48(14): 2697-701, 2009 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-19424391

RESUMO

We present the design and fabrication of a novel dual-function subwavelength fused-silica grating that can be used as a polarization-selective beam splitter. For TM polarization, the grating can be used as a two-port beam splitter at a wavelength of 1550 nm with a total diffraction efficiency of 98%. For TE polarization, the grating can function as a high-efficiency grating, and the diffraction efficiency of the -1st order is 95% under Littrow mounting. This dual-function grating design is based on a simplified modal method. By using the rigorous coupled-wave analysis, the optimum grating parameters can be determined. Holographic recording technology and inductively coupled plasma etching are used to manufacture the fused-silica grating. Experimental results are in agreement with the theoretical values.

12.
Appl Opt ; 48(29): 5636-41, 2009 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-19823249

RESUMO

We design and manufacture a fused-silica polarization-independent two-port beam splitter grating. The physical mechanism of this deeply etched grating can be shown clearly by using the simplified modal method with consideration of corresponding accumulated phase difference of two excited propagating grating modes, which illustrates that the binary-phase fused-silica grating structure depends little on the incident wavelength, but mainly on the ratio of groove depth to grating period and the ratio of incident wavelength to grating period. These analytic results would also be very helpful for wavelength bandwidth analysis. The exact grating profile is optimized by using the rigorous coupled-wave analysis. Holographic recording technology and inductively coupled plasma etching are used to manufacture the fused-silica grating. Experimental results agree well with the theoretical values.

13.
Appl Opt ; 47(22): 4004-8, 2008 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-18670555

RESUMO

The usual beam splitter of multilayer-coated film with a wideband spectrum is not easy to achieve. We describe the realization of a wideband transmission two-port beam splitter based on a binary fused-silica phase grating. To achieve high efficiency and equality in the diffracted 0th and -1st orders, the grating profile parameters are optimized using rigorous coupled-wave analysis at a wavelength of 1550 nm. Holographic recording and the inductively coupled plasma dry etching technique are used to fabricate the fused-silica beam splitter grating. The measured efficiency of (45% x 2) = 90% diffracted into the both orders can be obtained with the fabricated grating under Littrow mounting. The physical mechanism of such a wideband two-port beam splitter grating can be well explained by the modal method based on two-beam interference of the modes excited by the incident wave. With the high damage threshold, low coefficient of thermal expansion, and wideband high efficiency, the presented beam splitter etched in fused silica should be a useful optical element for a variety of practical applications.

14.
Appl Opt ; 47(35): 6638-43, 2008 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-19079474

RESUMO

A deep-etched polarization-independent binary fused-silica phase grating as a three-port beam splitter is designed and manufactured. The grating profile is optimized by use of the rigorous coupled-wave analysis around the 785 nm wavelength. The physical explanation of the grating is illustrated by the modal method. Simple analytical expressions of the diffraction efficiencies and modal guidelines for the three-port beam splitter grating design are given. Holographic recording technology and inductively coupled plasma etching are used to manufacture the fused-silica grating. Experimental results are in good agreement with the theoretical values.

15.
Sci Rep ; 4: 6842, 2014 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-25354711

RESUMO

High-quality frequency references are the cornerstones in position, navigation and timing applications of both scientific and commercial domains. Optomechanical oscillators, with direct coupling to continuous-wave light and non-material-limited f × Q product, are long regarded as a potential platform for frequency reference in radio-frequency-photonic architectures. However, one major challenge is the compatibility with standard CMOS fabrication processes while maintaining optomechanical high quality performance. Here we demonstrate the monolithic integration of photonic crystal optomechanical oscillators and on-chip high speed Ge detectors based on the silicon CMOS platform. With the generation of both high harmonics (up to 59 th order) and subharmonics (down to 1/4), our chipset provides multiple frequency tones for applications in both frequency multipliers and dividers. The phase noise is measured down to -125 dBc/Hz at 10 kHz offset at ~400 µW dropped-in powers, one of the lowest noise optomechanical oscillators to date and in room-temperature and atmospheric non-vacuum operating conditions. These characteristics enable optomechanical oscillators as a frequency reference platform for radio-frequency-photonic information processing.

16.
J Opt Soc Am A Opt Image Sci Vis ; 25(5): 1075-83, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18451913

RESUMO

Beam splitting of low-contrast rectangular gratings under second Bragg angle incidence is studied. The grating period is between lambda and 2lambda. The diffraction behaviors of the three transmitted propagating orders are illustrated by analyzing the first three propagating grating modes. From a simplified modal approach, the design conditions of gratings as a high-efficiency element with most of its energy concentrated in the -2nd transmitted order (~90%) and of gratings as a 1 x 2 beam splitter with a total efficiency over 90% are derived. The grating parameters for achieving exactly the splitting pattern by use of rigorous coupled-wave analysis verified the design method. A 1 x 3 beam splitter is also demonstrated. Moreover, the polarization-dependent diffraction behaviors are investigated, which suggest the possibility of designing polarization-selective elements under such a configuration. The proposed concept of using the second Bragg angle should be helpful for developing new grating-based devices.

17.
Opt Lett ; 33(14): 1554-6, 2008 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-18628795

RESUMO

We investigated the use of a deep-etched fused-silica grating with triangular-shaped grooves as a highly efficient polarizing beam splitter (PBS). A triangular-groove PBS grating is designed at a wavelength of 1550 nm to be used in optical communication. When it is illuminated in Littrow mounting, the transmitted TE- and TM-polarized waves are mainly diffracted in the minus-first and zeroth orders, respectively. The design condition is based on the average differences of the grating mode indices, which is verified by using rigorous coupled-wave analysis. The designed PBS grating is highly efficient over the C+L band range for both TE and TM polarizations (>97.68%). It is shown that such a triangular-groove PBS grating can exhibit a higher diffraction efficiency, a larger extinction ratio, and less reflection loss than the binary-phase fused-silica PBS grating.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA