Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(2): e2215509119, 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36608295

RESUMO

Recently, Co-based honeycomb magnets have been proposed as promising candidate materials to host the Kitaev spin liquid (KSL) state. One of the front-runners is BaCo2(AsO4)2 (BCAO), where it was suggested that the exchange processes between Co2+ ions via the surrounding edge-sharing oxygen octahedra could give rise to bond-dependent Kitaev interactions. In this work, we present and analyze a comprehensive inelastic neutron scattering (INS) study of BCAO with fields in the honeycomb plane. Combining the constraints from the magnon excitations in the high-field polarized state and the inelastic spin structure factor measured in zero magnetic field, we examine two leading theoretical models: the Kitaev-type [Formula: see text] model and the XXZ[Formula: see text]model. We show that the existing experimental data can be consistently accounted for by the XXZ[Formula: see text]model but not by the [Formula: see text] model, and we discuss the implications of these results for the realization of a spin liquid phase in BCAO and more generally for the realization of the Kitaev model in cobaltates.

2.
Nature ; 569(7757): 537-541, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31068693

RESUMO

The discovery of the quantum Hall effect (QHE)1,2 in two-dimensional electronic systems has given topology a central role in condensed matter physics. Although the possibility of generalizing the QHE to three-dimensional (3D) electronic systems3,4 was proposed decades ago, it has not been demonstrated experimentally. Here we report the experimental realization of the 3D QHE in bulk zirconium pentatelluride (ZrTe5) crystals. We perform low-temperature electric-transport measurements on bulk ZrTe5 crystals under a magnetic field and achieve the extreme quantum limit, where only the lowest Landau level is occupied, at relatively low magnetic fields. In this regime, we observe a dissipationless longitudinal resistivity close to zero, accompanied by a well-developed Hall resistivity plateau proportional to half of the Fermi wavelength along the field direction. This response is the signature of the 3D QHE and strongly suggests a Fermi surface instability driven by enhanced interaction effects in the extreme quantum limit. By further increasing the magnetic field, both the longitudinal and Hall resistivity increase considerably and display a metal-insulator transition, which represents another magnetic-field-driven quantum phase transition. Our findings provide experimental evidence of the 3D QHE and a promising platform for further exploration of exotic quantum phases and transitions in 3D systems.

3.
Nature ; 575(7781): 156-163, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31666697

RESUMO

Although copper oxide high-temperature superconductors constitute a complex and diverse material family, they all share a layered lattice structure. This curious fact prompts the question of whether high-temperature superconductivity can exist in an isolated monolayer of copper oxide, and if so, whether the two-dimensional superconductivity and various related phenomena differ from those of their three-dimensional counterparts. The answers may provide insights into the role of dimensionality in high-temperature superconductivity. Here we develop a fabrication process that obtains intrinsic monolayer crystals of the high-temperature superconductor Bi2Sr2CaCu2O8+δ (Bi-2212; here, a monolayer refers to a half unit cell that contains two CuO2 planes). The highest superconducting transition temperature of the monolayer is as high as that of optimally doped bulk. The lack of dimensionality effect on the transition temperature defies expectations from the Mermin-Wagner theorem, in contrast to the much-reduced transition temperature in conventional two-dimensional superconductors such as NbSe2. The properties of monolayer Bi-2212 become extremely tunable; our survey of superconductivity, the pseudogap, charge order and the Mott state at various doping concentrations reveals that the phases are indistinguishable from those in the bulk. Monolayer Bi-2212 therefore displays all the fundamental physics of high-temperature superconductivity. Our results establish monolayer copper oxides as a platform for studying high-temperature superconductivity and other strongly correlated phenomena in two dimensions.

4.
J Am Chem Soc ; 146(12): 8260-8268, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38497725

RESUMO

We report the synthesis, crystal structure, and physical properties of a novel ternary compound, Th2Cu4As5. The material crystallizes in a tetragonal structure with lattice parameters a = 4.0639(3) Å and c = 24.8221(17) Å. Its structure can be described as an alternating stacking of fluorite-type Th2As2 layers with antifluorite-type double-layered Cu4As3 slabs. The measurement of electrical resistivity, magnetic susceptibility, and specific heat reveals that Th2Cu4As5 undergoes bulk superconducting transition at 4.2 K. Additionally, all these physical quantities exhibit anomalies at 48 K, accompanied by a sign change in the Hall coefficient, suggesting a charge-density-wave-like (CDW) phase transition. Drawing from both experimental data and band calculations, we propose that the superconducting and CDW-like phase transitions are, respectively, associated with the Cu4As3 slabs and the As plane in the Th2As2 layers.

5.
Nat Mater ; 22(1): 58-63, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36411349

RESUMO

Quantum spin liquids (QSLs) are topologically ordered states of matter that host fractionalized excitations. A particular route towards a QSL is via strongly bond-dependent interactions on the hexagonal lattice. A number of Ru- and Ir-based candidate Kitaev QSL materials have been pursued, but all have appreciable non-Kitaev interactions. Using time-domain terahertz spectroscopy, we observed a broad magnetic continuum over a wide range of temperatures and fields in the honeycomb cobalt-based magnet BaCo2(AsO4)2, which has been proposed to be a more ideal version of a Kitaev QSL. Applying an in-plane magnetic field of ~0.5 T suppresses the magnetic order, and at higher fields, applying the field gives rise to a spin-polarized state. Under a 4 T magnetic field that was oriented principally out of plane, a broad magnetic continuum was observed that may be consistent with a field-induced QSL. Our results indicate BaCo2(AsO4)2 is a promising QSL candidate.

6.
Proc Natl Acad Sci U S A ; 116(29): 14505-14510, 2019 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-31266895

RESUMO

Currently under active study in condensed matter physics, both theoretically and experimentally, are quantum spin liquid (QSL) states, in which no long-range magnetic ordering appears at low temperatures due to strong quantum fluctuations of the magnetic moments. The existing QSL candidates all have their intrinsic disadvantages, however, and solid evidence for quantum fluctuations is scarce. Here, we report a previously unreported compound, [Formula: see text], a geometrically frustrated system with effective spin-1/2 local moments for Co2+ ions on an isotropic 2-dimensional (2D) triangular lattice. Magnetic susceptibility and neutron scattering experiments show no magnetic ordering down to 0.05 K. Thermodynamic measurements show that there is a tremendous amount of magnetic entropy present below 1 K in 0-applied magnetic field. The presence of localized low-energy spin fluctuations is revealed by inelastic neutron measurements. At low applied fields, these spin excitations are confined to low energy and contribute to the anomalously large specific heat. In larger applied fields, the system reverts to normal behavior as evident by both neutron and thermodynamic results. Our experimental characterization thus reveals that this material is an excellent candidate for the experimental realization of a QSL state.

7.
Phys Rev Lett ; 126(7): 076802, 2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33666492

RESUMO

Yu-Shiba-Rusinov (YSR) bound states appear when a magnetic atom interacts with a superconductor. Here, we report on spin-resolved spectroscopic studies of YSR states related with Fe atoms deposited on the surface of the topological superconductor FeTe_{0.55}Se_{0.45} using a spin-polarized scanning tunneling microscope. We clearly identify the spin signature of pairs of YSR bound states at finite energies within the superconducting gap having opposite spin polarization as theoretically predicted. In addition, we also observe zero-energy bound states for some of the adsorbed Fe atoms. In this case, a spin signature is found to be absent indicating the absence of Majorana bound states associated with Fe adatoms on FeTe_{0.55}Se_{0.45}.

8.
J Am Chem Soc ; 142(11): 5389-5395, 2020 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-32090566

RESUMO

A previously unreported 1D iridate, K3Ir2O6, has been grown by a flux method in O2-rich environment, and its crystal structure was determined via single crystal structural analysis. It exhibits straight chains of face-sharing [IrO6] octahedra, which are arranged along the crystallographic c axis, separated by nonmagnetic K ions. No magnetic transitions are observed during measured range, and the material is electrically insulating. Potentially interesting electronic behavior for K3Ir2O6 is supported by electronic structure calculations. A structurally related material, K16.3Ir8O30, which displays similar fundamental geometric units but in a different spatial arrangement-zigzag chains-based on edge and face sharing [IrO6] octahedra, is also reported. Both materials are of interest for probing the properties of a 1D system with strong spin-orbit coupling.

9.
Nat Mater ; 18(2): 103-107, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30559411

RESUMO

High-temperature (high-Tc) superconductivity in cuprates arises from carrier doping of an antiferromagnetic Mott insulator. This carrier doping leads to the formation of electronic liquid-crystal phases1. The insulating charge-stripe crystal phase is predicted to form when a small density of holes is doped into the charge-transfer insulator state1-3, but this phase is yet to be observed experimentally. Here, we use surface annealing to extend the accessible doping range in Bi-based cuprates and realize the lightly doped charge-transfer insulating state of the cuprate Bi2Sr2CaCu2O8+x. In this insulating state with a charge transfer gap on the order of ~1 eV, our spectroscopic imaging scanning tunnelling microscopy measurements provide strong evidence for a unidirectional charge-stripe order with a commensurate 4a0 period along the Cu-O-Cu bond. Notably, this insulating charge-stripe crystal phase develops before the onset of the pseudogap and formation of the Fermi surface. Our work provides fresh insight into the microscopic origin of electronic inhomogeneity in high-Tc cuprates.

10.
Nano Lett ; 19(8): 4890-4896, 2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31268723

RESUMO

Combining topology and superconductivity provides a powerful tool for investigating fundamental physics as well as a route to fault-tolerant quantum computing. There is mounting evidence that the Fe-based superconductor FeTe0.55Se0.45 (FTS) may also be topologically nontrivial. Should the superconducting order be s±, then FTS could be a higher order topological superconductor with helical hinge zero modes (HHZMs). To test the presence of these modes, we have fabricated normal-metal/superconductor junctions on different surfaces via 2D atomic crystal heterostructures. As expected, junctions in contact with the hinge reveal a sharp zero bias anomaly that is absent when tunneling purely into the c-axis. Additionally, the shape and suppression with temperature are consistent with highly coherent modes along the hinge and are incongruous with other origins of zero bias anomalies. Additional measurements with soft-point contacts in bulk samples with various Fe interstitial contents demonstrate the intrinsic nature of the observed mode. Thus, we provide evidence that FTS is indeed a higher order topological superconductor.

11.
Phys Rev Lett ; 122(24): 247001, 2019 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-31322397

RESUMO

We developed novel techniques to fabricate atomically thin Bi_{2.1}Sr_{1.9}CaCu_{2.0}O_{8+δ} van der Waals heterostructures down to two unit cells while maintaining a transition temperature T_{c} close to the bulk, and carry out magnetotransport measurements on these van der Waals devices. We find a double sign change of the Hall resistance R_{xy} as in the bulk system, spanning both below and above T_{c}. Further, we observe a drastic enlargement of the region of sign reversal in the temperature-magnetic field phase diagram with decreasing thickness of the device. We obtain quantitative agreement between experimental R_{xy}(T,B) and the predictions of the vortex dynamics-based description of Hall effect in high-temperature superconductors both above and below T_{c}.

12.
Nano Lett ; 18(9): 5660-5665, 2018 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-30111116

RESUMO

We realize superconductor-insulator transitions (SIT) in mechanically exfoliated Bi2Sr2CaCu2O8+δ (BSCCO) flakes and address simultaneously their transport properties as well as the evolution of density of states. Back-gating via the solid ion conductor (SIC) engenders a SIT in BSCCO due to the modulation of carrier density by intercalated lithium ions. Scaling analysis indicates that the SIT follows the theoretical description of a two-dimensional quantum phase transition (2D-QPT). We further carry out tunneling spectroscopy in graphite(G)/BSCCO heterojunctions. We observe V-shaped gaps in the critical regime of the SIT. The density of states in BSCCO gets symmetrically suppressed by further going into the insulating regime. Our technique of combining solid state gating with tunneling spectroscopy can be easily applied to the study of other two-dimensional materials.

13.
Phys Rev Lett ; 120(11): 117001, 2018 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-29601772

RESUMO

We investigate the terahertz (THz)-pulse-driven nonlinear response in the d-wave cuprate superconductor Bi_{2}Sr_{2}CaCu_{2}O_{8+x} (Bi2212) using a THz pump near-infrared probe scheme in the time domain. We observe an oscillatory behavior of the optical reflectivity that follows the THz electric field squared and is markedly enhanced below T_{c}. The corresponding third-order nonlinear effect exhibits both A_{1g} and B_{1g} symmetry components, which are decomposed from polarization-resolved measurements. A comparison with a BCS calculation of the nonlinear susceptibility indicates that the A_{1g} component is associated with the Higgs mode of the d-wave order parameter.

14.
Proc Natl Acad Sci U S A ; 112(5): 1316-21, 2015 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-25605947

RESUMO

To achieve and use the most exotic electronic phenomena predicted for the surface states of 3D topological insulators (TIs), it is necessary to open a "Dirac-mass gap" in their spectrum by breaking time-reversal symmetry. Use of magnetic dopant atoms to generate a ferromagnetic state is the most widely applied approach. However, it is unknown how the spatial arrangements of the magnetic dopant atoms influence the Dirac-mass gap at the atomic scale or, conversely, whether the ferromagnetic interactions between dopant atoms are influenced by the topological surface states. Here we image the locations of the magnetic (Cr) dopant atoms in the ferromagnetic TI Cr0.08(Bi0.1Sb0.9)1.92Te3. Simultaneous visualization of the Dirac-mass gap Δ(r) reveals its intense disorder, which we demonstrate is directly related to fluctuations in n(r), the Cr atom areal density in the termination layer. We find the relationship of surface-state Fermi wavevectors to the anisotropic structure of Δ(r) not inconsistent with predictions for surface ferromagnetism mediated by those states. Moreover, despite the intense Dirac-mass disorder, the anticipated relationship [Formula: see text] is confirmed throughout and exhibits an electron-dopant interaction energy J* = 145 meV·nm(2). These observations reveal how magnetic dopant atoms actually generate the TI mass gap locally and that, to achieve the novel physics expected of time-reversal symmetry breaking TI materials, control of the resulting Dirac-mass gap disorder will be essential.

15.
Phys Rev Lett ; 118(17): 177601, 2017 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-28498689

RESUMO

Determining the nature of electronic states in doped Mott insulators remains a challenging task. In the case of tetragonal La_{2-x}Sr_{x}NiO_{4}, the occurrence of diagonal charge and spin stripe order in the ground state is now well established. In contrast, the nature of the high-temperature "disordered" state from which the stripe order develops has long been a subject of controversy, with considerable speculation regarding a polaronic liquid. Following the recent detection of dynamic charge stripes, we use neutron scattering measurements on an x=0.25 crystal to demonstrate that the dispersion of the charge-stripe excitations is anisotropic. This observation provides compelling evidence for the presence of electronic nematic order.

16.
Phys Chem Chem Phys ; 19(3): 2207-2216, 2017 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-28054052

RESUMO

Recently, A2B3-type tetradymites have developed into a hot topic in physical and material research fields, where the A and B atoms represent V and VI group elements, respectively. In this study, in situ angle-dispersive X-ray diffraction measurements were performed on Bi2Te2Se, BiSbTeSe2, and Sb2Te2Se tetradymites under high pressure. Bi2Te2Se transforms from a layered rhombohedral structure (phase I) into 7-fold monoclinic (phase II) and body-centered tetragonal (phase IV) structures at about 8.0 and 14.3 GPa, respectively, without an 8-fold monoclinic structure (phase III) similar to that in Bi2Te3. Thus, the compression behavior of Bi2Te2Se is the same as that of Bi2Se3, which could also be obtained from first-principles calculations and in situ high-pressure electrical resistance measurements. Under high pressure, BiSbTeSe2 and Sb2Te2Se undergo similar structural phase transitions to Bi2Te2Se, which indicates that the compression process of tellurides can be modulated by doping Se in Te sites. According to these high-pressure investigations of A2B3-type tetradymites, the decrease of the B-site atomic radius shrinks the stable pressure range of phase III and expands that of phase II, whereas the decrease of the A-site atomic radius induces a different effect, i.e. expanding the stable pressure range of phase III and shrinking that of phase II. The influence of the atomic radius on the compression process of tetradymites is closely related to the chemical composition and the atom arrangement in the quintuple layer.

17.
Phys Rev Lett ; 115(23): 237002, 2015 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-26684137

RESUMO

Understanding the mechanism of high transition temperature (T{c}) superconductivity in cuprates has been hindered by the apparent complexity of their multilayered crystal structure. Using a cryogenic scanning tunneling microscopy (STM), we report on layer-by-layer probing of the electronic structures of all ingredient planes (BiO, SrO, CuO{2}) of Bi{2}Sr{2}CaCu_2}O{8+δ} superconductor prepared by argon-ion bombardment and annealing technique. We show that the well-known pseudogap (PG) feature observed by STM is inherently a property of the BiO planes and thus irrelevant directly to Cooper pairing. The SrO planes exhibit an unexpected van Hove singularity near the Fermi level, while the CuO{2} planes are exclusively characterized by a smaller gap inside the PG. The small gap becomes invisible near T{c}, which we identify as the superconducting gap. The above results constitute severe constraints on any microscopic model for high T{c} superconductivity in cuprates.

19.
Phys Rev Lett ; 112(18): 187202, 2014 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-24856717

RESUMO

Fe(1+y)Te with y≲0.05 exhibits a first-order phase transition on cooling to a state with a lowered structural symmetry, bicollinear antiferromagnetic order, and metallic conductivity, dρ/dT>0. Here, we study samples with y=0.09(1), where the frustration effects of the interstitial Fe decouple different orders, leading to a sequence of transitions. While the lattice distortion is closely followed by incommensurate magnetic order, the development of bicollinear order and metallic electronic coherence is uniquely associated with a separate hysteretic first-order transition, at a markedly lower temperature, to a phase with dramatically enhanced bond-order wave (BOW) order. The BOW state suggests ferro-orbital ordering, where electronic delocalization in ferromagnetic zigzag chains decreases local spin and results in metallic transport.

20.
J Phys Condens Matter ; 36(36)2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38821103

RESUMO

Layered materials with kagome lattice have attracted a lot of attention due to the presence of nontrivial topological bands and correlated electronic states with tunability. In this work, we investigate a unique van der Waals (vdW) material system,A2M3X4(A= K, Rb, Cs;M= Ni, Pd;X= S, Se), where transition metal kagome lattices, chalcogen honeycomb lattices and alkali metal triangular lattices coexist simultaneously. A notable feature of this material is that each Ni/Pd atom is positioned in the center of four chalcogen atoms, forming a local square-planar environment. This crystal field environment results in a low spin stateS= 0 of Ni2+/Pd2+. A systematic study of the crystal growth, crystal structure, magnetic and transport properties of two representative compounds, Rb2Ni3S4and Cs2Ni3Se4, has been carried out on powder and single crystal samples. Both compounds exhibit nonmagneticp-type semiconducting behavior, closely related to the particular chemical environment of Ni2+ions and the alkali metal intercalated vdW structure. Additionally, Cs2Ni3Se4undergoes an insulator-metal transition (IMT) in transport measurements under pressure up to 87.1 GPa without any structural phase transition, while Rb2Ni3S4shows the tendency to be metalized.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA