RESUMO
Fear behaviors are regulated by adaptive mechanisms that dampen their expression in the absence of danger. By studying circuits and the molecular mechanisms underlying this adaptive response, we show that cholinergic neurons of the medial habenula reduce fear memory expression through GABAB presynaptic excitation. Ablating these neurons or inactivating their GABAB receptors impairs fear extinction in mice, whereas activating the neurons or their axonal GABAB receptors reduces conditioned fear. Although considered exclusively inhibitory, here, GABAB mediates excitation by amplifying presynaptic Ca(2+) entry through Cav2.3 channels and potentiating co-release of glutamate, acetylcholine, and neurokinin B to excite interpeduncular neurons. Activating the receptors for these neurotransmitters or enhancing neurotransmission with a phosphodiesterase inhibitor reduces fear responses of both wild-type and GABAB mutant mice. We identify the role of an extra-amygdalar circuit and presynaptic GABAB receptors in fear control, suggesting that boosting neurotransmission in this pathway might ameliorate some fear disorders.
Assuntos
Neurônios Colinérgicos/metabolismo , Medo/fisiologia , Habenula/fisiologia , Memória/fisiologia , Receptores de GABA-B/metabolismo , Animais , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Vias Neurais , Neurotransmissores/metabolismo , Transmissão SinápticaRESUMO
How do we learn about what to learn about? Specifically, how do the neural elements in our brain generalize what has been learned in one situation to recognize the common structure of-and speed learning in-other, similar situations? We know this happens because we become better at solving new problems-learning and deploying schemas1-5-through experience. However, we have little insight into this process. Here we show that using prior knowledge to facilitate learning is accompanied by the evolution of a neural schema in the orbitofrontal cortex. Single units were recorded from rats deploying a schema to learn a succession of odour-sequence problems. With learning, orbitofrontal cortex ensembles converged onto a low-dimensional neural code across both problems and subjects; this neural code represented the common structure of the problems and its evolution accelerated across their learning. These results demonstrate the formation and use of a schema in a prefrontal brain region to support a complex cognitive operation. Our results not only reveal a role for the orbitofrontal cortex in learning but also have implications for using ensemble analyses to tap into complex cognitive functions.
Assuntos
Aprendizagem/fisiologia , Modelos Neurológicos , Córtex Pré-Frontal/fisiologia , Aceleração , Animais , Cognição/fisiologia , Lógica , Masculino , Neurônios/fisiologia , Odorantes/análise , Córtex Pré-Frontal/citologia , Ratos , Ratos Long-Evans , RecompensaRESUMO
Online monitoring and closed-loop control are essential to accurately remove the rust layer and effectively avoid damage to the substrate. A collaborative utilization of machine vision and laser-induced breakdown spectroscopy (LIBS) to monitor and control the laser derusting process on Q235B steel is reported. The optimum overlap ratio of 50% is obtained by using machine vision. Monitoring derusting with different thicknesses relies on the Pearson correlation coefficient of the LIBS spectrum between the rust layer and substrate. By developing a collaborative monitoring and control system on LabVIEW, the functions of date acquisition, coordinate transformation, and data calculation are realized to automatically control the laser derusting process on rusty steel in a large area. The cooperation of two methods can achieve high-quality laser derusting with a derusting degree of 99.1%, roughness of 1.45 µm, and extremely low oxygen content on the surface, which verifies the accuracy and practicability of the developed monitoring system. Moreover, the potentiodynamic polarization curves demonstrate that the performance of the corrosion resistance of the Q235B steel is effectively improved after laser derusting.
RESUMO
This paper investigates the dynamic event-triggered predictive control problem of interval type-2 (IT2) fuzzy systems with imperfect premise matching. First, an IT2 fuzzy systems model is proposed, including a dynamic event-triggered mechanism, which can save limited network resources by reducing the number of data packets transmitted, and a predictive controller, which can predict the state of the system between the two successful transmitted instants to deal with unreliable communication networks. Then, according to the Lyapunov stability theory and imperfect premise matching method, sufficient conditions for system stabilization and the controller gain are obtained. Finally, the validity of the proposed method is demonstrated by the numerical examples.
RESUMO
Metastasis is a multistep and low-efficiency biological process driven by acquisition of genetic and/or epigenetic alterations within tumor cells. These evolutionary alterations enable tumor cells to thrive in the inhospitable microenvironment they encounter in the process of metastasis and eventually lead to macroscopic metastases in distant organs. The unfolded protein response (UPR) induced by endoplasmic reticulum (ER) stress is one of the most important mechanisms regulating cellular adaptation to an adverse microenvironment. UPR is involved in all stages of metastasis, playing an important role in tumor cell growth, survival, and differentiation and the process of maintaining protein hemostasis. Sustained activation of ER stress sensors endows tumor cells with better epithelial-mesenchymal transition (EMT), survival, immune escape, angiogenesis, cellular adhesion, dormancy-to reactivation capacity in the process of metastasis. Here, we discussed the role of UPR in regulating the above-mentioned abilities of tumor cells during metastasis, providing a reference for development of new targets for the treatment of tumor metastasis.UPR in regulating the above-mentioned characteristics and mechanisms of tumor cells during metastasis, providing a reference for development of new targets for the treatment of tumor metastasis.
Assuntos
Estresse do Retículo Endoplasmático , Neoplasias , Transição Epitelial-Mesenquimal , Humanos , Neovascularização Patológica , Microambiente Tumoral , Resposta a Proteínas não DobradasRESUMO
BACKGROUND: Uveal melanoma (UM) is the most common primary intraocular tumor. Hepatic metastasis is the major and direct death-related reason in UM patients. Given that cancer stem-like cells (CSCs) are roots of metastasis, targeting CSCs may be a promising strategy to overcome hepatic metastasis in UM. Salinomycin, which has been identified as a selective inhibitor of CSCs in multiple types of cancer, may be an attractive agent against CSCs thereby restrain hepatic metastasis in UM. The objective of the study is to explore the antitumor activity of salinomycin against UM and clarify its underlying mechanism. METHODS: UM cells were treated with salinomycin, and its effects on cell proliferation, apoptosis, migration, invasion, CSCs population, and the related signal transduction pathways were determined. The in vivo antitumor activity of salinomycin was evaluated in the NOD/SCID UM xenograft model and intrasplenic transplantation liver metastasis mouse model. RESULTS: We found that salinomycin remarkably obviated growth and survival in UM cell lines and in a UM xenograft mouse model. Meanwhile, salinomycin significantly eliminated CSCs and efficiently hampered hepatic metastasis in UM liver metastasis mouse model. Mechanistically, Twist1 was fundamental for the salinomycin-enabled CSCs elimination and migration/invasion blockage in UM cells. CONCLUSIONS: Our findings suggest that targeting UM CSCs by salinomycin is a promising therapeutic strategy to hamper hepatic metastasis in UM. These results provide the first pre-clinical evidence for further testing of salinomycin for its antitumor efficacy in UM patients with hepatic metastasis.
Assuntos
Antineoplásicos/farmacologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/secundário , Melanoma/metabolismo , Melanoma/patologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Piranos/farmacologia , Neoplasias Uveais/metabolismo , Neoplasias Uveais/patologia , Animais , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Potencial da Membrana Mitocondrial , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Estrutura Molecular , Piranos/química , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Esophageal squamous cell carcinoma (ESCC) is one of the leading causes of cancer-related death with poor prognosis in China. Identifying novel targeted therapies in ESCC is urgently needed. The aberrant activation of NF-κB signalling pathway is critical for prognosis and recurrence of ESCC, which make it a potential target in the treatment of ESCC. Here, we found that pristimerin inhibited ESCC cell proliferation, migration, invasion, induced cell apoptosis, and eliminated cancer stem-like cells (CSCs). It also showed a synergistic effect on ESCC when combined with 5-fluorouracil (5-FU). Moreover, pristimerin potently inhibited the growth of ESCC xenograft in nude mice. The anti-ESCC effects of pristimerin were demonstrated to be associated with the inhibition of NF-κB pathway by suppressing tumour necrosis factor α (TNFα)-induced IκBα phosphorylation, p65 translocation, and NF-κB-dependent gene expression. This study provides an evidence for the development of pristimerin to be a new therapeutic agent for ESCC. SIGNIFICANCE OF THE STUDY: Although several approaches including surgery, chemotherapy, and radiotherapy had been applied in the treatment of ESCC, more effective targeted chemotherapies are required to increase the survival rates of patients. This study suggested that inhibiting NF-κB signalling pathway could be an effective approach for the treatment of ESCC. Pristimerin, a potent NF-κB inhibitor, exerted potent anti-ESCC effects both in vitro and in vivo, which may be a promising therapeutic agent for ESCC.
Assuntos
Antineoplásicos/farmacologia , Carcinoma de Células Escamosas/tratamento farmacológico , Movimento Celular/efeitos dos fármacos , Neoplasias Esofágicas/tratamento farmacológico , NF-kappa B/antagonistas & inibidores , Invasividade Neoplásica/patologia , Triterpenos/farmacologia , Animais , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Carcinoma de Células Escamosas/patologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago , Humanos , Masculino , Camundongos , Camundongos Nus , Conformação Molecular , NF-kappa B/metabolismo , Triterpenos Pentacíclicos , Relação Estrutura-Atividade , Triterpenos/química , Células Tumorais CultivadasRESUMO
The orbitofrontal cortex (OFC) is important for the cognitive processes of learning and decision making. Previous recordings have revealed that OFC neurons encode predictions of reward outcomes. The OFC is interconnected with the dorsal raphe nucleus (DRN), which is a major serotonin (5-HT) center of the brain. Recent studies have provided increasing evidence that the DRN encodes reward signals. However, it remains unclear how the activity of DRN neurons affects the prospective reward coding of OFC neurons. By combining single-unit recordings from the OFC and optogenetic activation of the DRN in behaving mice, we found that DRN stimulation is sufficient to organize and modulate the anticipatory responses of OFC neurons. During pavlovian conditioning tasks for mice, odorant cues were associated with the delayed delivery of natural rewards of sucrose solution or DRN stimulation. After training, OFC neurons exhibited prospective responses to the sucrose solution. More importantly, the coupling of an odorant with delayed DRN stimulation resulted in tonic excitation or inhibition of OFC neurons during the delay period. The intensity of the prospective responses was affected by the frequency and duration of DRN stimulation. Additionally, DRN stimulation bidirectionally modulated the prospective responses to natural rewards. These experiments indicate that signals from the DRN are incorporated into the brain reward system to shape the cortical prospective coding of rewards.
Assuntos
Lobo Frontal/fisiologia , Núcleos da Rafe/fisiologia , Recompensa , Animais , Comportamento Animal/fisiologia , Condicionamento Clássico/fisiologia , Aprendizagem por Discriminação/fisiologia , Feminino , Masculino , Camundongos , Neurônios/fisiologia , Optogenética , Olfato/fisiologiaRESUMO
The dorsal raphe nucleus (DRN) represents one of the most sensitive reward sites in the brain. However, the exact relationship between DRN neuronal activity and reward signaling has been elusive. In this review, we will summarize anatomical, pharmacological, optogenetics, and electrophysiological studies on the functions and circuit mechanisms of DRN neurons in reward processing. The DRN is commonly associated with serotonin (5-hydroxytryptamine; 5-HT), but this nucleus also contains neurons of the neurotransmitter phenotypes of glutamate, GABA and dopamine. Pharmacological studies indicate that 5-HT might be involved in modulating reward- or punishment-related behaviors. Recent optogenetic stimulations demonstrate that transient activation of DRN neurons produces strong reinforcement signals that are carried out primarily by glutamate. Moreover, activation of DRN 5-HT neurons enhances reward waiting. Electrophysiological recordings reveal that the activity of DRN neurons exhibits diverse behavioral correlates in reward-related tasks. Studies so far thus demonstrate the strong power of DRN neurons in reward signaling and at the same time invite additional efforts to dissect the roles and mechanisms of different DRN neuron types in various processes of reward-related behaviors.
Assuntos
Núcleo Dorsal da Rafe/fisiologia , Recompensa , Animais , Núcleo Dorsal da Rafe/citologia , Humanos , Neurônios/citologia , Neurônios/fisiologia , Serotonina/metabolismoRESUMO
POMC-derived melanocortins inhibit food intake. In the adult rodent brain, POMC-expressing neurons are located in the arcuate nucleus (ARC) and the nucleus tractus solitarius (NTS), but it remains unclear how POMC neurons in these two brain nuclei regulate feeding behavior and metabolism differentially. Using pharmacogenetic methods to activate or deplete neuron groups in separate brain areas, in the present study, we show that POMC neurons in the ARC and NTS suppress feeding behavior at different time scales. Neurons were activated using the DREADD (designer receptors exclusively activated by designer drugs) method. The evolved human M3-muscarinic receptor was expressed in a selective population of POMC neurons by stereotaxic infusion of Cre-recombinase-dependent, adeno-associated virus vectors into the ARC or NTS of POMC-Cre mice. After injection of the human M3-muscarinic receptor ligand clozapine-N-oxide (1 mg/kg, i.p.), acute activation of NTS POMC neurons produced an immediate inhibition of feeding behavior. In contrast, chronic stimulation was required for ARC POMC neurons to suppress food intake. Using adeno-associated virus delivery of the diphtheria toxin receptor gene, we found that diphtheria toxin-induced ablation of POMC neurons in the ARC but not the NTS, increased food intake, reduced energy expenditure, and ultimately resulted in obesity and metabolic and endocrine disorders. Our results reveal different behavioral functions of POMC neurons in the ARC and NTS, suggesting that POMC neurons regulate feeding and energy homeostasis by integrating long-term adiposity signals from the hypothalamus and short-term satiety signals from the brainstem.
Assuntos
Tronco Encefálico/fisiologia , Comportamento Alimentar/fisiologia , Hipotálamo/fisiologia , Inibição Neural/fisiologia , Neurônios/fisiologia , Pró-Opiomelanocortina/fisiologia , Adiposidade/genética , Animais , Tronco Encefálico/virologia , Dependovirus/genética , Feminino , Vetores Genéticos/administração & dosagem , Células HEK293 , Homeostase/genética , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Inibição Neural/genética , Vias Neurais/fisiopatologia , Neurônios/virologia , Pró-Opiomelanocortina/antagonistas & inibidoresRESUMO
Interview with Jingfeng Zhou, who studies how environmental factors impact associative learning and decision-making at the Chinese Institute for Brain Research, Beijing.
Assuntos
Tomada de Decisões , Humanos , China , Aprendizagem por Associação/fisiologia , História do Século XXI , AnimaisRESUMO
The ability to establish associations between environmental stimuli is fundamental for higher-order brain functions like state inference and generalization. Both the hippocampus and orbitofrontal cortex (OFC) play pivotal roles in this, demonstrating complex neural activity changes after associative learning. However, how precisely they contribute to representing learned associations remains unclear. Here, we train head-restrained mice to learn four 'odor-outcome' sequence pairs composed of several task variables-the past and current odor cues, sequence structure of 'cue-outcome' arrangement, and the expected outcome; and perform calcium imaging from these mice throughout learning. Sequence-splitting signals that distinguish between paired sequences are detected in both brain regions, reflecting associative memory formation. Critically, we uncover differential contents in represented associations by examining, in each area, how these task variables affect splitting signal generalization between sequence pairs. Specifically, the hippocampal splitting signals are influenced by the combination of past and current cues that define a particular sensory experience. In contrast, the OFC splitting signals are similar between sequence pairs that share the same sequence structure and expected outcome. These findings suggest that the hippocampus and OFC uniquely and complementarily organize the acquired associative structure.
Assuntos
Aprendizagem por Associação , Sinais (Psicologia) , Hipocampo , Camundongos Endogâmicos C57BL , Neurônios , Córtex Pré-Frontal , Animais , Hipocampo/fisiologia , Córtex Pré-Frontal/fisiologia , Córtex Pré-Frontal/citologia , Neurônios/fisiologia , Camundongos , Masculino , Aprendizagem por Associação/fisiologia , Odorantes , Memória/fisiologiaRESUMO
Flexible and context-dependent behaviors require animals, including humans, to identify their current contextual state for proper rules to apply, especially when information that defines these states is partially observable. Depending on behavioral needs, contextual states usually persist for prolonged periods and across other events, including sensory stimuli, actions, and rewards, highlighting prominent challenges of holding a reliable state representation. The orbitofrontal cortex (OFC) is crucial in behaviors requiring the identification of the current context (e.g., reversal learning); however, how single units in the OFC accomplish this function has not been assessed. Do they maintain such information persistently, in separate populations from those responding phasically to events within a task, or is contextual information dynamic and embedded in these phasic responses? Here, we investigated this question by recording single units from OFC in rats performing a task that required them to identify the current contextual state related to estimated proximity to future reward with distracting olfactory cues. We found that while some OFC neurons encode contextual states, most change their selectivity upon the transition of task events. Nevertheless, despite dynamic activities in single neurons, the neural populations maintain persistent representations regarding current contextual states within particular neural subspaces.
Assuntos
Sinais (Psicologia) , Córtex Pré-Frontal , Humanos , Ratos , Animais , Ratos Long-Evans , Córtex Pré-Frontal/fisiologia , Recompensa , Neurônios/fisiologiaRESUMO
BACKGROUND: The demethylation agent decitabine (DAC) is a pivotal non-intensive alternative treatment for acute myeloid leukemia (AML). However, patient responses to DAC are highly variable, and predictive biomarkers are warranted. Herein, the DNA methylation landscape of patients treated with a DAC-based combination regimen was compared with that of patients treated with standard chemotherapy to develop a molecular approach for predicting clinical response to DAC. METHODS: Twenty-five non-M3 AML patients were enrolled and subjected to DNA methylation sequencing and profiling to identify differentially methylated regions (DMRs) and genes of interest. Moreover, the effects of a DAC-based regimen on apoptosis and gene expression were explored using Kasumi-1 and K562 cells. RESULTS: Overall, we identified 541 DMRs that were specifically responsive to DAC, among which 172 DMRs showed hypomethylation patterns upon treatment and were aligned with the promoter regions of 182 genes. In particular, GNAS was identified as a critical DAC-responsive gene, with in vitro GNAS downregulation leading to reduced cell apoptosis induced by DAC and cytarabine combo treatment. CONCLUSIONS: We found that GNAS is a DAC-sensitive gene in AML and may serve as a prognostic biomarker to assess the responsiveness of patients with AML to DAC-based therapy.
Assuntos
Azacitidina , Leucemia Mieloide Aguda , Humanos , Decitabina/farmacologia , Decitabina/uso terapêutico , Azacitidina/farmacologia , Azacitidina/uso terapêutico , Metilação de DNA , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Cromograninas/genética , Cromograninas/uso terapêutico , Subunidades alfa Gs de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gs de Proteínas de Ligação ao GTP/uso terapêuticoRESUMO
BACKGROUND: t(8;21)(q22;q22) is one of the most frequent chromosomal abnormalities in acute myeloid leukemia (AML), leading to the generation of the fusion protein AML1-ETO. Despite t(8;21) AML being considered as a subtype with a favorable prognosis, approximately 30-50% of patients experience drug resistance and subsequent relapse. N6-methyladenosine (m6A) is demonstrated to be involved in the development of AML. However, the regulatory mechanisms between AML1-ETO and m6A-related enzymes and the roles of dysregulated m6A modifications in the t(8;21)-leukemogenesis and chemoresistance remain elusive. METHODS: Chromatin immunoprecipitation, dual-luciferase reporter assay, m6A-qPCR, RNA immunoprecipitation, and RNA stability assay were used to investigate a regulatory loop between AML1-ETO and FTO, an m6A demethylase. Gain- and loss-of-function experiments both in vitro and in vivo were further performed. Transcriptome-wide RNA sequencing and m6A sequencing were conducted to identify the potential targets of FTO. RESULTS: Here we show that FTO is highly expressed in t(8;21) AML, especially in patients with primary refractory disease. The expression of FTO is positively correlated with AML1-ETO, which is attributed to a positive regulatory loop between the AML1-ETO and FTO. Mechanistically, AML1-ETO upregulates FTO expression through inhibiting the transcriptional repression of FTO mediated by PU.1. Meanwhile, FTO promotes the expression of AML1-ETO by inhibiting YTHDF2-mediated AML1-ETO mRNA decay. Inactivation of FTO significantly suppresses cell proliferation, promotes cell differentiation and renders resistant t(8;21) AML cells sensitive to Ara-C. FTO exerts functions by regulating its mRNA targets, especially IGFBP2, in an m6A-dependent manner. Regain of Ara-C tolerance is observed when IGFBP2 is overexpressed in FTO-knockdown t(8;21) AML cells. CONCLUSION: Our work reveals a therapeutic potential of targeting AML1-ETO/FTO/IGFBP2 minicircuitry in the treatment for t(8;21) patients with resistance to Ara-C.
RESUMO
Acute myeloid leukemia (AML) is frequently linked to genetic abnormalities, with the t (8; 21) translocation, resulting in the production of a fusion oncoprotein AML1-ETO (AE), being a prevalent occurrence. This protein plays a pivotal role in t (8; 21) AML's onset, advancement, and recurrence, making it a therapeutic target. However, the development of drug molecules targeting AML1-ETO are markedly insufficient, especially used in clinical treatment. In this study, it was uncovered that Neratinib could significantly downregulate AML1-ETO protein level, subsequently promoting differentiation of t (8; 21) AML cells. Based on "differentiated active" probes, Neratinib was identified as a functional inhibitor against HNRNPA3 through covalent binding. The further studies demonstrated that HNRNPA3 function as a putative m6A reader responsible for recognizing and regulating the alternative splicing of AML-ETO pre-mRNA. These findings not only contribute to a novel insight to the mechanism governing post-transcriptional modification of AML1-ETO transcript, but also suggest that Neratinib would be promising therapeutic potential for t (8; 21) AML treatment.
Assuntos
Diferenciação Celular , Subunidade alfa 2 de Fator de Ligação ao Core , Leucemia Mieloide Aguda , Proteínas de Fusão Oncogênica , Quinolinas , Proteína 1 Parceira de Translocação de RUNX1 , Humanos , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Quinolinas/farmacologia , Diferenciação Celular/efeitos dos fármacos , Proteína 1 Parceira de Translocação de RUNX1/genética , Proteína 1 Parceira de Translocação de RUNX1/metabolismo , Precursores de RNA/metabolismo , Precursores de RNA/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/genética , Translocação Genética/efeitos dos fármacos , Adenosina/análogos & derivados , Adenosina/metabolismo , Adenosina/farmacologia , Processamento Alternativo/efeitos dos fármacos , Linhagem Celular Tumoral , Animais , CamundongosRESUMO
BACKGROUND: Despite its inconsistent response rate, decitabine, a demethylating agent, is often used as a non-intensive alternative therapeutic agent for acute myeloid leukemia (AML). It has been reported that relapsed/refractory AML patients with t(8;21) translocation achieved better clinical outcomes with a decitabine-based combination regimen than other AML subtypes; however, the mechanisms underlying this phenomenon remain unknown. Herein, the DNA methylation landscape of de novo patients with the t(8;21) translocation was compared with that of patients without the translocation. Moreover, the methylation changes induced by decitabine-based combination regimens in de novo/complete remission paired samples were investigated to elucidate the mechanisms underlying the better responses observed in t(8;21) AML patients treated with decitabine. METHODS: Thirty-three bone marrow samples from 28 non-M3 AML patients were subjected to DNA methylation sequencing to identify the differentially methylated regions and genes of interest. TCGA-AML Genome Atlas-AML transcriptome dataset was used to identify decitabine-sensitive genes that were downregulated following exposure to a decitabine-based regimen. In addition, the effect of decitabine-sensitive gene on cell apoptosis was examined in vitro using Kasumi-1 and SKNO-1 cells. RESULTS: A total of 1377 differentially methylated regions that specifically responsive to decitabine in t(8;21) AML were identified, of which 210 showed hypomethylation patterns following decitabine treatment aligned with the promoter regions of 72 genes. And the methylation-silencing genes, LIN7A, CEBPA, BASP1, and EMB were identified as critical decitabine-sensitive genes in t(8;21) AML. Moreover, AML patients with hypermethylated LIN7A and reduced LIN7A expression had poor clinical outcomes. Meanwhile, the downregulation of LIN7A inhibited decitabine/cytarabine combination treatment-induced apoptosis in t(8;21) AML cells in vitro. CONCLUSION: The findings of this study suggest that LIN7A is a decitabine-sensitive gene in t(8;21) AML patients that may serve as a prognostic biomarker for decitabine-based therapy.
Assuntos
Metilação de DNA , Leucemia Mieloide Aguda , Humanos , Decitabina/farmacologia , Decitabina/uso terapêutico , Genes Reguladores , Inativação Gênica , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Proteínas de Membrana , Proteínas de Transporte VesicularRESUMO
BACKGROUND: Hepatic metastasis is the primary and direct cause of death in individuals with colorectal cancer (CRC) attribute to lack of effective therapeutic targets. The present study aimed to identify potential druggable candidate targets for patients with liver metastatic CRC. METHODS: The transcriptional profiles of super-enhancers (SEs) in primary and liver metastatic CRC were evaluated in publicly accessible CRC datasets. Immunohistochemistry of human CRC tissues was conducted to determine the expression level of CDK12. Cellular proliferation, survival and stemness were examined upon CDK12 inhibition by shCDK12 or a selective CDK12 inhibitor named SR-4835 with multiple in vitro and in vivo assays. RNA sequencing and bioinformatics analyses were carried out to investigate the mechanisms of CDK12 inhibition in CRC cells. RESULTS: We identified CDK12 as a driver gene for direct hepatic metastasis in CRC. Suppression of CDK12 led to robust inhibition of proliferation, survival and stemness. Mechanistically, CDK12 intervention preferentially repressed the transcription of SE-associated genes. Integration of the SE landscape and RNA sequencing, BCL2L1 and CCDC137 were identified as SE-associated oncogenic genes to strengthen the abilities of cellular survival, proliferation and stemness, eventually increasing liver metastasis of CRC. CONCLUSIONS: Our data highlight the potential of CDK12 and SE-associated oncogenic transcripts as therapeutic targets for patients with liver metastatic CRC.
Assuntos
Neoplasias Colorretais , Quinases Ciclina-Dependentes , Neoplasias Hepáticas , Humanos , Carcinogênese/genética , Proliferação de Células/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Quinases Ciclina-Dependentes/genética , Quinases Ciclina-Dependentes/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/secundárioRESUMO
One dominant hypothesis about the function of the orbitofrontal cortex (OFC) is that the OFC signals the subjective values of possible outcomes to other brain areas for learning and decision making. This popular view generally neglects the fact that OFC is not necessary for simple value-based behavior (i.e., when values have been directly experienced). An alternative, emerging view suggests that OFC plays a more general role in representing structural information about the task or environment, derived from prior experience, and relevant to predicting behavioral outcomes, such as value. From this perspective, value signaling is simply one derivative of the core underlying function of OFC. New data in favor of both views have been accumulating rapidly. Here we review these new data in discussing the relative merits of these two ideas.