Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 166
Filtrar
1.
Nature ; 630(8016): 381-386, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38811733

RESUMO

Lignocellulose is mainly composed of hydrophobic lignin and hydrophilic polysaccharide polymers, contributing to an indispensable carbon resource for green biorefineries1,2. When chemically treated, lignin is compromised owing to detrimental intra- and intermolecular crosslinking that hampers downstream process3,4. The current valorization paradigms aim to avoid the formation of new C-C bonds, referred to as condensation, by blocking or stabilizing the vulnerable moieties of lignin5-7. Although there have been efforts to enhance biomass utilization through the incorporation of phenolic additives8,9, exploiting lignin's proclivity towards condensation remains unproven for valorizing both lignin and carbohydrates to high-value products. Here we leverage the proclivity by directing the C-C bond formation in a catalytic arylation pathway using lignin-derived phenols with high nucleophilicity. The selectively condensed lignin, isolated in near-quantitative yields while preserving its prominent cleavable ß-ether units, can be unlocked in a tandem catalytic process involving aryl migration and transfer hydrogenation. Lignin in wood is thereby converted to benign bisphenols (34-48 wt%) that represent performance-advantaged replacements for their fossil-based counterparts. Delignified pulp from cellulose and xylose from xylan are co-produced for textile fibres and renewable chemicals. This condensation-driven strategy represents a key advancement complementary to other promising monophenol-oriented approaches targeting valuable platform chemicals and materials, thereby contributing to holistic biomass valorization.


Assuntos
Compostos Benzidrílicos , Biomassa , Fracionamento Químico , Lignina , Fenóis , Compostos Benzidrílicos/química , Compostos Benzidrílicos/metabolismo , Catálise , Celulose/química , Celulose/metabolismo , Fracionamento Químico/métodos , Hidrogenação , Lignina/química , Lignina/metabolismo , Fenóis/química , Fenóis/metabolismo , Madeira/química , Xilanos/química , Xilanos/metabolismo , Xilose/química , Xilose/metabolismo , Combustíveis Fósseis , Têxteis
2.
Environ Sci Technol ; 58(1): 291-301, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38126320

RESUMO

With the prevalence of allergic contact dermatitis (ACD) from the usage of skin-contact products, like wearable, skin care, and hair care products, screening their skin sensitizing potential is necessary, for the sake of alleviating the consequent public health impact. In the present study, a total of 77 skin-contact products classified by four categories, watch bands (WBs), skin care products (SCPs), hair care products (HCPs), and rubber gloves (RGs), were investigated, using an optimized in vitro assay of human cell line activation test (h-CLAT). Extracting the products using neutral artificial sweat simulated well the practical usage scenarios, and testing the extracts showed that 26 of them were allergy test positive, including nine WBs, six SCPs, two HCPs, and nine RGs. The allergenic response was mainly characterized by the induction of CD54 expression, and diverse paradigms of CD54 and CD86 levels were observed by analyzing dose-response curves, which could also be influenced by the compromised viability of the THP-1 cells. The data implicated the intricate regulation by different contributors to suspicious ingredients in the test samples. Altogether, a promising methodology for testing skin allergy potential was well established for commonly used commodities by neutral artificial sweat extraction coupled with h-CLAT screening. The findings would be of great help in tracing the potential allergens in practical products and improving their qualities.


Assuntos
Preparações para Cabelo , Hipersensibilidade , Humanos , Alérgenos/farmacologia , Células THP-1 , Pele
3.
Environ Sci Technol ; 58(10): 4571-4580, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38430186

RESUMO

Exposure to atmospheric particulate matter (PM) has been found to accelerate the onset of neurological disorders via the induction of detrimental neuroinflammatory responses. To reveal how astrocytes respond to urban atmospheric PM stimulation, a commercially available standard reference material (SRM1648a) was tested in this study on the activation of rat cortical astrocytes. The results showed that SRM1648a stimulation induced both A1 and A2 phenotypes in astrocytes, as characterized by the exposure concentration-dependent increases in Fkbp5, Sphk1, S100a10, and Il6 mRNA levels. Studying the functional alterations of astrocytes indicated that the neurotrophic factors of Gdnf and Ngf were transcriptionally upregulated due to astrocytic A2-type activation. SRM1648a also promoted autonomous motility of astrocytes and elevated the expressions of chemokines. The aryl hydrocarbon receptor (AhR) agonistic components, such as polycyclic aromatic hydrocarbons (PAHs), were recognized to greatly contribute to SRM1648a-induced effects on astrocytes, which was confirmed by the attenuation of PM-disturbed astrocytic effects via AhR blockage. This study, for the first time, uncovered the direct regulation of urban atmospheric PM on astrocytic activation and function and traced the containing bioactive components (e.g., PAHs) with AhR agonistic activity. The findings provided new knowledge on understanding the ambiguous neurological disturbance from ambient fine PM pollution.


Assuntos
Material Particulado , Hidrocarbonetos Policíclicos Aromáticos , Ratos , Animais , Material Particulado/toxicidade , Fenótipo , Receptores de Hidrocarboneto Arílico/genética
4.
Ecotoxicol Environ Saf ; 280: 116577, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38870736

RESUMO

Tetrabromobisphenol A (TBBPA), a widely-used brominated flame retardant, has been revealed to exert endocrine disrupting effects and induce adipogenesis. Given the high structural similarities of TBBPA analogues and their increasing exposure risks, their effects on lipid metabolism are necessary to be explored. Herein, 9 representative TBBPA analogues were screened for their interference on 3T3-L1 preadipocyte adipogenesis, differentiation of C3H10T1/2 mesenchymal stem cells (MSCs) to brown adipocytes, and lipid accumulation of HepG2 cells. TBBPA bis(2-hydroxyethyl ether) (TBBPA-BHEE), TBBPA mono(2-hydroxyethyl ether) (TBBPA-MHEE), TBBPA bis(glycidyl ether) (TBBPA-BGE), and TBBPA mono(glycidyl ether) (TBBPA-MGE) were found to induce adipogenesis in 3T3-L1 preadipocytes to different extends, as evidenced by the upregulated intracellular lipid generation and expressions of adipogenesis-related biomarkers. TBBPA-BHEE exhibited a stronger obesogenic effect than did TBBPA. In contrast, the test chemicals had a weak impact on the differentiation process of C3H10T1/2 MSCs to brown adipocytes. As for hepatic lipid formation test, only TBBPA mono(allyl ether) (TBBPA-MAE) was found to significantly promote triglyceride (TG) accumulation in HepG2 cells, and the effective exposure concentration of the chemical under oleic acid (OA) co-exposure was lower than that without OA co-exposure. Collectively, TBBPA analogues may perturb lipid metabolism in multiple tissues, which varies with the test tissues. The findings highlight the potential health risks of this kind of emerging chemicals in inducing obesity, non-alcoholic fatty liver disease (NAFLD) and other lipid metabolism disorders, especially under the conditions in conjunction with high-fat diets.


Assuntos
Células 3T3-L1 , Adipogenia , Retardadores de Chama , Metabolismo dos Lipídeos , Bifenil Polibromatos , Bifenil Polibromatos/toxicidade , Metabolismo dos Lipídeos/efeitos dos fármacos , Animais , Camundongos , Adipogenia/efeitos dos fármacos , Humanos , Retardadores de Chama/toxicidade , Células Hep G2 , Diferenciação Celular/efeitos dos fármacos , Células-Tronco Mesenquimais/efeitos dos fármacos , Disruptores Endócrinos/toxicidade , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo
5.
Environ Sci Technol ; 57(30): 10998-11008, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37481753

RESUMO

3-tert-Butyl-4-hydroxyanisole (3-BHA), one of the most commonly used antioxidants in foodstuffs, has been identified as an environmental endocrine disruptor (EED) with obesogenic activity. Given the increasing concern on EED-caused dysfunction in lipid metabolism, whether 3-BHA could influence the development of brown adipocytes is worthy of being explored. In this study, the effect of 3-BHA on the differentiation of C3H10T1/2 mesenchymal stem cells (MSCs) into brown adipocytes was investigated. Exposure to 3-BHA promoted lipogenesis of the differentiated cells, as evidenced by the increased intracellular lipid accumulation and elevated expressions of adipogenic biomarkers, including peroxisome proliferator-activated receptor γ (PPARγ), Perilipin, Adiponectin, and fatty acid binding protein 4 (FABP4). Surprisingly, the thermogenic capacity of the differentiated cells was compromised as a result of 3-BHA exposure, because neither intracellular mitochondrial contents nor expressions of thermogenic biomarkers, including uncoupling protein 1 (UCP1), peroxisome proliferator-activated receptor γ coactivator 1α (PGC1α), cell-death-inducing DNA fragmentation factor α subunit-like effector A (CIDEA), and PR domain containing 16 (PRDM16), were increased by this chemical. The underlying molecular mechanism exploration revealed that, in contrast to p38 MAPK, 3-BHA stimulation induced phosphorylation of Smad1/5/8 in an exposure time-dependent manner, suggesting that this chemical-triggered Smad signaling was responsible for the shift of C3H10T1/2 MSC differentiation from a brown to white-like phenotype. The finding herein, for the first time, revealed the perturbation of 3-BHA in the development of brown adipocytes, uncovering new knowledge about the obesogenic potential of this emerging chemical of concern.

6.
Environ Sci Technol ; 57(38): 14248-14259, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37676697

RESUMO

Although there is evidence that exposure to ground-level ozone (O3) may cause an increased risk of neurological disorders (e.g., autistic spectrum disorder), low-dose chronic ozone exposure and its adverse effects on the nervous system have not been fully understood. Here, we evaluated the potential neurotoxic effects of long-term exposure to environmentally relevant O3 concentration (200 µg/m3 via a whole-body inhalation system, 12 h/day for 5 days/week) using a susceptible mouse model of autism induced by valproic acid. Various indicators of oxidative stress, mitochondria, and synapse in the brain tissues were then measured to determine the overall damage of O3 to the mouse brain. The results showed an aggravated risk of autism in mice offspring, which was embodied in decreased antioxidant contents, disturbed energy generation in mitochondria, as well as reduced expressions of protein kinase Mζ (PKMζ) and synaptic proteins [e.g., Synapsin 1 (SYN 1), postsynaptic density protein-95 (PSD-95)]. Overall, our study indicates that prenatal exposure to environmentally relevant O3 may exacerbate the symptoms of autism, shedding light on possible molecular mechanisms and providing valuable insights into the pathogenesis of autism, especially concerning low-dose levels of those pollutants.


Assuntos
Transtorno Autístico , Poluentes Ambientais , Ozônio , Feminino , Gravidez , Animais , Camundongos , Transtorno Autístico/induzido quimicamente , Antioxidantes , Mitocôndrias , Ozônio/toxicidade
7.
Ecotoxicol Environ Saf ; 258: 114979, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37150107

RESUMO

The widespread usage of 3-tert-butyl-4-hydroxyanisole (3-BHA) as an anthropogenic antioxidant has caused considerable environmental contamination and frequent detection in diverse human-derived samples. 3-BHA can promote adipogenesis and impair hepatic lipid metabolism, while its effects on renal lipid homeostasis remain to be uncertain. Herein, using the human kidney 2 (HK-2) cell experiments, 3-BHA was found to cause a significant reduction in lipid accumulation of the HK-2 cells in both exposure concentration- and duration-dependent manners. Exposure to 3-BHA lowered the transcriptional expressions of sterol regulatory element-binding protein 1 (SREBP1) and acetyl-CoA carboxylase (ACC), as well as ACC activity, indicating the inhibition in the process of de novo lipogenesis in HK-2 cells. On this basis, the mechanism study suggested that the reduced glucose absorption and accelerated glycolysis were concomitantly involved. The antagonism of 3-BHA on the transactivation of androgen receptor (AR) contributed to the lowered de novo lipogenesis and the consequent intracellular lipid reduction. The metabolomics data further confirmed the imbalance of lipid homeostasis and dysregulation of de novo lipogenesis. The new findings on the impaired renal lipid metabolism induced by 3-BHA warranted proper care about the usage of this chemical as a food additive.


Assuntos
Metabolismo dos Lipídeos , Lipogênese , Humanos , Receptores Androgênicos/genética , Lipídeos
8.
Environ Sci Technol ; 56(5): 3204-3213, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35133139

RESUMO

3-tert-Butyl-4-hydroxyanisole (3-BHA), one of the widely used food antioxidants, has been found to act as a potential obesogen by promoting adipogenesis in vitro and inducing white adipose tissue development in vivo. Whether 3-BHA-induced visceral obesity was accompanied by a disruption of hepatic lipid homeostasis in mammals remained unclear. In this study, we evaluated the effect of 3-BHA on the development of nonalcoholic fatty liver disease (NAFLD) in male C57BL/6J mice. After 18 weeks of oral administration of 10 mg/kg 3-BHA, the mice fed with a high-fat diet (HFD) had higher hepatic triglyceride concentrations (0.32 mg/mg protein) and severer steatosis (1.57 for the NAFLD score) than the control ones. The in vivo hepatic lipid deposition disturbed by 3-BHA was transcriptionally regulated by the genes involved in lipid uptake, de novo lipogenesis, fatty acid oxidation, and lipid export. The in vitro studies further confirmed that 24 h of exposure to 50 µM 3-BHA could induce intracellular oleic acid (OA) uptake and triglyceride accumulation (1.5-fold of the OA control) in HepG2 cells. Lipidomic analysis indicated the perturbation of 3-BHA in the levels of 30 lipid species related to sphingolipids, glycerophospholipids, and glycerolipids under HFD conditions. The findings herein first revealed the disruption effect of 3-BHA on hepatic lipid homeostasis, thus exacerbating the development of HFD-induced NAFLD.


Assuntos
Dieta Hiperlipídica , Hepatopatia Gordurosa não Alcoólica , Animais , Hidroxianisol Butilado , Metabolismo dos Lipídeos , Fígado/metabolismo , Masculino , Mamíferos , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/induzido quimicamente , Triglicerídeos/metabolismo , Triglicerídeos/farmacologia
9.
Environ Sci Technol ; 56(1): 460-469, 2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34930008

RESUMO

The extensive applications of parabens in foods, drugs, and cosmetics cause inevitable exposure to humans. Revealing the developmental toxicity of parabens is of utmost importance regarding their safety evaluation. In this study, the effects of four commonly used parabens, including methyl paraben (20 ∼ 200 µM), ethyl paraben (20 ∼ 100 µM), propyl paraben (5 ∼ 20 µM), and butyl paraben (BuP, 2 ∼ 10 µM), were investigated on the early development of zebrafish embryos and larvae. The underlying mechanisms were explored from the aspect of their disturbance in the thyroid endocrine system using in vivo, in vitro, and in silico assays. Paraben exposure caused deleterious effects on the early development of zebrafish, with BuP displaying the highest toxicity among all, resulting in the exposure concentration-related mortality, decreased hatching rate, reduced body length, lowered heart rate, and the incidence of malformation. Further investigation showed that paraben exposure reduced thyroid hormone levels and disturbed the transcriptional expressions of the target genes in the hypothalamic-pituitary-thyroid axis. Molecular docking analysis combined with in vitro GH3 cell proliferation assay testified that all test parabens exhibited thyroid receptor agonistic activities. The findings confirmed the developmental toxicity of the test parabens and their thyroid endocrine disruption effects, providing substantial evidence on the safety control of paraben-based preservatives.


Assuntos
Parabenos , Glândula Tireoide , Animais , Simulação de Acoplamento Molecular , Parabenos/análise , Conservantes Farmacêuticos/toxicidade , Glândula Tireoide/metabolismo , Peixe-Zebra/metabolismo
10.
Environ Sci Technol ; 56(12): 8496-8506, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35609006

RESUMO

The neurodevelopmental process is highly vulnerable to environmental stress from exposure to endocrine-disrupting chemicals. Perfluorinated iodine alkanes (PFIs) possess estrogenic activities, while their potential neurodevelopmental toxicity remains blurry. In the present study, the effects of two PFIs, including dodecafluoro-1,6-diiodohexane (PFHxDI) and tridecafluorohexyl iodide (PFHxI), were investigated in the neural differentiation of the mouse embryonic stem cells (mESCs). Without influencing the cytobiological process of the mESCs, PFIs interfered the triploblastic development by increasing ectodermal differentiation, thus promoting subsequent neurogenesis. The temporal regulation of PFIs in Notch-Hes signaling through the targeting of mmu-miRNA-34a-5p provided a substantial explanation for the underlying mechanism of PFI-promoted mESC commitment to the neural lineage. The findings herein provided new knowledge on the potential neurodevelopmental toxicities of PFIs, which would help advance the health risk assessment of these kinds of emerging chemicals.


Assuntos
Iodo , MicroRNAs , Alcanos , Animais , Diferenciação Celular/fisiologia , Iodetos , Camundongos , Células-Tronco Embrionárias Murinas
11.
Int J Hyperthermia ; 39(1): 97-107, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34979845

RESUMO

PURPOSE: Transarterial chemoembolization (TACE) was obtained acceptable benefit for advanced hepatocellular carcinoma (HCC). Here in this study, we compared the benefit of TACE combined palliative thermal ablation with TACE alone for HCC with portal vein tumor thrombus (PVTT). METHODS: Patients with HCC and PVTT were retrospectively analyzed from January 2012 to December 2017, who accepted treatment of TACE alone (TACE group) or TACE plus palliative thermal ablation (TACE + P-ablation group). Propensity score matching (PSM) was applied to balance differences between the two groups. Overall survival (OS) and progression-free survival (PFS) rates were compared between groups. RESULTS: Median follow-up time was 7.4 (3.0-60.0) months. In the cohort, 142 patients were enrolled in TACE group and 86 patients were enrolled in TACE + P-ablation group. The pre-PSM estimated 6-, 12-, and 18-month OS rates for the TACE + P-ablation group were 70.9, 46.5, and 31%, respectively, whereas rates for the TACE group were 57, 23.1, and 10%, respectively. After PSM, OS and PFS rates remained coincident with the pre-PSM. Risk factors for poor OS included PVTT type III and type II relative to type I (HR = 1.76; 95% CI, 1.13-2.74; p = .01) and (HR = 1.86; 95% CI, 1.2-2.88; p = .006), TACE alone (HR = 1.40; 95% CI, 1.01-1.96; p = .04), a single TACE treatment (HR = 2.69; 95% CI, 1.79-4.03; p < .001), 2 or 3 TACE treatments (HR = 2.02; 95% CI, 1.32-3.09; p = .001). CONCLUSIONS: The combination of TACE and palliative thermal ablation for HCC with PVTT could obtain delayed progression and longer survival.


Assuntos
Carcinoma Hepatocelular , Quimioembolização Terapêutica , Neoplasias Hepáticas , Trombose , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/terapia , Terapia Combinada , Humanos , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/terapia , Veia Porta , Prognóstico , Estudos Retrospectivos , Trombose/patologia , Trombose/terapia , Resultado do Tratamento
12.
Ecotoxicol Environ Saf ; 234: 113381, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35255248

RESUMO

The plasma consists of multiple functional serine zymogens, such as plasma kallikrein-kinin system (KKS), which are vulnerable to exogenous chemical exposure, and may closely relate to the deleterious effects. Testing whether the anthropogenic chemicals could increase the kallikrein-like activity in plasma or not would be of great help to understand their potentials in triggering the cascade activation of the plasma zymogens and explain the corresponding hematotoxicity. In this study, a novel high-throughput ex vivo assay was established to screen the abilities of emerging chemicals like per- and polyfluoroalkyl substances (PFASs) in inducing kallikrein-like activities on basis of using rat plasma as the protease zymogen source. Upon the optimization of the conditions in the test system, the assay gave sensitive fluorescent response to the stimulation of the positive control, dextran sulfate, and the dose-response showed a typical S-shaped curve with EC50 of 0.24 mg/L. The intra-plate and inter-plate relative standard deviations (RSDs) were less than 10% in the quantitative range of dextran sulfate, indicating a good reliability and repeatability of this newly-established assay. Using this method, several alternatives or congeners of perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA), including 6:2 chlorinated polyfluoroalkyl ether sulfonate (6:2 Cl-PFESA), Ag-PFOA, K-PFOA, Na-PFOA and ammonium pentadecafluorooctanoate (APFO), were further screened, and their capabilities in inducing kallikrein-like activities were identified. The ex vivo assay newly-developed in the present study would be promising in high-throughput screening of the hematological effects of emerging chemicals of concern.

13.
Int J Cancer ; 149(1): 127-138, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33586134

RESUMO

The population of patients with huge hepatocellular carcinoma (H-HCC diameter > 10.0 cm) is an odd group that is not well adjudicated in the current staging systems, whose prognosis after curative resection varies. We aimed to develop novel models to predict the long-term outcomes of patients with H-HCC without portal vein tumor thrombus after hepatectomy. There were 1076 H-HCC patients enrolled who underwent curative liver resection in five institutions in China. In total, 670 patients were recruited from our center and randomly divided into the training cohort (n = 502) and internal validation (n = 168) cohorts. Additionally, 406 patients selected from other four centers as the external validation cohort. Novel models were constructed based on independent preoperative and postoperative predictors of postsurgical recurrence (PSR) and postsurgical mortality (PSM) determined in multivariable cox regression analysis. The predictive accuracy and discriminative ability of the model were measured using Harrell's concordance index (C index) and calibration curve and compared with five conventional HCC staging systems. PSR model and PSM model were constructed based on tumor number, microscopic vascular invasion, tumor differentiation, preoperative alpha-fetoprotein level, albumin-bilirubin grade, liver segment invasion, neutrophil-to-lymphocyte ratio or platelet-to-neutrophil ratio, and surgical margin or intraoperative blood transfusion. The C-indexes were 0.84 (95% CI, 0.78-0.90) and 0.85 (95% CI, 0.78-0.91) for the PSR and PSM models, respectively, which were substantially higher than those of the five conventional HCC staging systems (0.63-0.75 for PSR; 0.66-0.77 for PSM). The two novel models achieved more accurate prognostic predictions of PSR and PSM for H-HCC patients after curative liver resection.


Assuntos
Carcinoma Hepatocelular/patologia , Hepatectomia/mortalidade , Neoplasias Hepáticas/patologia , Modelos Estatísticos , Recidiva Local de Neoplasia/patologia , Nomogramas , Carcinoma Hepatocelular/cirurgia , China , Feminino , Seguimentos , Humanos , Neoplasias Hepáticas/cirurgia , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/cirurgia , Prognóstico , Estudos Retrospectivos , Taxa de Sobrevida
14.
Environ Sci Technol ; 55(5): 3144-3155, 2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33569944

RESUMO

The tremendous potential for graphene quantum dots (GQDs) in biomedical applications has led to growing concerns of their health risks in human beings. However, present studies mainly focused on oxidative stress, apoptosis, and other general toxicity effects; the knowledge on the developmental toxicity and the related regulatory mechanisms is still far from sufficient. Our study revealed the development retardation of mouse embryonic stem cells (mESCs) caused by GQDs with a novel DNA methylation epigenetic mechanism. Specifically, GQDs were internalized into cells mainly via energy-dependent endocytosis, and a significant fraction of internalized GQDs remained in the cells even after a 48-h clearance period. Albeit with unobservable cytotoxicity or any influences on cell pluripotency, significant retardation was found in the in vitro differentiation of the mESCs into embryoid bodies (EBs) with the upregulation of Sox2 levels in GQD pretreatment groups. Importantly, this effect could be contributed by GQD-induced inhibition in CpG methylation of Sox2 through altering methyltransferase and demethyltransferase transcriptional expressions, and the demethyltransferase inhibitor, bobcat339 hydrochloride, reduced GQD-induced upregulation of Sox2. The current study first demonstrated that GQDs compromised the differentiation program of the mESCs, potentially causing development retardation. Exposure to this nanomaterial during gestation or early developmental period would cause adverse health risks and is worthy of more attention.


Assuntos
Grafite , Pontos Quânticos , Animais , Apoptose , Diferenciação Celular , Grafite/toxicidade , Camundongos , Células-Tronco Embrionárias Murinas , Pontos Quânticos/toxicidade
15.
Environ Sci Technol ; 55(2): 1134-1144, 2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33356192

RESUMO

Black phosphorus (BP) has extensive applications in various fields. The release of BP into aquatic ecosystems and the potential toxic effects on aquatic organisms are becoming major concerns. Here, we investigated the developmental toxicity of few-layered BP toward the zebrafish. We found that BP could adsorb on the surface of the chorion and could subsequently penetrate within the embryo. After exposure of embryos to 10 mg/L BP, developmental malformations appeared at 96 hpf, especially heart deformities such as pericardial edema and bradycardia, accompanied by severe circulatory system failure. Using transgenic zebrafish larvae, we further characterized cardiovascular defects with cardiac enlargement and impaired cardiac vessels as indicators of damage to the cardiovascular system upon BP exposure. We performed transcriptomic analysis on zebrafish embryos treated with a lower concentration of 2 mg/L. The results showed disruption in genes associated with muscle development, oxygen involved processes, focal adhesion, and VEGF and MAPK signaling pathways. These alterations also indicated that BP carries a risk of developmental perturbation at lower concentrations. This study provides new insights into the effects of BP on aquatic organisms.


Assuntos
Poluentes Químicos da Água , Peixe-Zebra , Animais , Ecossistema , Embrião não Mamífero , Fósforo , Poluentes Químicos da Água/toxicidade , Proteínas de Peixe-Zebra
16.
Part Fibre Toxicol ; 18(1): 19, 2021 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-33985555

RESUMO

BACKGROUND: Although airborne fine particulate matter (PM) pollution has been demonstrated as an independent risk factor for pulmonary and cardiovascular diseases, their currently-available toxicological data is still far from sufficient to explain the cause-and-effect. Platelets can regulate a variety of physiological and pathological processes, and the epidemiological study has indicated a positive association between PM exposure and the increased number of circulative platelets. As one of the target organs for PM pollution, the lung has been found to be involved in the storage of platelet progenitor cells (i.e. megakaryocytes) and thrombopoiesis. Whether PM exposure influences thrombopoiesis or not is thus explored in the present study by investigating the differentiation of megakaryocytes upon PM treatment. RESULTS: The results showed that PM exposure promoted the thrombopoiesis in an exposure concentration-dependent manner. PM exposure induced the megakaryocytic maturation and development by causing cell morphological changes, occurrence of DNA ploidy, and alteration in the expressions of biomarkers for platelet formation. The proteomics assay demonstrated that the main metabolic pathway regulating PM-incurred alteration of megakaryocytic maturation and thrombopoiesis was the mitochondrial oxidative phosphorylation (OXPHOS) process. Furthermore, airborne PM sample promoted-thrombopoiesis from megakaryocytes was related to particle size, but independent of sampling filters. CONCLUSION: The findings for the first time unveil the potential perturbation of haze exposure in thrombopoiesis from megakaryocytes by regulating mitochondrial OXPHOS. The substantial evidence on haze particle-incurred hematotoxicity obtained herein provided new insights for assessing the hazardous health risks from PM pollution.


Assuntos
Megacariócitos , Material Particulado/toxicidade , Trombopoese , Plaquetas , Fosforilação Oxidativa
17.
Ecotoxicol Environ Saf ; 208: 111390, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33049448

RESUMO

Polybrominated diphenyl ethers (PBDEs) are endocrine-disrupting chemicals that possess neuroendocrine and reproductive toxicity to humans and disturb thyroid hormone homeostasis, neurobehavior, and development. The most predominant congener of PBDEs in humans and other organisms is 2,2',4,4'-tetrabromodiphenyl ether (BDE-47); however, the molecular mechanisms underlying its cytotoxicity remain largely unknown. Here, we evaluated the toxic effect and underlying mechanism of nuclear receptors (NRs) induced by BDE-47 in SK-N-SH human neuroblastoma cells. The CCK-8 cell viability assay showed that the proliferation of human SK-N-SH cells exposed to BDE-47 was significantly inhibited in time- and dose-dependent manners, and flow cytometry showed that cell cycle was arrested at the S phase after BDE-47 exposure. Moreover, compared with the control group, the expression of retinoic acid receptor alpha (RXRα), pregnane X receptor (PXR), thyroid hormone receptors (TRs), and peroxisome proliferator-activated receptors (PPARs) at the mRNA and protein levels was significantly increased, as determined by quantitative PCR and western blot analysis, demonstrating that BDE-47 activated the NRs in vitro. Moreover, BDE-47 could bind to all four NRs in the affinity order of PPARγ > PXR > TRß > RXRα under molecular dynamics. Because RXR is the promiscuous dimerization partner for a large number of NRs, ZDock was used to calculate its interaction with other three NRs. Taking the number of hydrogen bonds and ZDock scores into account, the rank of docking ability between RXRα and the NRs was PXR > TRß > PPARγ. Further analysis of the interaction between BDE-47 and dimerized-NRs, the affinity order was RXRα > TRß > PXR > PPARγ via Glide. The results of this study demonstrated that BDE-47 interfered the cross-talk among NRs, especially the promiscuous RXRα, which might be critical for the harmonized re-adjustment of cytotoxicity and biological regulation. Our findings provide a better understanding of the mechanisms underlying toxic effects and intermolecular interaction induced by BDE-47.


Assuntos
Disruptores Endócrinos/toxicidade , Éteres Difenil Halogenados/toxicidade , Receptores Citoplasmáticos e Nucleares/efeitos dos fármacos , Animais , Sobrevivência Celular , Humanos , Neuroblastoma , Receptor de Pregnano X , Receptores Citoplasmáticos e Nucleares/fisiologia , Receptores dos Hormônios Tireóideos
18.
Environ Sci Technol ; 54(10): 6262-6271, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32314580

RESUMO

Tetrabromobisphenol A (TBBPA), the most widely used brominated flame retardant, is reported to potentially possess risks in inducing obesity or obesity-related metabolic diseases. Considering the increasing environmental contamination of TBBPA analogues and their high structural similarities to the parent compound, whether they could influence adipogenesis or not remains to be elucidated. In this study, two of the most prevalent TBBPA derivatives [i.e., TBBPA bis(allyl ether) (TBBPA-BAE) and TBBPA bis(2,3-dibromopropyl ether) (TBBPA-BDBPE)] and their byproducts [i.e., TBBPA mono(allyl ether) (TBBPA-MAE) and TBBPA mono(2,3-dibromopropyl ether) (TBBPA-MDBPE)], together with TBBPA, were screened for their capacities in activating peroxisome proliferator-activated receptor-γ (PPARγ) and glucocorticoid receptor (GR), the key nuclear receptors involved in adipogenesis, and their structure-related effects on differentiation of 3T3-L1 preadipocytes were explored. The results indicated that the binding affinities of TBBPA and its analogues for the PPARγ ligand-binding domain (PPARγ-LBD) and GR, as well as their effects on PPARγ transactivation, followed the order of TBBPA > TBBPA-MAE > TBBPA-MDBPE > TBBPA-BAE, TBBPA-BDBPE. Nevertheless, TBBPA-MAE and TBBPA-MDBPE showed higher potentials in promoting adipogenesis in 3T3-L1 cells than did TBBPA, as evidenced by intracellular triglyceride contents and adipogenic biomarkers at both protein and transcriptional levels. The etherified group at position 4 of TBBPA phenolic rings was crucial in chemical-induced adipogenic effects, which was related with the recruitment of PPARγ and GR-mediated networks and some other unidentified signaling pathways. The findings on the disturbance of TBBPA analogues on adipogenesis revealed their potential risk in causing obesity and other lipid metabolism-related human health concerns.


Assuntos
Retardadores de Chama , Bifenil Polibromatos , Células 3T3-L1 , Adipogenia , Animais , Humanos , Camundongos , PPAR gama
19.
J Ultrasound Med ; 39(6): 1223-1232, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31880357

RESUMO

OBJECTIVES: To investigate the effect of heat shock protein 90 (HSP90) modulation on tumor necrosis, apoptosis, tumor growth delay, and end point survival by combining microwave ablation (MWA) with an HSP90 inhibitor in a nude mouse model. METHODS: This study was approved by the Ethics Committee. Forty mice with HepG2 subcutaneous xenograft tumors (10 ± 1 mm) were randomized into 4 groups: (1) no treatment, (2) MWA only, (3) the HSP90 inhibitor ganetespib only, and (4) ganetespib combined with MWA. Tumors were harvested 24 hours after treatment, and gross coagulation diameters were measured. The effect of ganetespib on HSP90 and caspase 3 expression in the periablational rim was assessed. Another 40 mice with the same tumors and groupings were observed after treatment. Tumor growth curve and Kaplan-Meier survival analyses were performed with a tumor diameter of 2.2 cm and 40 days of survival as the defined survival end points. RESULTS: Combination treatment significantly increased the coagulation size compared to tumors treated with MWA or ganetespib alone (P < 0.05). The combination of MWA and ganetespib decreased HSP90 expression and increased cleaved caspase 3 expression 24 hours after treatment. Compared with MWA or ganetespib only, combination treatment could lengthen the end point survival and reduce the tumor growth rate. CONCLUSIONS: Modulation of HSP production can improve MWA-induced tumor apoptosis and destruction, reduce residual tumor growth rates, and prolong end point survival.


Assuntos
Técnicas de Ablação/métodos , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Neoplasias Hepáticas Experimentais/cirurgia , Triazóis/administração & dosagem , Animais , Apoptose , Proliferação de Células , Modelos Animais de Doenças , Proteínas de Choque Térmico HSP90/metabolismo , Neoplasias Hepáticas Experimentais/metabolismo , Camundongos , Camundongos Nus , Micro-Ondas , Sobrevida , Resultado do Tratamento
20.
Ecotoxicol Environ Saf ; 198: 110674, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32387843

RESUMO

Silver nanoparticles (AgNPs) are widely applied in many fields because of their excellent antibacterial activities. Toxicological studies have showed that AgNPs can cross the blood-brain barrier and exhibit high retention in the brain. Therefore, the potential neurotoxicity of AgNPs is raising serious concerns. This study investigated the neurotoxicological effects of AgNPs with two different sizes (20 nm and 70 nm, AgNPs-20 and AgNPs-70) using primary cultures of rat cerebral cortical neurons in mature and developing stages. The contribution of silver ion release was investigated by testing the effects of ionic silver in parallel. The results showed that both AgNPs-20 and AgNPs-70 significantly decreased neuronal cell viability, and AgNPs-20 had stronger toxicity compared with AgNPs-70. AgNP applications caused the granulated skeleton structure of the mature neurons with some broken synapses after a 24-h exposure, and inhibited neuronal growth during a 7-day exposure. Intracellular silver accumulation at non-cytotoxic exposure levels inhibited dopamine efflux, which was particle-specific and free of released silver ions. The findings herein can aid in guiding the proper applications of AgNPs in different areas, especially in medical use.


Assuntos
Nanopartículas Metálicas/toxicidade , Neurônios/efeitos dos fármacos , Prata/toxicidade , Animais , Barreira Hematoencefálica , Encéfalo , Sobrevivência Celular/efeitos dos fármacos , Dopamina , Tamanho da Partícula , Ratos , Sinapses
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA