Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 757
Filtrar
1.
Plant Cell ; 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39167833

RESUMO

Autoluminescent plants have been genetically modified to express the fungal bioluminescence pathway (FBP). However, a bottleneck in precursor production has limited the brightness of these luminescent plants. Here, we demonstrate the effectiveness of utilizing a computational model to guide a multiplex five-gene-silencing strategy by an artificial microRNA array to enhance caffeic acid and hispidin levels in plants. By combining loss-of-function-directed metabolic flux with a tyrosine-derived caffeic acid pathway, we achieved substantially enhanced bioluminescence levels. We successfully generated eFBP2 plants that emit considerably brighter bioluminescence for naked-eye reading by integrating all validated DNA modules. Our analysis revealed that the luminous energy conversion efficiency of the eFBP2 plants is currently very low, suggesting that luminescence intensity can be improved in future iterations. These findings highlight the potential to enhance plant luminescence through the integration of biological and information technologies.

2.
Nat Chem Biol ; 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39232187

RESUMO

Protein phosphorylation is a pivotal post-translational modification modulating various cellular processes. In Gram-positive bacteria, the protein arginine kinase McsB, along with its activator McsA, has a key role in labeling misfolded and damaged proteins during stress. However, the activation mechanism of McsB by McsA remains elusive. Here we report the cryo-electron microscopy structure of a tetrameric McsA-McsB complex at 3.41 Å resolution. Biochemical analysis indicates that the homotetrameric assembly is essential for McsB's kinase activity. The conserved C-terminal zinc finger of McsA interacts with an extended loop in McsB, optimally orienting a critical catalytic cysteine residue. In addition, McsA binding decreases the CtsR's affinity for McsB, enhancing McsB's kinase activity and accelerating the turnover rate of CtsR phosphorylation. Furthermore, McsA binding also increases McsB's thermostability, ensuring its activity under heat stress. These findings elucidate the structural basis and activation mechanism of McsB in stress response.

3.
J Biol Chem ; 300(3): 105765, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38367667

RESUMO

CLEC12A, a member of the C-type lectin receptor family involved in immune homeostasis, recognizes MSU crystals released from dying cells. However, the molecular mechanism underlying the CLEC12A-mediated recognition of MSU crystals remains unclear. Herein, we reported the crystal structure of the human CLEC12A-C-type lectin-like domain (CTLD) and identified a unique "basic patch" site on CLEC12A-CTLD that is necessary for the binding of MSU crystals. Meanwhile, we determined the interaction strength between CLEC12A-CTLD and MSU crystals using single-molecule force spectroscopy. Furthermore, we found that CLEC12A clusters at the cell membrane and seems to serve as an internalizing receptor of MSU crystals. Altogether, these findings provide mechanistic insights for understanding the molecular mechanisms underlying the interplay between CLEC12A and MSU crystals.


Assuntos
Lectinas Tipo C , Receptores Mitogênicos , Ácido Úrico , Humanos , Gota/metabolismo , Lectinas Tipo C/química , Lectinas Tipo C/imunologia , Receptores Mitogênicos/química , Receptores Mitogênicos/imunologia , Ácido Úrico/química , Ácido Úrico/imunologia , Domínios Proteicos , Cristalografia por Raios X , Imagem Individual de Molécula , Linhagem Celular
4.
J Proteome Res ; 23(8): 3659-3673, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39022804

RESUMO

MicroRNAs are short, noncoding RNA molecules that exert pivotal roles in cancer development and progression by modulating various target genes. There is growing evidence that miR-138-5p is significantly involved in cervical cancer (CC). However, its precise molecular mechanism has yet to be fully understood. In the current investigation, a quantitative proteomics approach was utilized to detect possible miR-138-5p targets in HeLa cells systematically. In total, 364 proteins were downregulated, and 150 were upregulated after miR-138-5p overexpression. Bioinformatic analysis of these differentially expressed proteins (DEPs) revealed significant enrichment in several cancer-related pathways. Zinc finger protein 385A (ZNF385A) was determined as a novel direct target of miR-138-5p and discovered to facilitate the proliferation, migration, and cell cycle progression of HeLa cells. SFN and Fas cell surface death receptor(FAS) were then identified as functional downstream effectors of ZNF385A and miR-138-5p. Moreover, a tumor xenograft experiment was conducted to validate the association of miR-138-5p-ZNF385A-SFN/FAS axis with the development of CC in vivo. Our findings have collectively established a catalog of proteins mediated by miR-138-5p and have provided an in-depth comprehension of the molecular mechanisms responsible for the inhibitory effect of miR-138-5p on CC. The miR-138-5p-ZNF385A-SFN/FAS axis could also be beneficial to the identification of new therapeutic targets.


Assuntos
Proliferação de Células , Regulação Neoplásica da Expressão Gênica , MicroRNAs , Proteômica , Neoplasias do Colo do Útero , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/patologia , Feminino , Células HeLa , Proteômica/métodos , Proliferação de Células/genética , Animais , Movimento Celular/genética , Camundongos
5.
J Am Chem Soc ; 146(19): 13126-13132, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38696488

RESUMO

Cisplatin, a cornerstone in cancer chemotherapy, is known for its DNA-binding capacity and forms lesions that lead to cancer cell death. However, the repair of these lesions compromises cisplatin's effectiveness. This study investigates how phosphorylation of HMGB1, a nuclear protein, modifies its binding to cisplatin-modified DNA (CP-DNA) and thus protects it from repair. Despite numerous methods for detecting protein-DNA interactions, quantitative approaches for understanding their molecular mechanism remain limited. Here, we applied click chemistry-based single-molecule force spectroscopy, achieving high-precision quantification of the interaction between phosphorylated HMGB1 and CP-DNA. This method utilizes a synergy of click chemistry and enzymatic ligation for precise DNA-protein immobilization and interaction in the system. Our results revealed that HMGB1 binds to CP-DNA with a significantly high rupture force of ∼130 pN, stronger than most natural DNA-protein interactions and varying across different DNA sequences. Moreover, Ser14 is identified as the key phosphorylation site, enhancing the interaction's kinetic stability by 35-fold. This increase in stability is attributed to additional hydrogen bonding suggested by molecular dynamics (MD) simulations. Our findings not only reveal the important role of phosphorylated HMGB1 in potentially improving cisplatin's therapeutic efficacy but also provide a precise method for quantifying protein-DNA interactions.


Assuntos
Cisplatino , Química Click , DNA , Proteína HMGB1 , Simulação de Dinâmica Molecular , Proteína HMGB1/metabolismo , Proteína HMGB1/química , Cisplatino/química , Cisplatino/farmacologia , Cisplatino/metabolismo , Fosforilação , DNA/química , DNA/metabolismo , Humanos , Ligação Proteica , Antineoplásicos/química , Antineoplásicos/farmacologia
6.
J Am Chem Soc ; 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39300790

RESUMO

Water microdroplets possess unique interfacial properties that enable chemical reactions to occur spontaneously and increase the reaction rate by orders of magnitude. In this study, water containing styrene (SY) was cyclically sprayed into the air to form microdroplets with an average diameter of 6.7 µm. These microdroplets allowed SY to be oxidized into styrene oxide (SO) without catalysts. No oxidation products of SY were observed in the bulk solution under the same conditions, while in microdroplet reactions 4.2% conversion of SY with approximately 3.1 mM SO was detected. Compared with the traditional spraying microdroplet method, the oxidation product concentration was enhanced by 1000 times. Experiments proved that an aerobic environment boosts SY oxidation, leading to a proposed dual-path hydrogen peroxide (H2O2) oxidation mechanism at the droplet interface. This was confirmed by density functional theory calculations (DFT). Furthermore, in the presence of additional ultrasound, the SY oxidation process initiated by water droplets can be further enhanced, and 7.0% conversion of SY with approximately 5.2 mM SO was detected. The cyclic spraying method greatly enhanced the oxidation product concentration, showing the potential for large scale chemical production using microdroplets.

7.
Cancer Sci ; 115(1): 257-269, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37986654

RESUMO

With the essential role of lipid transporting signaling in cancer-related immunity, apolipoprotein L3 (APOL3), a member of the apolipoprotein L gene family, demonstrated significant modulation ability in immunity. However, the expression profile and critical role of APOL3 in colorectal cancer (CRC) remain unclear. This study aimed to investigate the prognostic significance of APOL3 expression and its biological predictive value in CRC. The study enrolled multiple cohorts, consisting of 911 tumor microarray specimens of CRC patients from Zhongshan Hospital, 412 transcriptional data from The Cancer Genome Atlas, and 30 single-cell RNA sequencing (scRNA-seq) from internal and external CRC patients. APOL3 mRNA expression was directly acquired from public datasets, and APOL3 protein expression was detected using immunohistochemistry. Finally, the associations of APOL3 expression with clinical outcomes, immune context, and genomic and ferroptotic features were analyzed. Low APOL3 expression predicted poor prognosis and inferior responsiveness to 5-fluorouracil-based adjuvant chemotherapy (ACT) and targeted therapy. APOL3 fosters an immune-active microenvironment characterized by the promotion of ferroptosis, downregulation of macrophages, and upregulation of CD8+ T cell infiltration. Moreover, the expression of APOL3 in CD8+ T cells is intrinsically linked to ferroptosis and immune activation in CRC. In summary, APOL3 serves as an independent prognosticator and predictive biomarker for immunogenic ferroptosis, ACT, and targeted therapy in CRC. Furthermore, the APOL3 signaling activator could be a novel agent alone or in combination with current therapeutic strategies for CRC.


Assuntos
Neoplasias Colorretais , Ferroptose , Humanos , Ferroptose/genética , Prognóstico , Transporte Biológico , Linfócitos T CD8-Positivos , Neoplasias Colorretais/genética , Microambiente Tumoral
8.
J Hepatol ; 80(5): 753-763, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38244845

RESUMO

BACKGROUND & AIMS: Ectopic liver regeneration in the spleen is a promising alternative to organ transplantation for treating liver failure. To accommodate transplanted liver cells, the splenic tissue must undergo structural changes to increase extracellular matrix content, demanding a safe and efficient approach for tissue remodelling. METHODS: We synthesised sulphated hyaluronic acid (sHA) with an affinity for the latent complex of transforming growth factor-ß (TGF-ß) and cross-linked it into a gel network (sHA-X) via click chemistry. We injected this glycan into the spleens of mice to induce splenic tissue remodelling via supraphysiological activation of endogenous TGF-ß. RESULTS: sHA-X efficiently bound to the abundant latent TGF-ß in the spleen. It provided the molecular force to liberate the active TGF-ß dimers from their latent complex, mimicking the 'bind-and-pull' mechanism required for physiological activation of TGF-ß and reshaping the splenic tissue to support liver cell growth. Hepatocytes transplanted into the remodelled spleen developed into liver tissue with sufficient volume to rescue animals with a metabolic liver disorder (Fah-/- transgenic model) or following 90% hepatectomy, with no adverse effects observed and no additional drugs required. CONCLUSION: Our findings highlight the efficacy and translational potential of using sHA-X to remodel a specific organ by mechanically activating one single cytokine, representing a novel strategy for the design of biomaterials-based therapies for organ regeneration. IMPACT AND IMPLICATIONS: Cell transplantation may provide a lifeline to millions of patients with end-stage liver diseases, but their severely damaged livers being unable to accommodate the transplanted cells is a crucial hurdle. Herein, we report an approach to restore liver functions in another organ - the spleen - by activating one single growth factor in situ. This approach, based on a chemically designed polysaccharide that can mechanically liberate the active transforming growth factor-ß to an unusually high level, promotes the function of abundant allogenic liver cells in the spleen, rescuing animals from lethal models of liver diseases and showing a high potential for clinical translation.


Assuntos
Hiperplasia Nodular Focal do Fígado , Hepatopatias , Humanos , Camundongos , Animais , Regeneração Hepática/fisiologia , Baço , Fator de Crescimento Transformador beta/metabolismo , Fígado/metabolismo , Hepatopatias/metabolismo , Fatores de Crescimento Transformadores/metabolismo , Fatores de Crescimento Transformadores/farmacologia , Fator de Crescimento Transformador beta1/metabolismo
9.
Lancet ; 401(10385): 1341-1360, 2023 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-36966780

RESUMO

BACKGROUND: The USA struggled in responding to the COVID-19 pandemic, but not all states struggled equally. Identifying the factors associated with cross-state variation in infection and mortality rates could help to improve responses to this and future pandemics. We sought to answer five key policy-relevant questions regarding the following: 1) what roles social, economic, and racial inequities had in interstate variation in COVID-19 outcomes; 2) whether states with greater health-care and public health capacity had better outcomes; 3) how politics influenced the results; 4) whether states that imposed more policy mandates and sustained them longer had better outcomes; and 5) whether there were trade-offs between a state having fewer cumulative SARS-CoV-2 infections and total COVID-19 deaths and its economic and educational outcomes. METHODS: Data disaggregated by US state were extracted from public databases, including COVID-19 infection and mortality estimates from the Institute for Health Metrics and Evaluation's (IHME) COVID-19 database; Bureau of Economic Analysis data on state gross domestic product (GDP); Federal Reserve economic data on employment rates; National Center for Education Statistics data on student standardised test scores; and US Census Bureau data on race and ethnicity by state. We standardised infection rates for population density and death rates for age and the prevalence of major comorbidities to facilitate comparison of states' successes in mitigating the effects of COVID-19. We regressed these health outcomes on prepandemic state characteristics (such as educational attainment and health spending per capita), policies adopted by states during the pandemic (such as mask mandates and business closures), and population-level behavioural responses (such as vaccine coverage and mobility). We explored potential mechanisms connecting state-level factors to individual-level behaviours using linear regression. We quantified reductions in state GDP, employment, and student test scores during the pandemic to identify policy and behavioural responses associated with these outcomes and to assess trade-offs between these outcomes and COVID-19 outcomes. Significance was defined as p<0·05. FINDINGS: Standardised cumulative COVID-19 death rates for the period from Jan 1, 2020, to July 31, 2022 varied across the USA (national rate 372 deaths per 100 000 population [95% uncertainty interval [UI] 364-379]), with the lowest standardised rates in Hawaii (147 deaths per 100 000 [127-196]) and New Hampshire (215 per 100 000 [183-271]) and the highest in Arizona (581 per 100 000 [509-672]) and Washington, DC (526 per 100 000 [425-631]). A lower poverty rate, higher mean number of years of education, and a greater proportion of people expressing interpersonal trust were statistically associated with lower infection and death rates, and states where larger percentages of the population identify as Black (non-Hispanic) or Hispanic were associated with higher cumulative death rates. Access to quality health care (measured by the IHME's Healthcare Access and Quality Index) was associated with fewer total COVID-19 deaths and SARS-CoV-2 infections, but higher public health spending and more public health personnel per capita were not, at the state level. The political affiliation of the state governor was not associated with lower SARS-CoV-2 infection or COVID-19 death rates, but worse COVID-19 outcomes were associated with the proportion of a state's voters who voted for the 2020 Republican presidential candidate. State governments' uses of protective mandates were associated with lower infection rates, as were mask use, lower mobility, and higher vaccination rate, while vaccination rates were associated with lower death rates. State GDP and student reading test scores were not associated with state COVD-19 policy responses, infection rates, or death rates. Employment, however, had a statistically significant relationship with restaurant closures and greater infections and deaths: on average, 1574 (95% UI 884-7107) additional infections per 10 000 population were associated in states with a one percentage point increase in employment rate. Several policy mandates and protective behaviours were associated with lower fourth-grade mathematics test scores, but our study results did not find a link to state-level estimates of school closures. INTERPRETATION: COVID-19 magnified the polarisation and persistent social, economic, and racial inequities that already existed across US society, but the next pandemic threat need not do the same. US states that mitigated those structural inequalities, deployed science-based interventions such as vaccination and targeted vaccine mandates, and promoted their adoption across society were able to match the best-performing nations in minimising COVID-19 death rates. These findings could contribute to the design and targeting of clinical and policy interventions to facilitate better health outcomes in future crises. FUNDING: Bill & Melinda Gates Foundation, J Stanton, T Gillespie, J and E Nordstrom, and Bloomberg Philanthropies.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , Pandemias/prevenção & controle , SARS-CoV-2 , Escolaridade , Políticas
10.
Anal Chem ; 96(23): 9610-9620, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38822784

RESUMO

The emerging field of nanoscale infrared (nano-IR) offers label-free molecular contrast, yet its imaging speed is limited by point-by-point traverse acquisition of a three-dimensional (3D) data cube. Here, we develop a spatial-spectral network (SS-Net), a miniaturized deep-learning model, together with compressive sampling to accelerate the nano-IR imaging. The compressive sampling is performed in both the spatial and spectral domains to accelerate the imaging process. The SS-Net is trained to learn the mapping from small nano-IR image patches to the corresponding spectra. With this elaborated mapping strategy, the training can be finished quickly within several minutes using the subsampled data, eliminating the need for a large-labeled dataset of common deep learning methods. We also designed an efficient loss function, which incorporates the image and spectral similarity to enhance the training. We first validate the SS-Net on an open stimulated Raman-scattering dataset; the results exhibit the potential of 10-fold imaging speed improvement with state-of-the-art performance. We then demonstrate the versatility of this approach on atomic force microscopy infrared (AFM-IR) microscopy with 7-fold imaging speed improvement, even on nanoscale Fourier transform infrared (nano-FTIR) microscopy with up to 261.6 folds faster imaging speed. We further showcase the generalization of this method on AFM-force volume-based multiparametric nanoimaging. This method establishes a paradigm for rapid nano-IR imaging, opening new possibilities for cutting-edge research in materials, photonics, and beyond.

11.
Small ; : e2400686, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38864439

RESUMO

High-performance energy storage dielectrics capable of low/moderate field operation are vital in advanced electrical and electronic systems. However, in contrast to achievements in enhancing recoverable energy density (Wrec), the active realization of superior Wrec and energy efficiency (η) with giant energy-storage coefficient (Wrec/E) in low/moderate electric field (E) regions is much more challenging for dielectric materials. Herein, lead-free relaxor ferroelectrics are reported with giant Wrec/E designed with polymorphic heterogeneous polar structure. Following the guidance of Landau phenomenological theory and rational composition construction, the conceived (Bi0.5Na0.5)TiO3-based ternary solid solution that delivers giant Wrec/E of ≈0.0168 µC cm-2, high Wrec of ≈4.71 J cm-3 and high η of ≈93% under low E of 280 kV cm-1, accompanied by great stabilities against temperature/frequency/cycling number and excellent charging-discharging properties, which is ahead of most currently reported lead-free energy storage bulk ceramics measured at same E range. Atomistic observations reveal that the correlated coexisting local rhombohedral-tetragonal polar nanoregions embedded in the cubic matrix are constructed, which enables high polarization, minimized hysteresis, and significantly delayed polarization saturation concurrently, endowing giant Wrec/E along with high Wrec and η. These findings advance the superiority and feasibility of polymorphic nanodomains in designing highly efficient capacitors for low/moderate field-region practical applications.

12.
Small ; 20(6): e2305110, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37752776

RESUMO

Functional disorders of the thyroid remain a global challenge and have profound impacts on human health. Serving as the barometer for thyroid function, thyroid-stimulating hormone (TSH) is considered the single most useful test of thyroid function. However, the prevailing TSH immunoassays rely on two types of antibodies in a sandwich format. The requirement of repeated incubation and washing further complicates the issue, making it unable to meet the requirements of the shifting public health landscape that demands rapid, sensitive, and low-cost TSH tests. Herein, a systematic study is performed to investigate the clinical translational potential of a single antibody-based biosensing platform for the TSH test. The biosensing platform leverages Raman spectral variations induced by the interaction between a TSH antigen and a Raman molecule-conjugated TSH antibody. In conjunction with machine learning, it allows TSH concentrations in various patient samples to be predicted with high accuracy and precision, which is robust against substrate-to-substrate, intra-substrate, and day-to-day variations. It is envisioned that the simplicity and generalizability of this single-antibody immunoassay coupled with the demonstrated performance in patient samples pave the way for it to be widely applied in clinical settings for low-cost detection of hormones, other molecular biomarkers, DNA, RNA, and pathogens.


Assuntos
Anticorpos , Tireotropina , Humanos , Imunoensaio
13.
Small ; 20(12): e2308193, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37953460

RESUMO

Designing catalysts to proceed with catalytic reactions along the desired reaction pathways, e.g., CO2 methanation, has received much attention but remains a huge challenge. This work reports one Ru1Ni single-atom alloy (SAA) catalyst (Ru1Ni/SiO2) prepared via a galvanic replacement reaction between RuCl3 and Ni nanoparticles (NPs) derived from the reduction of Ni phyllosilicate (Ni-ph). Ru1Ni/SiO2 achieved much improved selectivity toward hydrogenation of CO2 to CH4 and catalytic activity (Turnover frequency (TOF) value: 40.00 × 10-3 s-1), much higher than those of Ni/SiO2 (TOF value: 4.40 × 10-3 s-1) and most reported Ni-based catalysts (TOF value: 1.03 × 10-3-11.00 × 10-3 s-1). Experimental studies verify that Ru single atoms are anchored onto the Ni NPs surface via the Ru1-Ni coordination accompanied by electron transfer from Ru1 to Ni. Both in situ experiments and theoretical calculations confirm that the interface sites of Ru1Ni-SAA are the intrinsic active sites, which promote the direct dissociation of CO2 and lower the energy barrier for the hydrogenation of CO* intermediate, thereby directing and enhancing the CO2 hydrogenation to CH4.

14.
J Transl Med ; 22(1): 469, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760791

RESUMO

BACKGROUND: Colorectal cancer (CRC) remains a major global health challenge, with high incidence and mortality rates. The role of long noncoding RNAs (lncRNAs) in cancer progression has received considerable attention. The present study aimed to investigate the function and mechanisms underlying the role of lncRNA RP11-197K6.1, microRNA-135a-5p (hsa-miR-135a-5p), and DLX5 in CRC development. METHODS: We analyzed RNA sequencing data from The Cancer Genome Atlas Colorectal Cancer dataset to identify the association between lncRNA RP11-197K6.1 and CRC progression. The expression levels of lncRNA RP11-197K6.1 and DLX5 in CRC samples and cell lines were determined by real-time quantitative PCR and western blotting assays. Fluorescence in situ hybridization was used to confirm the cellular localization of lncRNA RP11-197K6.1. Cell migration capabilities were assessed by Transwell and wound healing assays, and flow cytometry was performed to analyze apoptosis. The interaction between lncRNA RP11-197K6.1 and miR-135a-5p and its effect on DLX5 expression were investigated by the dual-luciferase reporter assay. Additionally, a xenograft mouse model was used to study the in vivo effects of lncRNA RP11-197K6.1 on tumor growth, and an immunohistochemical assay was performed to assess DLX5 expression in tumor tissues. RESULTS: lncRNA RP11-197K6.1 was significantly upregulated in CRC tissues and cell lines as compared to that in normal tissues, and its expression was inversely correlated with patient survival. It promoted the migration and metastasis of CRC cells by interacting with miR-135a-5p, alleviated suppression of DLX5 expression, and facilitated tumor growth. CONCLUSION: This study demonstrated the regulatory network and mechanism of action of the lncRNA RP11-197K6.1/miR-135a-5p/DLX5 axis in CRC development. These findings provided insights into the molecular pathology of CRC and suggested potential therapeutic targets for more effective treatment of patients with CRC.


Assuntos
Movimento Celular , Neoplasias Colorretais , Proteínas de Homeodomínio , MicroRNAs , RNA Longo não Codificante , Animais , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Endógeno Competitivo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética
15.
Plant Cell Environ ; 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39049759

RESUMO

Fruit colour is a critical determinant for the appearance quality and commercial value of apple fruits. Viroid-induced dapple symptom severely affects the fruit coloration, however, the underlying mechanism remains unknown. In this study, we identified an apple dimple fruit viroid (ADFVd)-derived small interfering RNA, named vsiR693, which targeted the mRNA coding for a bHLH transcription factor MdPIF1 (PHYTOCHROME-INTERACTING FACTOR 1) to regulate anthocyanin biosynthesis in apple. 5' RLM-RACE and artificial microRNA transient expression system proved that vsiR693 directly targeted the mRNA of MdPIF1 for cleavage. MdPIF1 positively regulated anthocyanin biosynthesis in both apple calli and fruits, and it directly bound to G-box element in the promoter of MdPAL and MdF3H, two anthocyanin biosynthetic genes, to promote their transcription. Expression of vsiR693 negatively regulated anthocyanin biosynthesis in both apple calli and fruits. Furthermore, co-expression of vsiR693 and MdPIF1 suppressed MdPIF1-promoted anthocyanin biosynthesis in apple fruits. Infiltration of ADFVd infectious clone suppressed coloration surrounding the injection sites in apple fruits, while a mutated version of ADFVd, in which the vsiR693 producing region was mutated, failed to repress fruit coloration around the injection sites. These data provide evidence that a viroid-derived small interfering RNA targets host transcription factor to regulate anthocyanin biosynthesis in apple.

16.
Chemistry ; : e202402402, 2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39186035

RESUMO

Efficient metal-free synthesis of benzo[b]azepines and oxindoles is achieved via a radical relay cascade strategy employing halogen atom transfer (XAT) for aryl radical generation followed by intramolecular hydrogen atom transfer (HAT). Optimization yielded moderate to substantial yields under visible light irradiation. Preliminary biological assessments revealed promising anti-tumor activity for select compounds. This study underscores the potential of XAT-mediated radical relay cascades in medicinal chemistry and anticancer drug discovery.

17.
BMC Cancer ; 24(1): 922, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39080642

RESUMO

Lenvatinib, a multitarget kinase inhibitor, has been proven to be effective in the treatment of advanced hepatocellular carcinoma. It has been previously demonstrated that tumour associated macrophages (TAMs) in tumour tissues can promote HCC growth, invasion and metastasis. Furthermore, lenvatinib has certain immunomodulatory effects on the treatment of HCC. However, the role of lenvatinib in macrophage polarization during HCC treatment has not been fully explored. In this study, we used a variety of experimental methods both in vitro and in vivo to investigate the effect of lenvatinib on TAMs during HCC progression. This study is the first to show that lenvatinib can alter macrophage polarization in both humans and mice. Moreover, macrophages treated with lenvatinib in vitro displayed enhanced classically activated macrophages (M1) activity and suppressed liver cancer cell proliferation, invasion, and migration. Furthermore, during the progression of M1 macrophage polarization induced by lenvatinib, STAT-1 was the main target transcription factor, and inhibiting STAT-1 activity reversed the effect of lenvatinib. Overall, the present study provides a theoretical basis for the immunomodulatory function of lenvatinib in the treatment of HCC.


Assuntos
Carcinoma Hepatocelular , Proliferação de Células , Progressão da Doença , Neoplasias Hepáticas , Compostos de Fenilureia , Quinolinas , Fator de Transcrição STAT1 , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/imunologia , Quinolinas/farmacologia , Quinolinas/uso terapêutico , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/imunologia , Compostos de Fenilureia/farmacologia , Compostos de Fenilureia/uso terapêutico , Fator de Transcrição STAT1/metabolismo , Animais , Camundongos , Humanos , Proliferação de Células/efeitos dos fármacos , Macrófagos Associados a Tumor/efeitos dos fármacos , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Ativação de Macrófagos/efeitos dos fármacos , Masculino , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia
18.
Mol Psychiatry ; 28(4): 1611-1621, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36914812

RESUMO

Clinical and animal studies have shown that gut microbiome disturbances can affect neural function and behaviors via the microbiota-gut-brain axis, and may be implicated in the pathogenesis of several brain diseases. However, exactly how the gut microbiome modulates nervous system activity remains obscure. Here, using a single-cell nucleus sequencing approach, we sought to characterize the cell type-specific transcriptomic changes in the prefrontal cortex and hippocampus derived from germ-free (GF), specific pathogen free, and colonized-GF mice. We found that the absence of gut microbiota resulted in cell-specific transcriptomic changes. Furthermore, microglia transcriptomes were preferentially influenced, which could be effectively reversed by microbial colonization. Significantly, the gut microbiome modulated the mutual transformation of microglial subpopulations in the two regions. Cross-species analysis showed that the transcriptome changes of these microglial subpopulations were mainly associated with Alzheimer's disease (AD) and major depressive disorder (MDD), which were further supported by animal behavioral tests. Our findings demonstrate that gut microbiota mainly modulate the mutual transformation of microglial subtypes, which may lead to new insights into the pathogenesis of AD and MDD.


Assuntos
Doença de Alzheimer , Transtorno Depressivo Maior , Microbioma Gastrointestinal , Camundongos , Animais , Microbioma Gastrointestinal/fisiologia , Microglia , Depressão , Córtex Pré-Frontal
19.
AIDS Behav ; 28(7): 2444-2453, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38878135

RESUMO

We investigated the association between early sexual debut and HIV infection among adolescents and young adults. Analyzing data from nationally representative Population-Based HIV Impact Assessment (PHIA) surveys in 11 African countries, the research employed a multivariate logistic regression model to assess the relationship between the early sexual debut and new HIV infections in the age group of 10-24 years. The results revealed a significant and robust association, indicating that young individuals who experienced early sexual debut were approximately 2.65 times more likely to contract HIV than those who did not, even after accounting for other variables. These findings align with prior research suggesting that early initiation of sexual activity may increase vulnerability to HIV infection due to factors such as biological susceptibility and risky behaviors like low condom use and multiple sexual partners. The implications of these findings for HIV prevention strategies are substantial, suggesting that interventions aimed at delaying sexual debut could be an effective component in reducing HIV risk for this population. Targeted sex education programs that address the risks of early sexual debut may play a pivotal role in these prevention efforts. By employing a comprehensive approach, there is a possibility to advance efforts towards ending AIDS by 2030.


Assuntos
Infecções por HIV , Assunção de Riscos , Comportamento Sexual , Parceiros Sexuais , Humanos , Adolescente , Infecções por HIV/epidemiologia , Infecções por HIV/prevenção & controle , Masculino , Feminino , Comportamento Sexual/estatística & dados numéricos , Adulto Jovem , África/epidemiologia , Modelos Logísticos , Fatores de Risco , Criança , Preservativos/estatística & dados numéricos , Fatores Etários , Adulto
20.
Environ Sci Technol ; 58(26): 11542-11553, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38871676

RESUMO

Nanoplastics (NPs) are emerging pollutants and have been reported to cause the disintegration of anaerobic granular sludge (AnGS). However, the mechanism involved in AnGS disintegration was not clear. In this study, polyvinyl chloride nanoplastics (PVC-NPs) were chosen as target NPs and their long-term impact on AnGS structure was investigated. Results showed that increasing PVC-NPs concentration resulted in the inhibition of acetoclastic methanogens, syntrophic propionate, and butyrate degradation, as well as AnGS disintegration. At the presence of 50 µg·L-1 PVC-NPs, the hydrophobic interaction was weakened with a higher energy barrier due to the relatively higher hydrophilic functional groups in extracellular polymeric substances (EPS). PVC-NPs-induced ROS inhibited quorum sensing, significantly downregulated hydrophobic amino acid synthesis, whereas it highly upregulated the genes related to the synthesis of four hydrophilic amino acids (Cys, Glu, Gly, and Lys), resulting in a higher hydrophily degree of protein secondary structure in EPS. The differential expression of genes involved in EPS biosynthesis and the resulting protein secondary structure contributed to the greater hydrophilic interaction, reducing microbial aggregation ability. The findings provided new insight into the long-term impact of PVC-NPs on AnGS when treating wastewater containing NPs and filled the knowledge gap on the mechanism involved in AnGS disintegration by PVC-NPs.


Assuntos
Matriz Extracelular de Substâncias Poliméricas , Cloreto de Polivinila , Esgotos , Esgotos/microbiologia , Cloreto de Polivinila/química , Matriz Extracelular de Substâncias Poliméricas/metabolismo , Anaerobiose , Interações Microbianas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA