Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 443
Filtrar
1.
Nat Immunol ; 17(9): 1057-66, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27428826

RESUMO

STING is a central adaptor in the innate immune response to DNA viruses. However, the manner in which STING activity is regulated remains unclear. We identified iRhom2 ('inactive rhomboid protein 2') as a positive regulator of DNA-virus-triggered induction of type I interferons. iRhom2 deficiency markedly impaired DNA-virus- and intracellular-DNA-induced signaling in cells, and iRhom2-deficient mice were more susceptible to lethal herpes simplex virus type 1 (HSV-1) infection. iRhom2 was constitutively associated with STING and acted in two distinct processes to regulate STING activity. iRhom2 recruited the translocon-associated protein TRAPß to the STING complex to facilitate trafficking of STING from the endoplasmic reticulum to perinuclear microsomes. iRhom2 also recruited the deubiquitination enzyme EIF3S5 to maintain the stability of STING through removal of its K48-linked polyubiquitin chains. These results suggest that iRhom2 is essential for STING activity, as it regulates TRAPß-mediated translocation and EIF3S5-mediated deubiquitination of STING.


Assuntos
Proteínas de Transporte/metabolismo , Herpes Simples/imunologia , Herpesvirus Humano 1/imunologia , Proteínas de Membrana/metabolismo , Microssomos/metabolismo , Animais , Proteínas de Transporte/genética , Células Cultivadas , Fator de Iniciação 3 em Eucariotos/metabolismo , Imunidade Inata , Interferon Tipo I/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ligação Proteica , Estabilidade Proteica , Transporte Proteico/genética , Fosfatase Ácida Resistente a Tartarato/metabolismo , Ubiquitinação
2.
PLoS Pathog ; 20(1): e1011943, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38215174

RESUMO

Deubiquitinases (DUBs) remove ubiquitin from substrates and play crucial roles in diverse biological processes. However, our understanding of deubiquitination in viral replication remains limited. Employing an oncogenic human herpesvirus Kaposi's sarcoma-associated herpesvirus (KSHV) to probe the role of protein deubiquitination, we found that Ovarian tumor family deubiquitinase 4 (OTUD4) promotes KSHV reactivation. OTUD4 interacts with the replication and transcription activator (K-RTA), a key transcription factor that controls KSHV reactivation, and enhances K-RTA stability by promoting its deubiquitination. Notably, the DUB activity of OTUD4 is not required for K-RTA stabilization; instead, OTUD4 functions as an adaptor protein to recruit another DUB, USP7, to deubiquitinate K-RTA and facilitate KSHV lytic reactivation. Our study has revealed a novel mechanism whereby KSHV hijacks OTUD4-USP7 deubiquitinases to promote lytic reactivation, which could be potentially harnessed for the development of new antiviral therapies.


Assuntos
Herpesvirus Humano 8 , Proteínas Imediatamente Precoces , Sarcoma de Kaposi , Humanos , Proteínas Imediatamente Precoces/metabolismo , Peptidase 7 Específica de Ubiquitina/genética , Peptidase 7 Específica de Ubiquitina/metabolismo , Transativadores/genética , Herpesvirus Humano 8/genética , Replicação Viral , Regulação Viral da Expressão Gênica , Ativação Viral , Proteases Específicas de Ubiquitina/metabolismo
3.
Immunity ; 46(6): 992-1004.e5, 2017 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-28636969

RESUMO

RNA interference (RNAi) functions as a potent antiviral immunity in plants and invertebrates; however, whether RNAi plays antiviral roles in mammals remains unclear. Here, using human enterovirus 71 (HEV71) as a model, we showed HEV71 3A protein as an authentic viral suppressor of RNAi during viral infection. When the 3A-mediated RNAi suppression was impaired, the mutant HEV71 readily triggered the production of abundant HEV71-derived small RNAs with canonical siRNA properties in cells and mice. These virus-derived siRNAs were produced from viral dsRNA replicative intermediates in a Dicer-dependent manner and loaded into AGO, and they were fully active in degrading cognate viral RNAs. Recombinant HEV71 deficient in 3A-mediated RNAi suppression was significantly restricted in human somatic cells and mice, whereas Dicer deficiency rescued HEV71 infection independently of type I interferon response. Thus, RNAi can function as an antiviral immunity, which is induced and suppressed by a human virus, in mammals.


Assuntos
Enterovirus Humano A/imunologia , Infecções por Enterovirus/imunologia , Imunidade , Interferência de RNA , RNA Viral/imunologia , Animais , Proteínas Argonautas/metabolismo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Enterovirus Humano A/genética , Células HEK293 , Humanos , Mamíferos , Camundongos , Camundongos da Linhagem 129 , Camundongos Knockout , Mutação/genética , Ribonuclease III/metabolismo , Proteínas Virais/imunologia
4.
Nature ; 567(7749): 525-529, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30814730

RESUMO

T cells become dysfunctional when they encounter self antigens or are exposed to chronic infection or to the tumour microenvironment1. The function of T cells is tightly regulated by a combinational co-stimulatory signal, and dominance of negative co-stimulation results in T cell dysfunction2. However, the molecular mechanisms that underlie this dysfunction remain unclear. Here, using an in vitro T cell tolerance induction system in mice, we characterize genome-wide epigenetic and gene expression features in tolerant T cells, and show that they are distinct from effector and regulatory T cells. Notably, the transcription factor NR4A1 is stably expressed at high levels in tolerant T cells. Overexpression of NR4A1 inhibits effector T cell differentiation, whereas deletion of NR4A1 overcomes T cell tolerance and exaggerates effector function, as well as enhancing immunity against tumour and chronic virus. Mechanistically, NR4A1 is preferentially recruited to binding sites of the transcription factor AP-1, where it represses effector-gene expression by inhibiting AP-1 function. NR4A1 binding also promotes acetylation of histone 3 at lysine 27 (H3K27ac), leading to activation of tolerance-related genes. This study thus identifies NR4A1 as a key general regulator in the induction of T cell dysfunction, and a potential target for tumour immunotherapy.


Assuntos
Regulação da Expressão Gênica/genética , Genoma , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Linfócitos T/metabolismo , Linfócitos T/patologia , Acetilação , Animais , Infecções por Arenaviridae/imunologia , Infecções por Arenaviridae/virologia , Linhagem Celular Tumoral , Colite/imunologia , Colite/patologia , Colite/terapia , Epigênese Genética , Feminino , Histonas/química , Histonas/metabolismo , Tolerância Imunológica/genética , Imunoterapia , Vírus da Coriomeningite Linfocítica/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias/imunologia , Neoplasias/patologia , Neoplasias/terapia , Linfócitos T/imunologia , Fator de Transcrição AP-1/metabolismo , Transcrição Gênica
5.
Nat Immunol ; 13(11): 1110-7, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23042150

RESUMO

Interleukin 17 (IL-17) is important in infection and autoimmunity; how it signals remains poorly understood. In this study, we identified the ubiquitin-specific protease USP25 as a negative regulator of IL-17-mediated signaling and inflammation. Overexpression of USP25 inhibited IL-17-triggered signaling, whereas USP25 deficiency resulted in more phosphorylation of the inhibitor IκBα and kinase Jnk and higher expression of chemokines and cytokines, as well as a prolonged half-life for chemokine CXCL1-encoding mRNA after treatment with IL-17. Consistent with that, Usp25(-/-) mice showed greater sensitivity to IL-17-dependent inflammation and autoimmunity in vivo. Mechanistically, stimulation with IL-17 induced the association of USP25 with the adaptors TRAF5 and TRAF6, and USP25 induced removal of Lys63-linked ubiquitination in TRAF5 and TRAF6 mediated by the adaptor Act1. Thus, our results demonstrate that USP25 is a deubiquitinating enzyme (DUB) that negatively regulates IL-17-triggered signaling.


Assuntos
Inflamação/genética , Interleucina-17/genética , Transdução de Sinais/genética , Ubiquitina Tiolesterase/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/imunologia , Animais , Quimiocina CXCL1/genética , Quimiocina CXCL1/imunologia , Deleção de Genes , Expressão Gênica , Regulação da Expressão Gênica/imunologia , Quinase I-kappa B/genética , Quinase I-kappa B/imunologia , Inflamação/imunologia , Inflamação/patologia , Interleucina-17/imunologia , MAP Quinase Quinase 4/genética , MAP Quinase Quinase 4/imunologia , Camundongos , Camundongos Knockout , Fosforilação , Transdução de Sinais/imunologia , Fator 5 Associado a Receptor de TNF/genética , Fator 5 Associado a Receptor de TNF/imunologia , Fator 6 Associado a Receptor de TNF/genética , Fator 6 Associado a Receptor de TNF/imunologia , Ubiquitina Tiolesterase/deficiência , Ubiquitina Tiolesterase/imunologia , Ubiquitinação
6.
Fish Shellfish Immunol ; 150: 109661, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38821227

RESUMO

IgNAR exhibits significant promise in the fields of cancer and anti-virus biotherapies. Notably, the variable regions of IgNAR (VNAR) possess comparable antigen binding affinity with much smaller molecular weight (∼12 kDa) compared to IgNAR. Antigen specific VNAR screening is a changeling work, which limits its application in medicine and therapy fields. Though phage display is a powerful tool for VNAR screening, it has a lot of drawbacks, such as small library coverage, low expression levels, unstable target protein, complicating and time-consuming procedures. Here we report VANR screening with next generation sequencing (NGS) could effectively overcome the limitations of phage display, and we successfully identified approximately 3000 BAFF-specific VNARs in Chiloscyllium plagiosum vaccinated with the BAFF antigen. The results of modelling and molecular dynamics simulation and ELISA assay demonstrated that one out of the top five abundant specific VNARs exhibited higher binding affinity to the BAFF antigen than those obtained through phage display screening. Our data indicates NGS would be an alternative way for VNAR screening with plenty of advantages.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Tubarões , Tubarões/imunologia , Tubarões/genética , Animais , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Proteínas de Peixes/química , Antígenos/imunologia , Antígenos/genética , Doenças dos Peixes/imunologia
7.
Cell Biochem Funct ; 42(1): e3896, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38081793

RESUMO

Cysteine and glycine-rich protein 2 (Csrp2) has emerged as a key factor in controlling the phenotypic modulation of smooth muscle cells. The phenotypic transition of airway smooth muscle cells (ASMCs) is a pivotal step in developing airway remodeling during the onset of asthma. However, whether Csrp2 mediates the phenotypic transition of ASMCs in airway remodeling during asthma onset is undetermined. This work aimed to address the link between Csrp2 and the phenotypic transition of ASMCs evoked by platelet-derived growth factor (PDGF)-BB in vitro. The overexpression or silencing of Csrp2 in ASMCs was achieved through adenovirus-mediated gene transfer. The expression of mRNA was measured by quantitative real-time-PCR. Protein levels were determined through Western blot analysis. Cell proliferation was detected by EdU assay and Calcein AM assays. Cell cycle distribution was assessed via fluorescence-activated cell sorting assay. Cell migration was evaluated using the scratch-wound assay. The transcriptional activity of Yes-associated protein (YAP)/transcriptional coactivator with PDZ-binding motif (TAZ) was measured using the luciferase reporter assay. A decline in Csrp2 level occurred in PDGF-BB-stimulated ASMCs. Increasing Csrp2 expression repressed the PDGF-BB-evoked proliferation and migration of ASMCs. Moreover, increasing Csrp2 expression impeded the phenotypic change of PDGF-BB-stimulated ASMCs from a contractile phenotype into a synthetic/proliferative phenotype. On the contrary, the opposite effects were observed in Csrp2-silenced ASMCs. The activity of YAP/TAZ was elevated in PDGF-BB-stimulated ASMCs, which was weakened by Csrp2 overexpression or enhanced by Csrp2 silencing. The YAP/TAZ activator could reverse Csrp2-overexpression-mediated suppression of the PDGF-BB-evoked phenotypic switching of ASMCs, while the YAP/TAZ suppressor could dimmish Csrp2-silencing-mediated enhancement on PDGF-BB-evoked phenotypic switching of ASMCs. In summary, Csrp2 serves as a determinant for the phenotypic switching of ASMCs. Increasing Csrp2 is able to impede PDGF-BB-evoked phenotypic change of ASMCs from a synthetic phenotype into a synthetic/proliferative phenotype through the effects on YAP/TAZ. This work implies that Csrp2 may be a key player in airway remodeling during the onset of asthma.


Assuntos
Asma , Cisteína , Humanos , Becaplermina/genética , Becaplermina/metabolismo , Cisteína/genética , Cisteína/metabolismo , Remodelação das Vias Aéreas , Células Cultivadas , Miócitos de Músculo Liso/metabolismo , Proliferação de Células , Asma/metabolismo , Fenótipo , Movimento Celular
8.
Biochem Genet ; 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38388849

RESUMO

Cell senescence is an anti-cancer strategy following DNA repair and apoptosis, which is associated with the initiation, progression, and treatment of ovarian cancer. The CDK4/6 inhibitor alters cell cycle and induces cell senescence dependent on retinoblastoma (RB) family proteins. Objective Herein, we aimed to explore the effects of Palbociclib (a CDK4/6 inhibitor) on cellular senescence of high-grade serous ovarian cancer (HGSOC). Cell viability and cell cycle were evaluated by cell counting kit-8 and flow cytometry. Cell senescence was analyzed using the SA-ß-gal staining assay. The senescence-associated secretory phenotype was assessed using quantitative PCR (qPCR). Senescence-related markers were tested using western blot. The role of Palbociclib in vivo was clarified using xenograft tumor. Acetylation of p53 was evaluated by qPCR and western blot. The results showed that Palbociclib inhibited cell viability, blocked cell cycle at G0/G1 phase, and induced cell senescence. A rescue study indicated that knockdown of p53 reversed the effects on cell cycle and senescence induced by Palbociclib. Moreover, we found that Palbociclib promotes P300-mediated p53 acetylation, thus increasing p53 stability and transcription activity. Moreover, Palbociclib suppressed tumor growth in vivo with increased p53 and acetylated p53 levels. In conclusion, Palbociclib induced cell senescence of HGSOC through P300-mediated p53 acetylation, suggesting that Palbociclib may have the effect of treating HGSOC.

9.
Ecotoxicol Environ Saf ; 281: 116611, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38909393

RESUMO

Nitrophenols, a versatile intermediate, have been widely used in leather, medicine, chemical synthesis, and other fields. Because these components are widely applied, they can enter the environment through various routes, leading to many hazards and toxicities. There has been a recent surge in the development of simple, rapid, environmentally friendly, and effective techniques for determining these environmental pollutants. This review provides a comprehensive overview of the latest research progress on the pretreatment and analysis methods of nitrophenols since 2017, with a focus on environmental samples. Pretreatment methods include liquid-liquid extraction, solid-phase extraction, dispersive extraction, and microextraction methods. Analysis methods mainly include liquid chromatography-based methods, gas chromatography-based methods, supercritical fluid chromatography. In addition, this review also discusses and compares the advantages/disadvantages and development prospects of different pretreatment and analysis methods to provide a reference for further research.

10.
J Biol Chem ; 298(8): 102160, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35724961

RESUMO

C-reactive protein (CRP) is a major acute phase protein and inflammatory marker, the expression of which is largely liver specific and highly inducible. Enhancers are regulatory elements critical for the precise activation of gene expression, yet the contributions of enhancers to the expression pattern of CRP have not been well defined. Here, we identify a constitutively active enhancer (E1) located 37.7 kb upstream of the promoter of human CRP in hepatocytes. By using chromatin immunoprecipitation, luciferase reporter assay, in situ genetic manipulation, CRISPRi, and CRISPRa, we show that E1 is enriched in binding sites for transcription factors STAT3 and C/EBP-ß and is essential for the full induction of human CRP during the acute phase. Moreover, we demonstrate that E1 orchestrates with the promoter of CRP to determine its varied expression across tissues and species through surveying activities of E1-promoter hybrids and the associated epigenetic modifications. These results thus suggest an intriguing mode of molecular evolution wherein expression-changing mutations in distal regulatory elements initiate subsequent functional selection involving coupling among distal/proximal regulatory mutations and activity-changing coding mutations.


Assuntos
Proteína C-Reativa , Elementos Facilitadores Genéticos , Sítios de Ligação , Proteína C-Reativa/genética , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Regulação da Expressão Gênica , Hepatócitos , Humanos , Regiões Promotoras Genéticas , Fator de Transcrição STAT3/metabolismo , Transcrição Gênica
11.
J Transl Med ; 21(1): 153, 2023 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-36841801

RESUMO

BACKGROUND: The interaction between the tumor-microenvironment (TME) and the cancer cells has emerged as a key player in colorectal cancer (CRC) metastasis. A small proportion of CRC cells which undergo epithelial-mesenchymal transition (EMT) facilitate the reshaping of the TME by regulating various cellular ingredients. METHODS: Immunohistochemical analysis, RNA immunoprecipitation (RIP), RNA Antisense Purification (RAP), dual luciferase assays were conducted to investigate the biological function and regulation of LINC00543 in CRC. A series in vitro and in vivo experiments were used to clarify the role of LINC00543 in CRC metastasis. RESULTS: Here we found that the long non-coding RNA LINC00543, was overexpressed in colorectal cancer tissues, which correlated with advanced TNM stage and poorer prognosis of CRC patients. The overexpression of LINC00543 promoted tumorigenesis and metastasis of CRC cells by enhancing EMT and remodeling the TME. Mechanistically, LINC00543 blocked the transport of pre-miR-506-3p across the nuclear-cytoplasmic transporter XPO5, thereby reducing the production of mature miR-506-3p, resulting in the increase in the expression of FOXQ1 and induction of EMT. In addition, upregulation of FOXQ1 induced the expression of CCL2 that accelerated the recruitment of macrophages and their M2 polarization. CONCLUSIONS: Our study showed that LINC00543 enhanced EMT of CRC cells through the pre-miR-506-3p/FOXQ1 axis. This resulted in the upregulation of CCL2, leading to macrophages recruitment and M2 polarization, and ultimately stimulating the progression of CRC.


Assuntos
Neoplasias Colorretais , MicroRNAs , RNA Longo não Codificante , Humanos , MicroRNAs/genética , Macrófagos Associados a Tumor/metabolismo , Macrófagos Associados a Tumor/patologia , Transição Epitelial-Mesenquimal/genética , Neoplasias Colorretais/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Movimento Celular , Proliferação de Células/genética , Metástase Neoplásica , Microambiente Tumoral , Fatores de Transcrição Forkhead/metabolismo , Carioferinas/genética
12.
PLoS Pathog ; 17(9): e1009918, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34529741

RESUMO

Under RNA virus infection, retinoic acid-inducible gene I (RIG-I) in host cells recognizes viral RNA and activates the expression of type I IFN. To investigate the roles of protein methyltransferases and demethylases in RIG-I antiviral signaling pathway, we screened all the known related enzymes with a siRNA library and identified LSD1 as a positive regulator for RIG-I signaling. Exogenous expression of LSD1 enhances RIG-I signaling activated by virus stimulation, whereas its deficiency restricts it. LSD1 interacts with RIG-I, promotes its K63-linked polyubiquitination and interaction with VISA/MAVS. Interestingly, LSD1 exerts its function in antiviral response not dependent on its demethylase activity but through enhancing the interaction between RIG-I with E3 ligases, especially TRIM25. Furthermore, we provide in vivo evidence that LSD1 increases antiviral gene expression and inhibits viral replication. Taken together, our findings demonstrate that LSD1 is a positive regulator of signaling pathway triggered by RNA-virus through mediating RIG-I polyubiquitination.


Assuntos
Regulação da Expressão Gênica/fisiologia , Histona Desmetilases/metabolismo , Infecções por Vírus de RNA/metabolismo , Receptores de Superfície Celular/metabolismo , Animais , Chlorocebus aethiops , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Ubiquitinação , Células Vero
13.
Phys Rev Lett ; 130(15): 151901, 2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37115894

RESUMO

The jet charge is an old observable that has proven uniquely useful for discrimination of jets initiated by different flavors of light quarks, for example. In this Letter, we propose an approach to understanding the jet charge by establishing simple, robust assumptions that hold to good approximation nonperturbatively, such as isospin conservation and large particle multiplicity in the jets, forgoing any attempt at a perturbative analysis. From these assumptions, the jet charge distribution with fixed particle multiplicity takes the form of a Gaussian by the central limit theorem and whose mean and variance are related to fractional-power moments of single particle energy distributions. These results make several concrete predictions for the scaling of the jet charge with the multiplicity, explaining many of the results already in the literature, and new results we validate in Monte Carlo simulation.

14.
Cell Biol Int ; 47(8): 1368-1380, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37076992

RESUMO

Ubiquitin-specific protease 33 (USP33) has been implicated in various cancers, but its biological function and mechanism of action remain unknown in pancreatic cancer (PCa) as a deubiquitinating enzyme. Herein, we report that USP33 silencing inhibits PCa cell survival and self-renewal. USPs highly expressed in spherical PCa cells were screened by comparing the levels of ubiquitin-specific proteases in spherical PCa cells and adherent PCa cells. After silencing USP, the effect of USP on the proliferation of PCa cells was detected by CCK-8 and colony formation assay, and the effect of USP on cell stemness was detected by tumor sphere formation assay, flow analysis, and western blot analysis. The interaction of USP with CTNNB1 and the effect of USP on the ubiquitination of CTNNB1 were verified by coimmunoprecipitation assay. After replenishing CTNNB1, cell proliferation and cell stemness were examined. USP33 is upregulated in spheric BXPC-3, PCNA-1, and SW1990, compared with adherent BXPC-3, PCNA-1, and SW1990. USP33 interacts with CTNNB1, and stabilizes CTNNB1 by suppressing its degradation. Furthermore, cell proliferation, colony-forming, and self-renewal abilities of PCa cells in vitro, and the expression of stem cell markers EpCAM and CD44, C-myc, Nanog, and SOX2, were suppressed when USP33 was knocked down, which was reversed when CTNNB1 was ectopically expressed in PCa cells. Thus, USP33 promotes PCa cell proliferation and self-renewal by inhibiting the degradation of CTNNB1. USP33 inhibition may be a new treatment option for PCa patients.


Assuntos
Regulação Neoplásica da Expressão Gênica , Células-Tronco Neoplásicas , Humanos , Linhagem Celular Tumoral , Sobrevivência Celular , Antígeno Nuclear de Célula em Proliferação/metabolismo , Movimento Celular , Ubiquitinação , Proliferação de Células , Células-Tronco Neoplásicas/metabolismo , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/metabolismo , beta Catenina/metabolismo
15.
Fish Shellfish Immunol ; 133: 108535, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36649810

RESUMO

Single domain antibodies (sdAb) are promising candidates in cancer and anti-virus biotherapies for their unique structure characters. Though VHH and IgNAR have been discovered in camelidae and nurse shark (Ginlymostoma cirratum) respectively serval decades ago, expense of these large animals still limits the studies and applications of sdAb. Recently, IgNAR has been found in whitespotted bamboo shark (Chiloscyllium plagiosum), a small-sized sharks, while how to characterize and achieved the IgNAR of whitespotted bamboo shark is still unclear. In our research, we identified four IgNAR coding gene loci in whitespotted bamboo shark chromosome 44 (NC_057753.1), and primers were designed for single domain variable regions of IgNAR (VNAR) libraries preparation. Following sequencing results revealed that all plasmids constructed with our predicted VNAR libraries contained VNAR coding sequences, which confirmed the specificities of our primers in VNAR amplification. To our surprise, ≥90% VNAR sequences were encoded by IgNAR1, which suggests IgNAR1 is the most active IgNAR transcription locus in whitespotted bamboo shark. Interestingly, we found IgNAR(ΔC2-C3) were encoded by IgNAR3. Our findings gave a new sight of whitespotted bamboo shark IgNAR, which would broad the way of IgNAR studies and applications in biotherapies.


Assuntos
Loci Gênicos , Tubarões , Animais , Tubarões/genética
16.
BMC Biol ; 20(1): 10, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34996439

RESUMO

BACKGROUND: The synthetic chemical 1,4-dioxane is used as industrial solvent, food, and care product additive. 1,4-Dioxane has been noted to influence the nervous system in long-term animal experiments and in humans, but the molecular mechanisms underlying its effects on animals were not previously known. RESULTS: Here, we report that 1,4-dioxane potentiates the capsaicin-sensitive transient receptor potential (TRP) channel TRPV1, thereby causing hyperalgesia in mouse model. This effect was abolished by CRISPR/Cas9-mediated genetic deletion of TRPV1 in sensory neurons, but enhanced under inflammatory conditions. 1,4-Dioxane lowered the temperature threshold for TRPV1 thermal activation and potentiated the channel sensitivity to agonistic stimuli. 1,3-dioxane and tetrahydrofuran which are structurally related to 1,4-dioxane also potentiated TRPV1 activation. The residue M572 in the S4-S5 linker region of TRPV1 was found to be crucial for direct activation of the channel by 1,4-dioxane and its analogs. A single residue mutation M572V abrogated the 1,4-dioxane-evoked currents while largely preserving the capsaicin responses. Our results further demonstrate that this residue exerts a gating effect through hydrophobic interactions and support the existence of discrete domains for multimodal gating of TRPV1 channel. CONCLUSIONS: Our results suggest TRPV1 is a co-receptor for 1,4-dioxane and that this accounts for its ability to dysregulate body nociceptive sensation.


Assuntos
Hiperalgesia , Canais de Cátion TRPV , Animais , Capsaicina/farmacologia , Dioxanos , Camundongos , Solventes , Canais de Cátion TRPV/genética
17.
Int J Audiol ; : 1-5, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37083104

RESUMO

OBJECTIVE: The objective of this study is to determine the noise effective masking level (EML) and inter-aural attenuation (IA) for click and CE-Chirp signals presented though a Radioear B-81 to elicit the auditory brainstem responses in normally hearing, young adults. DESIGN AND STUDY SAMPLE: A total of 26 conveniently sampled adults (13 male and 13 female, aged 18-25 years; 52 ears), with pure-tone hearing thresholds not >15 dB nHL at octave frequencies from 250 to 8000 Hz, and subjective thresholds for the bone-conducted click and CE-Chirp not >10 dB nHL. RESULTS: At stimulus intensities of 30 and 40 dB nHL, the contralateral EML was 67.86 ± 0.78 and 77.80 ± 0.81 dB SPL (respectively) for the click and 72.11 ± 0.74 and 83.53 ± 0.78 dB SPL (respectively) for the CE-Chirp. At stimulus intensities of 30 and 40 dB nHL, the IA was 3.46 ± 2.34 and 3.38 ± 2.03 dB (respectively) for both the click and the CE-Chirp. CONCLUSION: EML and IA values are reported for click and CE-Chirp signals presented at 30 and 40 dB nHL though a Radioear B-81 to elicit the ABR in normally hearing, young adults.

18.
Sensors (Basel) ; 23(16)2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37631695

RESUMO

The assessment of land cover and changes will help to understand the temporal and spatial pattern of land cover in the world and the Belt and Road (B&R) region, and provide reference information for global sustainable development and the Belt and Road construction. In this paper, the 1 km global land cover classification maps of 2016 and 2020 with a high accuracy of 88% are mapped using the Moderate Resolution Imaging Spectroradiometer (MODIS) time series surface reflectance products. Based on the maps, the land cover status of the world and the Belt and Road region, the land cover change from 2016 to 2020, and the mutual transformation characteristics between various types, are analyzed. The research results indicate that from 2016 to 2020, the global change rates of cropland, forest, grassland, and impervious surface are 0.25%, 0.22%, 0.08% and 3.41%, respectively. In the Belt and Road region, the change rates of cropland, forest, grassland, and impervious surface are 0.42%, 0.60%, -0.55% and 2.98% respectively. The assessment results will help to clarify the spatial pattern of land cover change in the five years from 2016 to 2020, so as to provide valuable scientific information for the global realization of sustainable development goals and the construction of the B&R.

19.
Phys Rev Lett ; 129(24): 242001, 2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36563251

RESUMO

We perform the first simultaneous global QCD extraction of the transverse momentum dependent (TMD) parton distribution functions and the TMD fragmentation functions in nuclei. We have considered the world set of data from semi-inclusive electron-nucleus deep inelastic scattering and Drell-Yan dilepton production. In total, this data set consists of 90 data points from HERMES, Fermilab, RHIC, and LHC. Working at next-to-leading order and next-to-next-to-leading logarithmic accuracy, we achieve a χ^{2}/d.o.f.=1.196. In this analysis, we perform the first extraction of nuclear modified TMDs and compare these to those in free nucleons. We also make predictions for the ongoing JLab 12 GeV program and future electron-ion collider measurements.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA