Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de documento
País/Região como assunto
Ano de publicação
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 261(Pt 2): 129709, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38286380

RESUMO

The dried root of Pueraria mirifica (P. mirifica) is an edible foodstuff widely used in Asian countries. P. mirifica is known for its high starch content. The isolation of polysaccharides from high-starch plant parts is challenging due to the interference of starch. Therefore, this study aimed to develop a technique for isolating and investigating the structure and activity of non-glucan polysaccharides from P. mirifica (PMP). An effective starch removal process was developed using α-amylase hydrolysis and thorough membrane dialysis. Four non-glucan polysaccharides were isolated, and PMP-2 was subjected to structural elucidation. The results indicated that PMP-2 has a molecular weight of 124.4 kDa and that arabinose and galactose are the main components, accounting for 27.8 % and 58.5 %, respectively. Methylation and NMR analysis suggested that PMP-2 is an Arabinogalactan composed of 1,6-linked Galp and 1,4-linked Galp as the main chain, with arabinan and rhamnose as side chains. Furthermore, PMP-C and PMP-2 exhibited concentration-dependent antioxidant activities against DPPH, ABTS, and hydroxyl radicals and certain immunomodulatory activities related to the release of NO, TNF-α and IL-6. These findings suggest that PMP-2 has potential therapeutically active ingredient in functional foods. The developed method successfully removed starch and isolated non-glucan polysaccharides from the high-starch content plant P. mirifica and can be applied to other high-starch plants.


Assuntos
Pueraria , Pueraria/química , Amido , Diálise Renal , Extratos Vegetais , Antioxidantes , Polissacarídeos/farmacologia
2.
Food Chem ; 439: 138049, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38134568

RESUMO

Since Tang dynasty in China, the fresh leaves of Vaccinium bracteatum (VBL) have been applied as natural pigment to produce black rice. However, detailed information on its biosynthetic mechanism still remained unclear. Following rice dyeing capacity assay, vaccinoside, one of iridoid glycosides, was identified as the key active compound. Increased methodical research demonstrated vaccinoside as a distinct bifunctional precursor, which could be catalyzed by polyphenol oxidase or ß-glucosidase independently, followed by reaction with 15 amino acids to give blue pigments (VBPs; λmax 581-590 nm) of different hues. Two synthetic pathways of VBPs were proposed, using multiple techniques such as HPLC, HPSEC, UV-Vis spectrum and colorimeter as analysis tools. Black rice was interpreted to be prepared by cooking, using vaccinoside, intrinsic enzymes from fresh VBL and rice protein in combination. These findings promote the understanding of VBP formation mechanisms and provide an efficient method of producing novel Vaccinium blue pigments.


Assuntos
Vaccinium myrtillus , Vaccinium , Vaccinium/química , Vaccinium myrtillus/química , Extratos Vegetais/química , Glicosídeos Iridoides , China
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA