Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Mikrochim Acta ; 191(5): 266, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38625578

RESUMO

A photoelectrochemical sensor for target detection of hydrogen peroxide was designed based on a new heterojunction nanocomposite which was sulfhydryl-borate ester-modified A1/B1-type pillar[5]arene (BP5)-functionalized Au NPs and multi-walled carbon nanotubes hybridized with bismuth bromide oxide (Au@BP5/MWNTs-BiOBr). The specific sensor was based on the direct induction of oxidation by hydrogen peroxide of the borate ester group of pillar[5]arene. Additionally, the local surface plasmon resonance (LSPR) of Au NPs enhanced visible light capture, the host-guest complexation of BP5 with H2O2 enhanced photocurrent response, the layer-by-layer stacked nanoflower structure of BiOBr provided large specific surface area with more active sites, and the conductivity of MWNTs enhanced the charge separation efficiency and significantly improves the stability of PEC. Their synthesis effect significantly increased the photocurrent signal and further enhanced the detection result. Under the optimal conditions, the linear concentration range of H2O2 detected by the Au@BP5/MWNTs-BiOBr sensor was from 1 to 60 pmol/L. The limit of detection (LOD) and the limit of quantification (LOQ) of the method were 0.333 pmol/L and 1 pmol/L, respectively, and the sensitivity was 6.471 pmol/L. Importantly, the PEC sensor has good stability, reproducibility, and interference resistance and can be used for the detection of hydrogen peroxide in real cells.

2.
J Environ Manage ; 366: 121803, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39002458

RESUMO

In this work, a novel polyurethane carrier modified with biochar and tourmaline/zeolite powder at ratio of 1:1 and 1:2 was developed to promote the formation of biofilms and the synergy of overall bacterial activity for Partial Denitrification/Anammox to treat low-nitrogen contaminated surface water. Based on the batch experiment, the modified biocarrier, BTP2 (biochar: tourmaline = 2: 1), exhibited the highest total nitrogen removal efficiency (83.63%) under influent total nitrogen of 15 mg/L and COD/NO3- of 3. The dense biofilm was formed in inner side of biocarrier owing to the increased surface roughness and various functional groups suggested by scanning electron microscopy and Fourier-transform infrared analysis. The EPS content increased from 200.15 to 220.26 mg/g VSS in BTP2 system. Besides, the rapid NH4+ capture and organics release of the modified carrier fueled the growth of anammox and denitrification bacteria, with the activity of 2.13 ± 0.52 mg N/gVSS/h and 6.70 ± 0.52 mg N/gVSS/h (BTP2). High-throughput sequencing unraveled the increased abundances of Candidatus_Competibacter (0.82%), Thauera (0.60%) and Candidatus_Brocadia (0.55%) which was responsible for the synergy of incomplete reduction of NO3- to NO2- and NH4+ oxidation. Overall, this study provided a valid and simple-control guide for biofilm formation towards rapid enrichment and great collaboration of Anammox and denitrification bacteria.

3.
Inorg Chem ; 62(20): 7605-7610, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37162421

RESUMO

Metal nanoparticle catalysts have attracted great interest because they possess high surface-to-volume ratios and exhibit a very large number of catalytically active sites per unit area. However, high surface-to-volume ratios will induce nanoparticle aggregates during the catalytic reactions, making them lose their catalytic activity. In this work, a monoterpyridine-unit-functionalized pillar[5]arene (TP5) was synthesized successfully, which can be used as anchoring sites for the controllable preparation of well-dispersed palladium nanoparticles [TP5/Pd(0) NPs]. The as-prepared TP5/Pd(0) NPs were fully characterized by X-ray photoelectron spectroscopy, transmission electron microscopy, and powder X-ray diffraction. Importantly, the ultrafine TP5/Pd(0) NPs are found to be excellent and reusable catalysts for the reduction of nitrophenols in aqueous solution.

4.
Chemosphere ; 361: 142526, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38851507

RESUMO

The DEnitrifying AMmonium OXidation (DEAMOX) has been proven to be a promising process treating contaminated surface water containing ammonia and nitrate, while the enrichment of the slow-growing anammox bacteria (AnAOB) remains a challenge. In this study, a novel polyurethane-adhesion vermiculite/tourmaline (VTP) modified carrier was developed to achieve effective enrichment of AnAOB. The results demonstrated that the VTP-1 (vermiculite: tourmaline = 1:1) system exhibited the greatest performance with the total nitrogen removal efficiency reaching 87.6% and anammox contributing 63% to nitrogen removal. Scanning electron microscope analysis revealed the superior biofilm structure of the VTP-1 carrier, providing attachment for AnAOB. The addition of VTP-1 promoted the secretion of EPS (extracellular polymeric substances) by microorganisms, which increased to 85.34 mg/g VSS, contributing to the aggregation of anammox cells. The favorable substrate microenvironment created by NH4+ adsorption and NO2- supply via partial denitrification process facilitated the growth of AnAOB. The relative abundance of Candidatus Brocadia and Thauera increased from 0.04% to 0.3%-1.03% and 2.06% in the VTP-1 system, respectively. This study sheds new light on the anammox biofilm formation and provides a valid approach to initiate the DEAMOX process for low nitrogen polluted water treatment.


Assuntos
Silicatos de Alumínio , Compostos de Amônio , Biofilmes , Desnitrificação , Oxirredução , Compostos de Amônio/química , Silicatos de Alumínio/química , Bactérias/metabolismo , Nitrogênio/química , Poluentes Químicos da Água , Amônia/química , Nitratos
5.
Sci Total Environ ; 865: 161262, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36586290

RESUMO

Anaerobic membrane bioreactor (AnMBR) is a promising treatment technique for various types of wastewaters, and is preferred over other conventional aerobic and anaerobic methods. However, membrane fouling is considered a bottleneck in AnMBR system, which technically blocks membrane pores by numerous inorganics, organics, and other microbial substances. Various materials can be added in AnMBR to control membrane fouling and improve anaerobic digestion, and studies reporting the materials addition for this purpose are hereby systematically reviewed. The mechanism of membrane fouling control including compositional changes in extracellular polymeric substances (EPSs) and soluble microbial products (SMPs), materials properties, stimulation of antifouling microbes and alteration in substrate properties by material addition are thoroughly discussed. Nonetheless, this study opens up new research prospects to control membrane fouling of AnMBR, engineered by material, including compositional changes of microbial products (EPS and SMP), replacement of quorum quenching (QQ) by materials, and overall improvement of reactor performance. Regardless of the great research progress achieved previously in membrane fouling control, there is still a long way to go for material-mediated AnMBR applications to be undertaken, particularly for materials coupling, real scale application and molecular based studies on EPSs and SMPs, which were proposed for future researches.


Assuntos
Membranas Artificiais , Esgotos , Anaerobiose , Águas Residuárias , Reatores Biológicos , Eliminação de Resíduos Líquidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA