RESUMO
The seven-transmembrane-spanning protein Smoothened is the central transducer in Hedgehog signaling, a pathway fundamental in development and in cancer. Smoothened is activated by cholesterol binding to its extracellular cysteine-rich domain (CRD). How this interaction leads to changes in the transmembrane domain and Smoothened activation is unknown. Here, we report crystal structures of sterol-activated Smoothened. The CRD undergoes a dramatic reorientation, allosterically causing the transmembrane domain to adopt a conformation similar to active G-protein-coupled receptors. We show that Smoothened contains a unique inhibitory π-cation lock, which is broken on activation and is disrupted in constitutively active oncogenic mutants. Smoothened activation opens a hydrophobic tunnel, suggesting a pathway for cholesterol movement from the inner membrane leaflet to the CRD. All Smoothened antagonists bind the transmembrane domain and block tunnel opening, but cyclopamine also binds the CRD, inducing the active transmembrane conformation. Together, these results define the mechanisms of Smoothened activation and inhibition.
Assuntos
Proteínas Hedgehog/metabolismo , Receptor Smoothened/química , Proteínas de Xenopus/química , Regulação Alostérica , Animais , Sítios de Ligação , Linhagem Celular , Colesterol/química , Colesterol/metabolismo , Cristalografia por Raios X , Citometria de Fluxo , Proteínas Hedgehog/genética , Humanos , Camundongos , Simulação de Dinâmica Molecular , Ligação Proteica , Domínios Proteicos , Estrutura Terciária de Proteína , Transdução de Sinais , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/metabolismo , Receptor Smoothened/antagonistas & inibidores , Receptor Smoothened/metabolismo , Alcaloides de Veratrum/química , Alcaloides de Veratrum/metabolismo , Proteínas de Xenopus/antagonistas & inibidores , Proteínas de Xenopus/metabolismo , Xenopus laevis/metabolismoRESUMO
G protein-coupled receptors (GPCRs) modulate every aspect of physiological functions mainly through activating heterotrimeric G proteins. A majority of GPCRs promiscuously couple to multiple G protein subtypes. Here we validate that in addition to the well-known Gi/o pathway, somatostatin receptor 2 and 5 (SSTR2 and SSTR5) couple to the Gq/11 pathway and show that smaller ligands preferentially activate the Gi/o pathway. We further determined cryo-electron microscopy structures of the SSTR2âGo and SSTR2âGq complexes bound to octreotide and SST-14. Structural and functional analysis revealed that G protein selectivity of SSTRs is not only determined by structural elements in the receptor-G protein interface, but also by the conformation of the agonist-binding pocket. Accordingly, smaller ligands fail to stabilize a broader agonist-binding pocket of SSTRs that is required for efficient Gq/11 coupling but not Gi/o coupling. Our studies facilitate the design of drugs with selective G protein signaling to improve therapeutic efficacy.
Assuntos
Receptores de Somatostatina , Somatostatina , Receptores de Somatostatina/química , Receptores de Somatostatina/metabolismo , Somatostatina/metabolismo , Microscopia Crioeletrônica , Transdução de Sinais , Proteínas de Ligação ao GTP/metabolismoRESUMO
The GABAB (γ-aminobutyric acid type B) receptor is one of the principal inhibitory neurotransmitter receptors in the brain, and it signals through heterotrimeric G proteins to activate a variety of effectors, including G-protein-coupled inwardly rectifying potassium channels (GIRKs)1,2. GABAB-receptor signalling is tightly regulated by auxiliary subunits called KCTDs, which control the kinetics of GIRK activation and desensitization3-5. However, the mechanistic basis for KCTD modulation of GABAB signalling remains incompletely understood. Here, using a combination of X-ray crystallography, electron microscopy, and functional and biochemical experiments, we reveal the molecular details of KCTD binding to both GABAB receptors and G-protein ßγ subunits. KCTDs associate with the receptor by forming an asymmetric pentameric ring around a region of the receptor carboxy-terminal tail, while a second KCTD domain, H1, engages in a symmetric interaction with five copies of Gßγ in which the G-protein subunits also interact directly with one another. We further show that KCTD binding to Gßγ is highly cooperative, defining a model in which KCTD proteins cooperatively strip G proteins from GIRK channels to induce rapid desensitization following receptor activation. These results provide a framework for understanding the molecular basis for the precise temporal control of GABAB signalling by KCTD proteins.
Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/química , Proteínas do Tecido Nervoso/química , Proteínas/química , Receptores de GABA-B/química , Receptores de GABA-B/metabolismo , Transdução de Sinais , Cristalografia por Raios X , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/química , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/metabolismo , Subunidades beta da Proteína de Ligação ao GTP/química , Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Subunidades beta da Proteína de Ligação ao GTP/ultraestrutura , Subunidades gama da Proteína de Ligação ao GTP/química , Subunidades gama da Proteína de Ligação ao GTP/metabolismo , Subunidades gama da Proteína de Ligação ao GTP/ultraestrutura , Humanos , Microscopia Eletrônica , Modelos Biológicos , Modelos Moleculares , Proteínas do Tecido Nervoso/ultraestrutura , Ligação Proteica , Domínios Proteicos , Proteínas/metabolismo , Proteínas/ultraestrutura , Receptores de GABA-B/ultraestruturaRESUMO
Galanin is a biologically active neuropeptide, and functions through three distinct G proteincoupled receptors (GPCRs), namely GALR1, GALR2, and GALR3. GALR signaling plays important roles in regulating various physiological processes such as energy metabolism, neuropathic pain, epileptic activity, and sleep homeostasis. GALR1 and GALR3 signal through the Gi/o pathway, whereas GALR2 signals mainly through the Gq/11 pathway. However, the molecular basis for galanin recognition and G protein selectivity of GALRs remains poorly understood. Here, we report the cryoelectron microscopy structures of the GALR1-Go and the GALR2-Gq complexes bound to the endogenous ligand galanin or spexin. The galanin peptide mainly adopts an alpha helical structure, which binds at the extracellular vestibule of the receptors, nearly parallel to the membrane plane without penetrating deeply into the receptor core. Structural analysis combined with functional studies reveals important structural determinants for the G protein selectivity of GALRs as well as other class A GPCRs. In addition, we show that the zinc ion is a negative allosteric regulator of GALR1 but not GALR2. Our studies provide insight into the mechanisms of G protein selectivity of GPCRs and highlight a potential function of the neuromodulator zinc ion as a modulator of GPCR signaling in the central nervous system.
Assuntos
Galanina , Hormônios Peptídicos , Galanina/metabolismo , Ligantes , Receptores de Galanina/metabolismo , Transdução de SinaisRESUMO
GABAB receptors in habenula cholinergic neurons mediate strong presynaptic excitation and control aversive memory expression. K+ channel tetramerization domain (KCTD) proteins are key interacting partners of GABAB receptors; it remains unclear whether and how KCTDs contribute to GABAB excitatory signaling. Here, we show that KCTD8 and KCTD12 in these neurons facilitate the GABAB receptors expression in axonal terminals and contribute to presynaptic excitation by GABAB receptors. Genetically knocking out KCTD8/12/16 or KCTD8/12, but not other combinations of the three KCTD isoforms, substantially reduced GABAB receptors-mediated potentiation of glutamate release and presynaptic Ca2+ entry in response to axonal stimulation, whereas they had no effect on GABAB-mediated inhibition in the somata of cholinergic neurons within the habenulo-interpeduncular pathway in mice of either sex. The physiological phenotypes were associated with a significant decrease in the GABAB expression within the axonal terminals but not the somata. Overexpressing either KCTD8 or KCTD12 in the KCTD8/12/16 triple knock-out mice reversed the changes in axonal GABAB expression and presynaptic excitation. In mice lacking the KCTDs, aversion-predicting cues produced stronger neuronal activation in the interpeduncular nucleus, and the infusion of GABAB agonist in this nucleus produced a weaker effect on fear extinction. Collectively, our results reveal isoform-specific roles of KCTD proteins in enriching the axonal expression of GABAB receptors, facilitating their presynaptic signaling, and modulating aversion-related memory processes.SIGNIFICANCE STATEMENT GABAB receptors represent the principal inhibitory neurotransmitter receptor, but they mediate strong presynaptic excitation in the habenulo-interpeduncular pathway and modulate aversion memory expression. KCTD proteins are integral constituents of GABAB receptors. By analyzing the physiological, neuroanatomical, and behavioral phenotypes of multiple KCTD knock-out mouse lines, we show that KCTD8 and KCTD12 facilitate the axonal expression and hence presynaptic excitation of GABAB receptors in habenula cholinergic neurons and control cued-aversion memory formation and expression in the habenulo-interpeduncular pathway. These results expand the physiological and behavioral functions of KCTDs in modulating the brain neural circuits.
Assuntos
Axônios , Neurônios Colinérgicos , Habenula , Peptídeos e Proteínas de Sinalização Intracelular , Receptores de GABA-B , Receptores de GABA , Animais , Axônios/metabolismo , Neurônios Colinérgicos/metabolismo , Extinção Psicológica , Medo/fisiologia , Habenula/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Camundongos Knockout , Receptores de GABA/metabolismo , Receptores de GABA-B/genética , Receptores de GABA-B/metabolismo , Ácido gama-Aminobutírico/metabolismoRESUMO
Within a year after its emergence, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has infected over 100 million people worldwide with a death toll over 2 million. Vaccination remains the best hope to ultimately put this pandemic to an end. Here, using Trimer-Tag technology, we produced both wild-type (WT) and furin site mutant (MT) S-Trimers for COVID-19 vaccine studies. Cryo-EM structures of the WT and MT S-Trimers, determined at 3.2 Å and 2.6 Å respectively, revealed that both antigens adopt a tightly closed conformation and their structures are essentially identical to that of the previously solved full-length WT S protein in detergent. The tightly closed conformation is stabilized by fatty acid and polysorbate 80 binding at the receptor binding domains (RBDs) and the N terminal domains (NTDs) respectively. Additionally, we identified an important pH switch in the WT S-Trimer that shows dramatic conformational change and accounts for its increased stability at lower pH. These results validate Trimer-Tag as a platform technology in production of metastable WT S-Trimer as a candidate for COVID-19 subunit vaccine.IMPORTANCEEffective vaccine against SARS-CoV-2 is critical to end the COVID-19 pandemic. Here, using Trimer-Tag technology, we are able to produce stable and large quantities of WT S-Trimer, a subunit vaccine candidate for COVID-19 with high safety and efficacy from animal and Phase 1 clinical trial studies. Cryo-EM structures of the S-Trimer subunit vaccine candidate show that it predominately adopts tightly closed pre-fusion state, and resembles that of the native and full-length spike in detergent, confirming its structural integrity. WT S-Trimer is currently being evaluated in global Phase 2/3 clinical trial. Combining with published structures of the S protein, we also propose a model to dissect the conformation change of the spike protein before receptor binding.
RESUMO
The human σ1 receptor is an enigmatic endoplasmic-reticulum-resident transmembrane protein implicated in a variety of disorders including depression, drug addiction, and neuropathic pain. Recently, an additional connection to amyotrophic lateral sclerosis has emerged from studies of human genetics and mouse models. Unlike many transmembrane receptors that belong to large, extensively studied families such as G-protein-coupled receptors or ligand-gated ion channels, the σ1 receptor is an evolutionary isolate with no discernible similarity to any other human protein. Despite its increasingly clear importance in human physiology and disease, the molecular architecture of the σ1 receptor and its regulation by drug-like compounds remain poorly defined. Here we report crystal structures of the human σ1 receptor in complex with two chemically divergent ligands, PD144418 and 4-IBP. The structures reveal a trimeric architecture with a single transmembrane domain in each protomer. The carboxy-terminal domain of the receptor shows an extensive flat, hydrophobic membrane-proximal surface, suggesting an intimate association with the cytosolic surface of the endoplasmic reticulum membrane in cells. This domain includes a cupin-like ß-barrel with the ligand-binding site buried at its centre. This large, hydrophobic ligand-binding cavity shows remarkable plasticity in ligand recognition, binding the two ligands in similar positions despite dissimilar chemical structures. Taken together, these results reveal the overall architecture, oligomerization state, and molecular basis for ligand recognition by this important but poorly understood protein.
Assuntos
Receptores sigma/química , Benzamidas/química , Benzamidas/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Retículo Endoplasmático/metabolismo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Membranas Intracelulares/metabolismo , Isoxazóis/química , Isoxazóis/metabolismo , Ligantes , Modelos Moleculares , Piperidinas/química , Piperidinas/metabolismo , Estrutura Terciária de Proteína , Piridinas/química , Piridinas/metabolismo , Receptores sigma/metabolismo , Especificidade por Substrato , Receptor Sigma-1RESUMO
The male-specific lethal dosage compensation complex (MSL-DCC) selectively assembles on the X chromosome in Drosophila males and activates gene transcription by twofold through histone acetylation. An MSL recognition element (MRE) sequence motif nucleates the initial MSL association, but how it is recognized remains unknown. Here, we identified the CXC domain of MSL2 specifically recognizing the MRE motif and determined its crystal structure bound to specific and nonspecific DNAs. The CXC domain primarily contacts one strand of DNA duplex and employs a single arginine to directly read out dinucleotide sequences from the minor groove. The arginine is flexible when bound to nonspecific sequences. The core region of the MRE motif harbors two binding sites on opposite strands that can cooperatively recruit a CXC dimer. Specific DNA-binding mutants of MSL2 are impaired in MRE binding and X chromosome localization in vivo. Our results reveal multiple dynamic DNA-binding modes of the CXC domain that target the MSL-DCC to X chromosomes.
Assuntos
Proteínas de Ligação a DNA/metabolismo , Mecanismo Genético de Compensação de Dose , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Modelos Moleculares , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Cromossomo X/química , Cromossomo X/metabolismo , Motivos de Aminoácidos , Animais , Drosophila melanogaster/química , Ligação Proteica , Estrutura Terciária de ProteínaRESUMO
Adiponectin is a highly abundant protein hormone secreted by adipose tissue. It elicits diverse biological responses, including anti-diabetic, anti-inflammatory, anti-tumor, and anti-atherosclerotic effects. Adiponectin consists of a globular domain and a collagen-like domain, and it occurs in three major oligomeric forms that self-assemble: trimers, hexamers, and high-molecular-weight oligomers. Adiponectin has been reported to bind to two seven-transmembrane domain receptors, AdipoR1 and AdipoR2, as well as to the protein T-cadherin, which is highly expressed in the cardiovascular system and binds only the high-molecular-weight form of adiponectin. The molecular mechanisms underlying this specificity remain unclear. Here we used a combination of X-ray crystallography and protein engineering to define the details of adiponectin's interaction with T-cadherin. We found that T-cadherin binds to the globular domain of adiponectin, relying on structural stabilization of this domain by bound metal ions. Moreover, we show that the adiponectin globular domain can be engineered to enhance its binding affinity for T-cadherin. These results help to define the molecular basis for the interaction between adiponectin and T-cadherin, and our engineered globular domain variants may be useful tools for further investigating adiponectin's functions.
Assuntos
Adiponectina/metabolismo , Caderinas/metabolismo , Engenharia de Proteínas , Adiponectina/química , Animais , Sítios de Ligação , Cristalografia por Raios X , Humanos , Ligação Proteica , Multimerização ProteicaRESUMO
The peptidoglycan cell wall provides an essential protective barrier in almost all bacteria, defining cellular morphology and conferring resistance to osmotic stress and other environmental hazards. The precursor to peptidoglycan, lipid II, is assembled on the inner leaflet of the plasma membrane. However, peptidoglycan polymerization occurs on the outer face of the plasma membrane, and lipid II must be flipped across the membrane by the MurJ protein before its use in peptidoglycan synthesis. Due to its central role in cell wall assembly, MurJ is of fundamental importance in microbial cell biology and is a prime target for novel antibiotic development. However, relatively little is known regarding the mechanisms of MurJ function, and structural data for MurJ are available only from the extremophile Thermosipho africanus Here, we report the crystal structure of substrate-free MurJ from the gram-negative model organism Escherichia coli, revealing an inward-open conformation. Taking advantage of the genetic tractability of E. coli, we performed high-throughput mutagenesis and next-generation sequencing to assess mutational tolerance at every amino acid in the protein, providing a detailed functional and structural map for the enzyme and identifying sites for inhibitor development. Lastly, through the use of sequence coevolution analysis, we identify functionally important interactions in the outward-open state of the protein, supporting a rocker-switch model for lipid II transport.
Assuntos
Proteínas de Escherichia coli/química , Proteínas de Transferência de Fosfolipídeos/química , Cristalografia por Raios X , Proteínas de Escherichia coli/genética , Evolução Molecular , Biblioteca Gênica , Bacilos Gram-Negativos Anaeróbios Retos, Helicoidais e Curvos/enzimologia , Sequenciamento de Nucleotídeos em Larga Escala , Modelos Moleculares , Mutação , Proteínas de Transferência de Fosfolipídeos/genética , Conformação Proteica , Proteínas Recombinantes de Fusão/química , Relação Estrutura-AtividadeRESUMO
Hepatocellular carcinoma (HCC) is a common and particularly fatal form of cancer for which very few drugs are effective. The fibroblast growth factor 19 (FGF19) has been viewed as a driver of HCC development and a potential Ab target for developing novel HCC therapy. However, a previously developed anti-FGF19 Ab disrupted FGF19's normal regulatory function and caused severe bile-acid-related side-effects despite of having potent antitumor effects in preclinical models. Here, we developed novel human Abs (G1A8 and HS29) that specifically target the N-terminus of FGF19. Both Abs inhibited FGF19-induced HCC cell proliferation in vitro and significantly suppressed HCC tumor growth in mouse models. Importantly, no bile-acid-related side effects were observed in preclinical cynomolgus monkeys. Fundamentally, our study demonstrates that it is possible to target FGF19 for anti-HCC therapies without adversely affecting its normal bile acid regulatory function, and highlights the exciting promise of G1A8 or HS29 as potential therapy for HCC.
Assuntos
Anticorpos/uso terapêutico , Antineoplásicos/uso terapêutico , Carcinoma Hepatocelular/tratamento farmacológico , Fatores de Crescimento de Fibroblastos/imunologia , Neoplasias Hepáticas/tratamento farmacológico , Animais , Anticorpos/química , Anticorpos/imunologia , Antineoplásicos/química , Antineoplásicos/imunologia , Ácidos e Sais Biliares/sangue , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular , Modelos Animais de Doenças , Epitopos , Feminino , Fatores de Crescimento de Fibroblastos/química , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Macaca fascicularis , Masculino , CamundongosRESUMO
Bacteria produce a variety of surface-exposed polysaccharides important for cell integrity, biofilm formation and evasion of the host immune response. Synthesis of these polymers often involves the assembly of monomer oligosaccharide units on the lipid carrier undecaprenyl-phosphate at the inner face of the cytoplasmic membrane. For many polymers, including cell wall peptidoglycan, the lipid-linked precursors must be transported across the membrane by flippases to facilitate polymerization at the membrane surface. Flippase activity for this class of polysaccharides is most often attributed to MOP (Multidrug/Oligosaccharidyl-lipid/Polysaccharide) family proteins. Little is known about how this ubiquitous class of transporters identifies and translocates its cognate precursor over the many different types of lipid-linked oligosaccharides produced by a given bacterial cell. To investigate the specificity determinants of MOP proteins, we selected for variants of the WzxC flippase involved in Escherichia coli capsule (colanic acid) synthesis that can substitute for the essential MurJ MOP-family protein and promote transport of cell wall peptidoglycan precursors. Variants with substitutions predicted to destabilize the inward-open conformation of WzxC lost substrate specificity and supported both capsule and peptidoglycan synthesis. Our results thus suggest that specific substrate recognition by a MOP transporter normally destabilizes the inward-open state, promoting transition to the outward-open conformation and concomitant substrate translocation. Furthermore, the ability of WzxC variants to suppress MurJ inactivation provides strong support for the designation of MurJ as the flippase for peptidoglycan precursors, the identity of which has been controversial.
Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/fisiologia , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Transferência de Fosfolipídeos/metabolismo , Cápsulas Bacterianas/metabolismo , Transporte Biológico , Parede Celular/fisiologia , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/genética , Modelos Moleculares , Mutação , Proteínas de Transferência de Fosfolipídeos/química , Proteínas de Transferência de Fosfolipídeos/genética , Polissacarídeos/biossíntese , Conformação Proteica , Uridina Difosfato Ácido N-Acetilmurâmico/análogos & derivados , Uridina Difosfato Ácido N-Acetilmurâmico/metabolismoRESUMO
The motor function of vertebrate myosin-5a is inhibited by its tail in a Ca2+-dependent manner. We previously demonstrated that the calmodulin (CaM) bound to the first isoleucine-glutamine (IQ) motif (IQ1) of myosin-5a is responsible for the Ca2+-dependent regulation of myosin-5a. We have solved the crystal structure of a truncated myosin-5a containing the motor domain and IQ1 (MD-IQ1) complexed with Ca2+-bound CaM (Ca2+-CaM) at 2.5-Å resolution. Compared with the structure of the MD-IQ1 complexed with essential light chain (an equivalent of apo-CaM), MD-IQ1/Ca2+-CaM displays large conformational differences in IQ1/CaM and little difference in the motor domain. In the MD-IQ1/Ca2+-CaM structure, the N-lobe and the C-lobe of Ca2+-CaM adopt an open conformation and grip the C-terminal and the N-terminal portions of the IQ1, respectively. Remarkably, the interlobe linker of CaM in IQ1/Ca2+-CaM is in a position opposite that in IQ1/apo-CaM, suggesting that CaM flip-flops relative to the IQ1 during the Ca2+ transition. We demonstrated that CaM continuously associates with the IQ1 during the Ca2+ transition and that the binding of CaM to IQ1 increases Ca2+ affinity and substantially changes the kinetics of the Ca2+ transition, suggesting that the IQ1/CaM complex functions as an intact Ca2+ sensor responding to distinct calcium signals.
Assuntos
Cálcio/metabolismo , Calmodulina/metabolismo , Miosina Tipo V/química , Miosina Tipo V/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Calmodulina/química , Calorimetria , Cristalografia por Raios X , Cinética , Camundongos , Modelos Biológicos , Domínios Proteicos , Coelhos , Espectrometria de Fluorescência , Homologia Estrutural de Proteína , Triptofano/metabolismoRESUMO
The sigma-1 receptor is an enigmatic ER-resident transmembrane protein linked to a variety of human diseases. Although the receptor was first cloned 20 years ago, the molecular structure of the protein and the mechanistic basis for its interaction with drug-like small molecules have remained unclear until recently. The determination of the first crystal structure of human sigma-1 offered the first detailed views of the sigma-1 architecture, and revealed an unusual overall fold with a single transmembrane helix in each protomer. The structure shows an overall trimeric receptor arrangement, and each protomer binds a single ligand molecule at the center of its carboxy-terminal domain. These results offer detailed molecular views of receptor structure, oligomerization, and ligand recognition, providing a framework for the next era of sigma-1 research.
Assuntos
Receptores sigma/química , Receptores sigma/metabolismo , Animais , Cristalografia por Raios X/métodos , Humanos , Ligantes , Modelos Moleculares , Ligação Proteica/fisiologia , Estrutura Terciária de Proteína , Subunidades Proteicas/metabolismo , Receptor Sigma-1RESUMO
Ribosome formation in Saccharomyces cerevisiae requires a large number of transiently associated assembly factors that coordinate processing and folding of pre-rRNA and binding of ribosomal proteins. Krr1 and Faf1 are two interacting proteins present in early 90 S precursor particles of the small ribosomal subunit. Here, we determined a co-crystal structure of the core domain of Krr1 bound to a 19-residue fragment of Faf1 at 2.8 Å resolution. The structure reveals that Krr1 consists of two packed K homology (KH) domains, KH1 and KH2, and resembles archaeal Dim2-like proteins. We show that KH1 is a divergent KH domain that lacks the RNA-binding GXXG motif and is involved in binding another assembly factor, Kri1. KH2 contains a canonical RNA-binding surface and additionally associates with an α-helix of Faf1. Specific disruption of the Krr1-Faf1 interaction impaired early 18 S rRNA processing at sites A0, A1, and A2 and caused cell lethality, but it did not prevent incorporation of the two proteins into pre-ribosomes. The Krr1-Faf1 interaction likely maintains a critical conformation of 90 S pre-ribosomes required for pre-rRNA processing. Our results illustrate the versatility of KH domains in protein interaction and provide insight into the role of Krr1-Faf1 interaction in ribosome biogenesis.
Assuntos
Proteínas de Ligação a RNA/metabolismo , Subunidades Ribossômicas Menores de Eucariotos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Motivos de Aminoácidos , Cristalografia por Raios X , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Processamento Pós-Transcricional do RNA/fisiologia , RNA Fúngico/química , RNA Fúngico/genética , RNA Fúngico/metabolismo , RNA Ribossômico 18S/química , RNA Ribossômico 18S/genética , RNA Ribossômico 18S/metabolismo , Proteínas de Ligação a RNA/química , Subunidades Ribossômicas Menores de Eucariotos/química , Subunidades Ribossômicas Menores de Eucariotos/genética , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genéticaRESUMO
Copper (Cu) is a co-factor for several essential metabolic enzymes. Disruption of Cu homeostasis results in genetic diseases such as Wilson's disease. Here, we show that the zinc transporter 1 (ZnT1), known to export zinc (Zn) out of the cell, also mediates Cu2+ entry into cells and is required for Cu2+-induced cell death, cuproptosis. Structural analysis and functional characterization indicate that Cu2+ and Zn2+ share the same primary binding site, allowing Zn2+ to compete for Cu2+ uptake. Among ZnT members, ZnT1 harbors a unique inter-subunit disulfide bond that stabilizes the outward-open conformations of both protomers to facilitate efficient Cu2+ transport. Specific knockout of the ZnT1 gene in the intestinal epithelium caused the loss of Lgr5+ stem cells due to Cu deficiency. ZnT1, therefore, functions as a dual Zn2+ and Cu2+ transporter and potentially serves as a target for using Zn2+ in the treatment of Wilson's disease caused by Cu overload.
Assuntos
Proteínas de Transporte de Cátions , Cobre , Zinco , Animais , Humanos , Camundongos , Transporte Biológico , Proteínas de Transporte de Cátions/metabolismo , Proteínas de Transporte de Cátions/genética , Cobre/metabolismo , Células HEK293 , Degeneração Hepatolenticular/metabolismo , Degeneração Hepatolenticular/genética , Mucosa Intestinal/metabolismo , Zinco/metabolismoRESUMO
G protein-coupled receptor (GPCR) signaling is precisely controlled to avoid overstimulation that results in detrimental consequences. Gßγ signaling is negatively regulated by a Cullin3 (Cul3)-dependent E3 ligase, KCTD5, which triggers ubiquitination and degradation of free Gßγ. Here, we report the cryo-electron microscopy structures of the KCTD5-Gßγ fusion complex and the KCTD7-Cul3 complex. KCTD5 in pentameric form engages symmetrically with five copies of Gßγ through its C-terminal domain. The unique pentameric assembly of the KCTD5/Cul3 E3 ligase places the ubiquitin-conjugating enzyme (E2) and the modification sites of Gßγ in close proximity and allows simultaneous transfer of ubiquitin from E2 to five Gßγ subunits. Moreover, we show that ubiquitination of Gßγ by KCTD5 is important for fine-tuning cyclic adenosine 3´,5´-monophosphate signaling of GPCRs. Our studies provide unprecedented insights into mechanisms of substrate recognition by unusual pentameric E3 ligases and highlight the KCTD family as emerging regulators of GPCR signaling.
Assuntos
Proteínas Culina , Ubiquitina-Proteína Ligases , Ubiquitina-Proteína Ligases/metabolismo , Microscopia Crioeletrônica , Ligação Proteica , Proteínas Culina/química , Proteínas Culina/genética , Proteínas Culina/metabolismo , Ubiquitinação , Proteínas de Ligação ao GTP/metabolismoRESUMO
Many orphan G protein-coupled receptors (GPCRs) remain understudied because their endogenous ligands are unknown. Here, we show that a group of class A/rhodopsin-like orphan GPCRs including GPR61, GPR161 and GPR174 increase the cAMP level similarly to fully activated D1 dopamine receptor (D1R). We report cryo-electron microscopy structures of the GPR61âGs, GPR161âGs and GPR174âGs complexes without any exogenous ligands. The GPR174 structure reveals that endogenous lysophosphatidylserine (lysoPS) is copurified. While GPR174 fails to respond to exogenous lysoPS, likely owing to its maximal activation by the endogenous ligand, GPR174 mutants with lower ligand binding affinities can be specifically activated by lysoPS but not other lipids, in a dose-dependent manner. Moreover, GPR174 adopts a non-canonical Gs coupling mode. The structures of GPR161 and GPR61 reveal that the second extracellular loop (ECL2) penetrates into the orthosteric pocket, possibly contributing to constitutive activity. Our work definitively confirms lysoPS as an endogenous GPR174 ligand and suggests that high constitutive activity of some orphan GPCRs could be accounted for by their having naturally abundant ligands.
Assuntos
Receptores de Dopamina D1 , Transdução de Sinais , Ligantes , Microscopia CrioeletrônicaRESUMO
The spike protein of SARS-CoV-2 has been a promising target for developing vaccines and therapeutics due to its crucial role in the viral entry process. Previously reported cryogenic electron microscopy (cryo-EM) structures have revealed that free fatty acids (FFA) bind with SARS-CoV-2 spike protein, stabilizing its closed conformation and reducing its interaction with the host cell target in vitro. Inspired by these, we utilized a structure-based virtual screening approach against the conserved FFA-binding pocket to identify small molecule modulators of SARS-CoV-2 spike protein, which helped us identify six hits with micromolar binding affinities. Further evaluation of their commercially available and synthesized analogs enabled us to discover a series of compounds with better binding affinities and solubilities. Notably, our identified compounds exhibited similar binding affinities against the spike proteins of the prototypic SARS-CoV-2 and a currently circulating Omicron BA.4 variant. Furthermore, the cryo-EM structure of the compound SPC-14 bound spike revealed that SPC-14 could shift the conformational equilibrium of the spike protein toward the closed conformation, which is human ACE2 (hACE2) inaccessible. Our identified small molecule modulators targeting the conserved FFA-binding pocket could serve as the starting point for the future development of broad-spectrum COVID-19 intervention treatments.